The Role of Inflammatory and Nutritional Indices in Postmenopausal Osteoporosis: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Notelovitz, M. Optimizing Women’s Health: Adult Women’s Health & Medicine. Climacteric 2005, 8, 205–209. [Google Scholar] [CrossRef] [PubMed]
- TURKSTAT Corporate. Available online: https://data.tuik.gov.tr/Bulten/Index?p=37221&dil=2 (accessed on 26 May 2024).
- Hadji, P.; Gottschalk, M.; Ziller, V.; Kalder, M.; Jackisch, C.; Wagner, U. Bone Mass and the Risk of Breast Cancer: The Influence of Cumulative Exposure to Oestrogen and Reproductive Correlates. Results of the Marburg Breast Cancer and Osteoporosis Trial (MABOT). Maturitas 2007, 56, 312–321. [Google Scholar] [CrossRef]
- Black, D.M.; Rosen, C.J. Clinical Practice. Postmenopausal Osteoporosis. N. Engl. J. Med. 2016, 374, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Eastell, R.; Szulc, P. Use of Bone Turnover Markers in Postmenopausal Osteoporosis. Lancet Diabetes Endocrinol. 2017, 5, 908–923. [Google Scholar] [CrossRef]
- Mutlu, M.; Argun, M.; Kilic, E.; Saraymen, R.; Yazar, S. Magnesium, Zinc and Copper Status in Osteoporotic, Osteopenic and Normal Post-Menopausal Women. J. Int. Med. Res. 2007, 35, 692–695. [Google Scholar] [CrossRef] [PubMed]
- Chee, W.S.S.; Suriah, A.R.; Zaitun, Y.; Chan, S.P.; Yap, S.L.; Chan, Y.M. Dietary Calcium Intake in Postmenopausal Malaysian Women: Comparison between the Food Frequency Questionnaire and Three-Day Food Records. Asia Pac. J. Clin. Nutr. 2002, 11, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Q.; Deng, M.; Chen, Y.; Liu, W.; Huang, J.; Zhang, Z. Association between Homocysteine, C-Reactive Protein, Lipid Level, and Sleep Quality in Perimenopausal and Postmenopausal Women. Medicine 2021, 100, e28408. [Google Scholar] [CrossRef]
- Limmer, A.; Wirtz, D.C. Osteoimmunology: Influence of the Immune System on Bone Regeneration and Consumption. Z. Orthop. Unf. 2017, 155, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.N.; Chen, Y.J.; Zhang, H.Y.; Wang, X.; Zhang, Z.F. Inverse Association between Systemic Immune-Inflammation Index and Bone Mineral Density in Postmenopausal Women. Gynecol. Endocrinol. 2021, 37, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Ryu, S.-Y.; Park, J.; Shin, M.-H.; Han, M.-A.; Choi, S.-W. The Relationship of Neutrophil-Lymphocyte Ratio and Platelet-Lymphocyte Ratio with Bone Mineral Density in Korean Postmenopausal Women. Chonnam Med. J. 2019, 55, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Koseoglu, S.B. Bone Loss & Platelet-to-Lymphocyte Ratio. Biomark. Med. 2017, 11, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.-Z.; Yan, Z.-Q.; Yin, H.; Shan, L.-H.; Wang, J.-H.; Wu, Q.-H. Osteosarcopenic Obesity and Its Components-Osteoporosis, Sarcopenia, and Obesity-Are Associated with Blood Cell Count-Derived Inflammation Indices in Older Chinese People. BMC Geriatr. 2022, 22, 532. [Google Scholar] [CrossRef] [PubMed]
- Fucà, G.; Guarini, V.; Antoniotti, C.; Morano, F.; Moretto, R.; Corallo, S.; Marmorino, F.; Lonardi, S.; Rimassa, L.; Sartore-Bianchi, A.; et al. The Pan-Immune-Inflammation Value Is a New Prognostic Biomarker in Metastatic Colorectal Cancer: Results from a Pooled-Analysis of the Valentino and TRIBE First-Line Trials. Br. J. Cancer 2020, 123, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, A.; Paliogiannis, P.; Sotgiu, E.; Mellino, S.; Mangoni, A.A.; Zinellu, E.; Negri, S.; Collu, C.; Pintus, G.; Serra, A.; et al. Blood Cell Count Derived Inflammation Indexes in Patients with Idiopathic Pulmonary Fibrosis. Lung 2020, 198, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.-P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric Nutritional Risk Index: A New Index for Evaluating at-Risk Elderly Medical Patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef]
- Doi, S.; Iwata, H.; Wada, H.; Funamizu, T.; Shitara, J.; Endo, H.; Naito, R.; Konishi, H.; Tsuboi, S.; Ogita, M.; et al. A Novel and Simply Calculated Nutritional Index Serves as a Useful Prognostic Indicator in Patients with Coronary Artery Disease. Int. J. Cardiol. 2018, 262, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Faliva, M.A.; Tartara, A.; Gasparri, C.; Perna, S.; Infantino, V.; Riva, A.; Petrangolini, G.; Peroni, G. An Update on Magnesium and Bone Health. Biometals 2021, 34, 715–736. [Google Scholar] [CrossRef]
- Al Alawi, A.M.; Majoni, S.W.; Falhammar, H. Magnesium and Human Health: Perspectives and Research Directions. Int. J. Endocrinol. 2018, 2018, 9041694. [Google Scholar] [CrossRef]
- Rude, R.K.; Gruber, H.E.; Norton, H.J.; Wei, L.Y.; Frausto, A.; Kilburn, J. Dietary Magnesium Reduction to 25% of Nutrient Requirement Disrupts Bone and Mineral Metabolism in the Rat. Bone 2005, 37, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.; Edwards, L.R. Magnesium Supplementation in Vitamin D Deficiency. Am. J. Ther. 2019, 26, e124–e132. [Google Scholar] [CrossRef]
- Uwitonze, A.M.; Razzaque, M.S. Role of Magnesium in Vitamin D Activation and Function. J. Am. Osteopath. Assoc. 2018, 118, 181–189. [Google Scholar] [CrossRef]
- Baccaro, L.F.; Conde, D.; Costa-Paiva, L.; Pinto-Neto, A.M. The Epidemiology and Management of Postmenopausal Osteoporosis: A Viewpoint from Brazil. Clin. Interv. Aging 2015, 10, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.D.; Mysiw, W.J. Insights into the Epidemiology of Postmenopausal Osteoporosis: The Women’s Health Initiative. Semin. Reprod. Med. 2014, 32, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, Y.-Q.; Zhao, Z.-J.; Zhang, H.-Y.; Gao, B.; Lu, W.-G.; Xu, X.-L.; Lin, X.-S.; Wang, J.-P.; Jie, Q.; et al. Screening and Validation of Serum Protein Biomarkers for Early Postmenopausal Osteoporosis Diagnosis. Mol. Med. Rep. 2017, 16, 8427–8433. [Google Scholar] [CrossRef]
- Harlow, S.D.; Gass, M.; Hall, J.E.; Lobo, R.; Maki, P.; Rebar, R.W.; Sherman, S.; Sluss, P.M.; de Villiers, T.J. STRAW + 10 Collaborative Group Executive Summary of the Stages of Reproductive Aging Workshop + 10: Addressing the Unfinished Agenda of Staging Reproductive Aging. J. Clin. Endocrinol. Metab. 2012, 97, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A. Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis: Synopsis of a WHO Report. WHO Study Group. Osteoporos. Int. 1994, 4, 368–381. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Yu, P.; Wu, Y.; Wu, Y.; Tan, Z.; Ling, J.; Ma, J.; Zhang, J.; Zhu, W.; Liu, X. Sex Specific Global Burden of Osteoporosis in 204 Countries and Territories, from 1990 to 2030: An Age-Period-Cohort Modeling Study. J. Nutr. Health Aging 2023, 27, 767–774. [Google Scholar] [CrossRef]
- Huang, W.; Xiao, Y.; Wang, H.; Li, K. Association of Geriatric Nutritional Risk Index with the Risk of Osteoporosis in the Elderly Population in the NHANES. Front. Endocrinol. 2022, 13, 965487. [Google Scholar] [CrossRef]
- Wang, J.; Xing, F.; Sheng, N.; Xiang, Z. Associations of the Geriatric Nutritional Risk Index With Femur Bone Mineral Density and Osteoporosis in American Postmenopausal Women: Data From the National Health and Nutrition Examination Survey. Front. Nutr. 2022, 9, 860693. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, T.; Fujiwara, T.; Matsumoto, Y.; Kimura, A.; Kanahori, M.; Arisumi, S.; Oyamada, A.; Ohishi, M.; Ikuta, K.; Tsuchiya, K.; et al. Geriatric Nutritional Risk Index as the Prognostic Factor in Older Patients with Fragility Hip Fractures. Osteoporos. Int. 2023, 34, 1207–1221. [Google Scholar] [CrossRef] [PubMed]
- Qing, B.; Wang, N.; Wang, L.; Li, P.; Li, L.; Chen, H. Association between Geriatric Nutrition Risk Index and Bone Mineral Density in Elderly Chinese People. Arch. Osteoporos. 2021, 16, 55. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.T.; McCullough, M.L.; Newby, P.K.; Manson, J.E.; Meigs, J.B.; Rifai, N.; Willett, W.C.; Hu, F.B. Diet-Quality Scores and Plasma Concentrations of Markers of Inflammation and Endothelial Dysfunction. Am. J. Clin. Nutr. 2005, 82, 163–173. [Google Scholar] [CrossRef]
- Cavicchia, P.P.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Hébert, J.R. A New Dietary Inflammatory Index Predicts Interval Changes in Serum High-Sensitivity C-Reactive Protein. J. Nutr. 2009, 139, 2365–2372. [Google Scholar] [CrossRef]
- Tabung, F.K.; Steck, S.E.; Zhang, J.; Ma, Y.; Liese, A.D.; Agalliu, I.; Hingle, M.; Hou, L.; Hurley, T.G.; Jiao, L.; et al. Construct Validation of the Dietary Inflammatory Index among Postmenopausal Women. Ann. Epidemiol. 2015, 25, 398–405. [Google Scholar] [CrossRef]
- Zeng, F.F.; Xue, W.Q.; Cao, W.T.; Wu, B.H.; Xie, H.L.; Fan, F.; Zhu, H.L.; Chen, Y.M. Diet-Quality Scores and Risk of Hip Fractures in Elderly Urban Chinese in Guangdong, China: A Case-Control Study. Osteoporos. Int. 2014, 25, 2131–2141. [Google Scholar] [CrossRef]
- Kim, H.-R.; Kang, M.G.; Kim, K.; Koh, J.-S.; Park, J.R.; Hwang, S.-J.; Jeong, Y.-H.; Ahn, J.H.; Park, Y.; Bae, J.S.; et al. Comparative Analysis of Three Nutrition Scores in Predicting Mortality after Acute Myocardial Infarction. Nutrition 2021, 90, 111243. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, S.; Cazzaniga, A.; Albisetti, W.; Maier, J.A.M. Magnesium and Osteoporosis: Current State of Knowledge and Future Research Directions. Nutrients 2013, 5, 3022–3033. [Google Scholar] [CrossRef] [PubMed]
- Sojka, J.E.; Weaver, C.M. Magnesium Supplementation and Osteoporosis. Nutr. Rev. 1995, 53, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Aydin, H.; Deyneli, O.; Yavuz, D.; Gözü, H.; Mutlu, N.; Kaygusuz, I.; Akalin, S. Short-Term Oral Magnesium Supplementation Suppresses Bone Turnover in Postmenopausal Osteoporotic Women. Biol. Trace Elem. Res. 2010, 133, 136–143. [Google Scholar] [CrossRef]
- Kelly, O.J.; Gilman, J.C.; Ilich, J.Z. Utilizing Dietary Micronutrient Ratios in Nutritional Research May Be More Informative than Focusing on Single Nutrients. Nutrients 2018, 10, 107. [Google Scholar] [CrossRef]
- Rude, R.K.; Gruber, H.E.; Norton, H.J.; Wei, L.Y.; Frausto, A.; Mills, B.G. Bone Loss Induced by Dietary Magnesium Reduction to 10% of the Nutrient Requirement in Rats Is Associated with Increased Release of Substance P and Tumor Necrosis Factor-Alpha. J. Nutr. 2004, 134, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Fouhy, L.E.; Mangano, K.M.; Zhang, X.; Hughes, B.D.; Tucker, K.L.; Noel, S.E. Association between a Calcium-to-Magnesium Ratio and Osteoporosis among Puerto Rican Adults. J. Nutr. 2023, 153, 2642–2650. [Google Scholar] [CrossRef] [PubMed]
Osteoporosis Group n: 61 | Osteopenia Group n: 153 | Control Group n: 154 | p-Value | |
---|---|---|---|---|
Age (year) | 61 ± 9 | 57 ± 8 | 55 ± 8 | <0.001 a |
Gravida | 4 ± 3 | 3 ± 2 | 3 ± 2 | 0.540 |
Parity | 3 ± 2 | 2 ± 1 | 2 ± 1 | 0.107 |
BMI (kg/m2) | 27.7 ± 35 | 28.5 ± 4.7 | 29.8 ± 5.6 | 0.029 b |
Age of menopause (year) | 48 ± 4 | 48 ± 5 | 48 ± 4 | 0.485 |
Duration of menopause (year) | 12 ± 10 | 9 ± 9 | 7 ± 8 | 0.001 b |
STRAW stage | 0.008 | |||
1a | 5 (8.2%) | 34 (22.2%) | 51 (33.1%) | |
1b | 3 (4.9%) | 10 (6.5%) | 12 (7.8%) | |
1c | 12 (19.7%) | 27 (17.6%) | 23 (14.9%) | |
2 | 41 (67.2%) | 82 (53.6%) | 68 (44.2%) | |
Bone mineral density (T-score) | −2.98 ± 0.44 | −1.72 ± 0.46 | 0.21 ± 1.02 | <0.001 |
Albumin (g/dL) | 4.30 ± 0.27 | 4.24 ± 0.28 | 4.24 ± 0.29 | 0.450 |
Total cholesterol (mg/dL) | 221.6 (183.9–259.8) | 221.1 (190.1–254) | 209.7 (191.7–236.7) | 0.170 |
Triglyceride (mg/dL) | 137 (89.5–169) | 121 (83–171) | 128 (88–186) | 0.649 |
Hemoglobin (g/dL) | 13.4 ± 1 | 13.3 ± 1.1 | 13.4 ± 1.2 | 0.999 |
Neutrophil (×103/uL) | 3.69 (2.97–4.31) | 3.55 (2.81–4.42) | 3.53 (2.87–4.46) | 0.905 |
Lymphocyte (×103/uL) | 1.96 (1.65–2.53) | 2.11 (1.64–2.52) | 2.22 (1.86–2.58) | 0.131 |
Monocyte (×103/uL) | 0.39 (0.29–0.49) | 0.35 (0.28–0.41) | 0.36 (0.30–0.44) | 0.116 |
Platelet (×103/uL) | 281 (226.5–317) | 259.5 (220–300) | 272 (230–309) | 0.186 |
Osteoporosis Group n: 61 | Osteopenia Group n: 153 | Control Group n: 154 | p-Value | |
---|---|---|---|---|
GNRI | 116 ± 9.4 | 117.2 ± 9.8 | 119.9 ± 11.3 | 0.013 a |
TCBI | 1757 (1245–2866) | 1941 (1183–2865) | 2040 (1165–3358) | 0.535 |
PNI | 53.5 ± 4.5 | 52.8 ± 4.3 | 53.8 ± 4.9 | 0.176 |
HALP score | 42.3 (34.6–54.4) | 46.9 (35.3–57.7) | 45.4 (34.8–59.7) | 0.508 |
NLR | 1.70 (1.38–2.11) | 1.66 (1.36–2.17) | 1.59 (1.28–2.01) | 0.232 |
PLR | 134 (111.2–159) | 123.3 (100–155) | 125 (102–155.9) | 0.351 |
MLR | 0.17 (0.13–0.23) | 0.17 (0.14–0.20) | 0.16 (0.14–0.20) | 0.234 |
SII | 466.8 (363.3–617.3) | 426.5 (330.9–576.4) | 416.2 (333.1–581.4) | 0.384 |
SIRI | 0.64 (0.44–0.89) | 0.58 (0.43–0.81) | 0.57 (0.43–0.81) | 0.331 |
PIV | 169.5 (118.2–259.5) | 147.3 (101.1–226) | 152.9 (108.7–216) | 0.166 |
25-OH Vitamin D (ng/mL) | 24.11 ± 11.51 | 26.51 ± 17.39 | 22.53 ± 10.80 | 0.438 |
Na (mEq/L) | 139.1 ± 2.9 | 139.3 ± 2.3 | 139.4 ± 2.6 | 0.751 |
K (mEq/L) | 4.32 ± 0.26 | 4.33 ± 0.34 | 4.26 ± 0.35 | 0.344 |
Ca (mEq/L) | 9.50 (9.30–9.75) | 9.50 (9.30–9.82) | 9.50 (9.20–9.70) | 0.525 |
Mg (mEq/L) | 2 (1.9–2) | 2.1 (1.9–2.1) | 2.2 (1.96–2.2) | 0.007 b |
Na/K | 32.2 ± 2 | 32.4 ± 2.5 | 32.9 ± 2.8 | 0.430 |
Na/Ca | 14.6 ± 0.8 | 14.7 ± 0.7 | 14.8 ± 0.7 | 0.226 |
Na/Mg | 71.2 (67.4–74.7) | 71 (66.2–74.7) | 67.1 (65.2–72.5) | 0.009 b |
K/Mg | 2.1 (2–2.26) | 2.19 (2.05–2.37) | 2.15 (1.95–2.39) | 0.263 |
Ca/K | 2.21 ± 0.16 | 2.21 ± 0.19 | 2.23 ± 0.22 | 0.907 |
Ca/Mg | 4.57 (4.33–4.95) | 4.80 (4.52–5.11) | 4.84 (4.52–5.17) | 0.045 a |
AUC | 95% CI | Cut-Off Value | Sensitivity (%) | Specificity (%) | p-Value | |
---|---|---|---|---|---|---|
Age (year) | 0.627 | 0.556–0.698 | 56.5 | 65.6 | 53.8 | 0.002 |
BMI (kg/m2) | 0.563 | 0.471–0.656 | 28.1 | 45 | 44.8 | 0.047 |
Duration of menopause (year) | 0.624 | 0.551–0.698 | 7.5 | 60.7 | 58.3 | 0.002 |
GNRI | 0.674 | 0.597–0.752 | 116.6 | 58.9 | 58.3 | 0.002 |
Mg (mEq/L) | 0.652 | 0.560–0.743 | 1.98 | 72.5 | 54.3 | 0.002 |
Na/Mg | 0.635 | 0.552–0.719 | 69.7 | 59.5 | 53.6 | 0.002 |
Ca/Mg | 0.606 | 0.510–0.701 | 4.69 | 49.8 | 49.3 | 0.033 |
r | p-Value | |
---|---|---|
Age (year) | −0.168 | 0.001 |
Gravida | −0.094 | 0.178 |
Parity | −0.164 | 0.014 |
BMI (kg/m2) | 0.213 | <0.001 |
Age of menopause (year) | 0.027 | 0.606 |
Duration of menopause (year) | −0.173 | 0.001 |
STRAW stage | −0.145 | 0.005 |
Albumin (g/dL) | −0.072 | 0.168 |
Total cholesterol (mg/dL) | −0.130 | 0.013 |
Triglyceride (mg/dL) | 0.209 | <0.001 |
Hemoglobin (g/dL) | 0.022 | 0.675 |
Neutrophil (×103/uL) | −0.010 | 0.843 |
Lymphocyte (×103/uL) | 0.099 | 0.059 |
Monocyte (×103/uL) | −0.011 | 0.829 |
Platelet (×103/uL) | 0.039 | 0.454 |
r | p-Value | |
---|---|---|
GNRI | 0.179 | 0.001 |
TCBI | 0.111 | 0.033 |
PNI | 0.045 | 0.386 |
HALP score | 0.035 | 0.504 |
NLR | −0.036 | 0.500 |
PLR | −0.044 | 0.407 |
MLR | −0.063 | 0.236 |
SII | −0.039 | 0.462 |
SIRI | −0.030 | 0.576 |
PIV | −0.033 | 0.540 |
25-OH Vitamin D (ng/mL) | −0.063 | 0.352 |
Na (mEq/L) | 0.040 | 0.518 |
K (mEq/L) | −0.059 | 0.334 |
Ca (mEq/L) | −0.060 | 0.289 |
Mg (mEq/L) | 0.155 | 0.006 |
Na/K | 0.075 | 0.227 |
Na/Ca | 0.078 | 0.223 |
Na/Mg | −0.179 | 0.005 |
K/Mg | −0.019 | 0.757 |
Ca/K | 0.047 | 0.449 |
Ca/Mg | 0.116 | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demir Cendek, B.; Bayraktar, B.; Sapmaz, M.A.; Yıldırım, A.E.; Can Ibanoglu, M.; Engin Ustun, Y. The Role of Inflammatory and Nutritional Indices in Postmenopausal Osteoporosis: A Retrospective Study. J. Clin. Med. 2024, 13, 7741. https://doi.org/10.3390/jcm13247741
Demir Cendek B, Bayraktar B, Sapmaz MA, Yıldırım AE, Can Ibanoglu M, Engin Ustun Y. The Role of Inflammatory and Nutritional Indices in Postmenopausal Osteoporosis: A Retrospective Study. Journal of Clinical Medicine. 2024; 13(24):7741. https://doi.org/10.3390/jcm13247741
Chicago/Turabian StyleDemir Cendek, Busra, Burak Bayraktar, Mehmet Alican Sapmaz, Ayse Ecenaz Yıldırım, Mujde Can Ibanoglu, and Yaprak Engin Ustun. 2024. "The Role of Inflammatory and Nutritional Indices in Postmenopausal Osteoporosis: A Retrospective Study" Journal of Clinical Medicine 13, no. 24: 7741. https://doi.org/10.3390/jcm13247741
APA StyleDemir Cendek, B., Bayraktar, B., Sapmaz, M. A., Yıldırım, A. E., Can Ibanoglu, M., & Engin Ustun, Y. (2024). The Role of Inflammatory and Nutritional Indices in Postmenopausal Osteoporosis: A Retrospective Study. Journal of Clinical Medicine, 13(24), 7741. https://doi.org/10.3390/jcm13247741