Dulaglutide and Dapagliflozin Combination Concurrently Improves the Endothelial Glycocalyx and Vascular and Myocardial Function in Patients with T2DM and Albuminuria vs. DPP-4i
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Blood Pressure Measurement
2.3. Endothelial Glycocalyx
2.4. Arterial Stiffness and Central Hemodynamics
2.5. LV Myocardial Deformation
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Metabolic Control
3.3. Renal Function and Albuminuria
3.4. Endothelial Glycocalyx, Arterial Stiffness, and Central Hemodynamics
3.5. Changes in LV Myocardial Deformation
3.6. Correlations Between Albuminuria, Metabolic, Endothelial, Vascular, and LV Function Markers
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sagoo, M.K.; Gnudi, L. Diabetic Nephropathy: An Overview. Methods Mol. Biol. 2020, 2067, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.L.; Furtado, R.H.M.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; et al. Comparison of the Effects of Glucagon-Like Peptide Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors for Prevention of Major Adverse Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus. Circulation 2019, 139, 2022–2031. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.A. Combination therapy with GLP-1 receptor agonist and SGLT2 inhibitor. Diabetes Obes. Metab. 2017, 19, 1353–1362. [Google Scholar] [CrossRef] [PubMed]
- Korakas, E.; Ikonomidis, I.; Markakis, K.; Raptis, A.; Dimitriadis, G.; Lambadiari, V. The Endothelial Glycocalyx as a Key Mediator of Albumin Handling and the Development of Diabetic Nephropathy. Curr. Vasc. Pharmacol. 2020, 18, 619–631. [Google Scholar] [CrossRef]
- Chen, S.J.; Lv, L.L.; Liu, B.C.; Tang, R.N. Crosstalk between tubular epithelial cells and glomerular endothelial cells in diabetic kidney disease. Cell Prolif. 2020, 53, e12763. [Google Scholar] [CrossRef]
- Kaur, G.; Harris, N.R. Endothelial glycocalyx in retina, hyperglycemia, and diabetic retinopathy. Am. J. Physiol. Cell Physiol. 2023, 324, C1061–C1077. [Google Scholar] [CrossRef]
- Siren, E.M.J.; Luo, H.D.; Bajaj, S.; MacKenzie, J.; Daneshi, M.; Martinez, D.M.; Conway, E.M.; Cheung, K.C.; Kizhakkedathu, J.N. An improved in vitro model for studying the structural and functional properties of the endothelial glycocalyx in arteries, capillaries and veins. FASEB J. 2021, 35, e21643. [Google Scholar] [CrossRef]
- Urbina, E.M.; Kimball, T.R.; Khoury, P.R.; Daniels, S.R.; Dolan, L.M. Increased arterial stiffness is found in adolescents with obesity or obesity-related type 2 diabetes mellitus. J. Hypertens. 2010, 28, 1692–1698. [Google Scholar] [CrossRef]
- Briet, M.; Boutouyrie, P.; Laurent, S.; London, G.M. Arterial stiffness and pulse pressure in CKD and ESRD. Kidney Int. 2012, 82, 388–400. [Google Scholar] [CrossRef]
- Alharbi, S.H. Anti-inflammatory role of glucagon-like peptide 1 receptor agonists and its clinical implications. Ther. Adv. Endocrinol. Metab. 2024, 15, 20420188231222367. [Google Scholar] [CrossRef]
- Lee, S.A.; Riella, L.V. Narrative Review of Immunomodulatory and Anti-inflammatory Effects of Sodium-Glucose Cotransporter 2 Inhibitors: Unveiling Novel Therapeutic Frontiers. Kidney Int. Rep. 2024, 9, 1601–1613. [Google Scholar] [CrossRef] [PubMed]
- Ikonomidis, I.; Pavlidis, G.; Thymis, J.; Birba, D.; Kalogeris, A.; Kousathana, F.; Kountouri, A.; Balampanis, K.; Parissis, J.; Andreadou, I.; et al. Effects of Glucagon-Like Peptide-1 Receptor Agonists, Sodium-Glucose Cotransporter-2 Inhibitors, and Their Combination on Endothelial Glycocalyx, Arterial Function, and Myocardial Work Index in Patients With Type 2 Diabetes Mellitus After 12-Month Treatment. J. Am. Heart Assoc. 2020, 9, e015716. [Google Scholar] [CrossRef] [PubMed]
- Bronden, A.; Christensen, M.B.; Glintborg, D.; Snorgaard, O.; Kofoed-Enevoldsen, A.; Madsen, G.K.; Toft, K.; Kristensen, J.K.; Hojlund, K.; Hansen, T.K.; et al. Effects of DPP-4 inhibitors, GLP-1 receptor agonists, SGLT-2 inhibitors and sulphonylureas on mortality, cardiovascular and renal outcomes in type 2 diabetes: A network meta-analyses-driven approach. Diabet. Med. 2023, 40, e15157. [Google Scholar] [CrossRef] [PubMed]
- Tuttolomondo, A.; Cirrincione, A.; Casuccio, A.; Del Cuore, A.; Daidone, M.; Di Chiara, T.; Di Raimondo, D.; Corte, V.D.; Maida, C.; Simonetta, I.; et al. Efficacy of dulaglutide on vascular health indexes in subjects with type 2 diabetes: A randomized trial. Cardiovasc. Diabetol. 2021, 20, 1. [Google Scholar] [CrossRef]
- Xie, D.; Li, Y.; Xu, M.; Zhao, X.; Chen, M. Effects of dulaglutide on endothelial progenitor cells and arterial elasticity in patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2022, 21, 200. [Google Scholar] [CrossRef]
- Solini, A.; Giannini, L.; Seghieri, M.; Vitolo, E.; Taddei, S.; Ghiadoni, L.; Bruno, R.M. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: A pilot study. Cardiovasc. Diabetol. 2017, 16, 138. [Google Scholar] [CrossRef]
- Hong, J.Y.; Park, K.Y.; Kim, J.D.; Hwang, W.M.; Lim, D.M. Effects of 6 Months of Dapagliflozin Treatment on Metabolic Profile and Endothelial Cell Dysfunction for Obese Type 2 Diabetes Mellitus Patients without Atherosclerotic Cardiovascular Disease. J. Obes. Metab. Syndr. 2020, 29, 215–221. [Google Scholar] [CrossRef]
- Papadopoulou, E.; Loutradis, C.; Tzatzagou, G.; Kotsa, K.; Zografou, I.; Minopoulou, I.; Theodorakopoulou, M.P.; Tsapas, A.; Karagiannis, A.; Sarafidis, P. Dapagliflozin decreases ambulatory central blood pressure and pulse wave velocity in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled clinical trial. J. Hypertens. 2021, 39, 749–758. [Google Scholar] [CrossRef]
- Karalliedde, J.; Fountoulakis, N.; Stathi, D.; Corcillo, A.; Flaquer, M.; Panagiotou, A.; Maltese, G.; Mangelis, A.; Ayis, S.; Gnudi, L. Does Dapagliflozin influence arterial stiffness and levels of circulating anti-aging hormone soluble Klotho in people with type 2 diabetes and kidney disease? Results of a randomized parallel group clinical trial. Front. Cardiovasc. Med. 2022, 9, 992327. [Google Scholar] [CrossRef]
- Patoulias, D.; Papadopoulos, C.; Zografou, I.; Katsimardou, A.; Karagiannis, A.; Doumas, M. Effect of Empagliflozin and Dapagliflozin on Ambulatory Arterial Stiffness in Patients with Type 2 Diabetes Mellitus and Cardiovascular Co-Morbidities: A Prospective, Observational Study. Medicina 2022, 58, 1167. [Google Scholar] [CrossRef]
- Zografou, I.; Sampanis, C.; Gkaliagkousi, E.; Iliadis, F.; Papageorgiou, A.; Doukelis, P.; Vogiatzis, K.; Douma, S. Effect of vildagliptin on hsCRP and arterial stiffness in patients with type 2 diabetes mellitus. Hormones 2015, 14, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Cosenso-Martin, L.N.; Giollo-Junior, L.T.; Fernandes, L.A.B.; Cesarino, C.B.; Nakazone, M.A.; Machado, M.N.; Yugar-Toledo, J.C.; Vilela-Martin, J.F. Effect of vildagliptin versus glibenclamide on endothelial function and arterial stiffness in patients with type 2 diabetes and hypertension: A randomized controlled trial. Acta Diabetol. 2018, 55, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, E.; Xenou, M.; Zakynthinos, G.E.; Tsaplaris, P.; Lampsas, S.; Bletsa, E.; Gialamas, I.; Kalogeras, K.; Goliopoulou, A.; Gounaridi, M.I.; et al. Novel Approaches to the Management of Diabetes Mellitus in Patients with Coronary Artery Disease. Curr. Pharm. Des. 2023, 29, 1844–1862. [Google Scholar] [CrossRef] [PubMed]
- Paschou, S.A.; Siasos, G.; Bletsa, E.; Stampouloglou, P.K.; Oikonomou, E.; Antonopoulos, A.S.; Batzias, K.; Tsigkou, V.; Mourouzis, K.; Vryonidou, A.; et al. The Effect of DPP-4i on Endothelial Function and Arterial Stiffness in Patients with Type 2 Diabetes: A Systematic Review of Randomized Placebo-controlled Trials. Curr. Pharm. Des. 2020, 26, 5980–5987. [Google Scholar] [CrossRef]
- Shigiyama, F.; Kumashiro, N.; Miyagi, M.; Ikehara, K.; Kanda, E.; Uchino, H.; Hirose, T. Effectiveness of dapagliflozin on vascular endothelial function and glycemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study. Cardiovasc. Diabetol. 2017, 16, 84. [Google Scholar] [CrossRef]
- Zainordin, N.A.; Hatta, S.; Mohamed Shah, F.Z.; Rahman, T.A.; Ismail, N.; Ismail, Z.; Abdul Ghani, R. Effects of Dapagliflozin on Endothelial Dysfunction in Type 2 Diabetes With Established Ischemic Heart Disease (EDIFIED). J. Endocr. Soc. 2020, 4, bvz017. [Google Scholar] [CrossRef]
- Sposito, A.C.; Breder, I.; Soares, A.A.S.; Kimura-Medorima, S.T.; Munhoz, D.B.; Cintra, R.M.R.; Bonilha, I.; Oliveira, D.C.; Breder, J.C.; Cavalcante, P.; et al. Dapagliflozin effect on endothelial dysfunction in diabetic patients with atherosclerotic disease: A randomized active-controlled trial. Cardiovasc. Diabetol. 2021, 20, 74. [Google Scholar] [CrossRef]
- Batzias, K.; Antonopoulos, A.S.; Oikonomou, E.; Siasos, G.; Bletsa, E.; Stampouloglou, P.K.; Mistakidi, C.V.; Noutsou, M.; Katsiki, N.; Karopoulos, P.; et al. Effects of Newer Antidiabetic Drugs on Endothelial Function and Arterial Stiffness: A Systematic Review and Meta-Analysis. J. Diabetes Res. 2018, 2018, 1232583. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Stefansson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- Pollock, C.; Stefansson, B.; Reyner, D.; Rossing, P.; Sjostrom, C.D.; Wheeler, D.C.; Langkilde, A.M.; Heerspink, H.J.L. Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT): A randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019, 7, 429–441. [Google Scholar] [CrossRef]
- Gerstein, H.C.; Colhoun, H.M.; Dagenais, G.R.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Riesmeyer, J.S.; Riddle, M.C.; Ryden, L.; et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet 2019, 394, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, K.R.; McKinney, T.D.; Davidson, J.A.; Anglin, G.; Harper, K.D.; Botros, F.T. Effects of once-weekly dulaglutide on kidney function in patients with type 2 diabetes in phase II and III clinical trials. Diabetes Obes. Metab. 2017, 19, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Perkovic, V.; Johansen, O.E.; Cooper, M.E.; Kahn, S.E.; Marx, N.; Alexander, J.H.; Pencina, M.; Toto, R.D.; Wanner, C.; et al. Effect of Linagliptin vs Placebo on Major Cardiovascular Events in Adults With Type 2 Diabetes and High Cardiovascular and Renal Risk: The CARMELINA Randomized Clinical Trial. JAMA 2019, 321, 69–79. [Google Scholar] [CrossRef]
- Groop, P.H.; Cooper, M.E.; Perkovic, V.; Hocher, B.; Kanasaki, K.; Haneda, M.; Schernthaner, G.; Sharma, K.; Stanton, R.C.; Toto, R.; et al. Linagliptin and its effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: The randomized MARLINA-T2D trial. Diabetes Obes. Metab. 2017, 19, 1610–1619. [Google Scholar] [CrossRef]
- O’Hara, D.V.; Parkhill, T.R.; Badve, S.V.; Jun, M.; Jardine, M.J.; Perkovic, V. The effects of dipeptidyl peptidase-4 inhibitors on kidney outcomes. Diabetes Obes. Metab. 2021, 23, 763–773. [Google Scholar] [CrossRef]
- Bae, J.H.; Kim, S.; Park, E.G.; Kim, S.G.; Hahn, S.; Kim, N.H. Effects of Dipeptidyl Peptidase-4 Inhibitors on Renal Outcomes in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Endocrinol. Metab. 2019, 34, 80–92. [Google Scholar] [CrossRef]
- Shi, Y.; Hu, H.; Wu, Z.; Wu, J.; Chen, Z.; Li, P. Sex modifies the association between urinary albumin-to-creatinine ratio and diabetes among adults in the United States (NHANES 2011-2018). Biol. Sex Differ. 2022, 13, 53. [Google Scholar] [CrossRef]
- Yamada, T.; Wakabayashi, M.; Bhalla, A.; Chopra, N.; Miyashita, H.; Mikami, T.; Ueyama, H.; Fujisaki, T.; Saigusa, Y.; Yamaji, T.; et al. Cardiovascular and renal outcomes with SGLT-2 inhibitors versus GLP-1 receptor agonists in patients with type 2 diabetes mellitus and chronic kidney disease: A systematic review and network meta-analysis. Cardiovasc. Diabetol. 2021, 20, 14. [Google Scholar] [CrossRef]
- Smith, A.; Karalliedde, J.; De Angelis, L.; Goldsmith, D.; Viberti, G. Aortic pulse wave velocity and albuminuria in patients with type 2 diabetes. J. Am. Soc. Nephrol. 2005, 16, 1069–1075. [Google Scholar] [CrossRef]
- Basile, P.; Guaricci, A.I.; Piazzolla, G.; Volpe, S.; Vozza, A.; Benedetto, M.; Carella, M.C.; Santoro, D.; Monitillo, F.; Baggiano, A.; et al. Improvement of Left Ventricular Global Longitudinal Strain after 6-Month Therapy with GLP-1RAs Semaglutide and Dulaglutide in Type 2 Diabetes Mellitus: A Pilot Study. J. Clin. Med. 2023, 12, 1586. [Google Scholar] [CrossRef]
- Tanaka, H.; Soga, F.; Tatsumi, K.; Mochizuki, Y.; Sano, H.; Toki, H.; Matsumoto, K.; Shite, J.; Takaoka, H.; Doi, T.; et al. Positive effect of dapagliflozin on left ventricular longitudinal function for type 2 diabetic mellitus patients with chronic heart failure. Cardiovasc. Diabetol. 2020, 19, 6. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulos, A.; Katsiadas, N.; Skoularigkis, S.; Magouliotis, D.E.; Skopeliti, N.; Patsilinakos, S.; Briasoulis, A.; Triposkiadis, F.; Skoularigis, J. Association between Dapagliflozin, Cardiac Biomarkers and Cardiac Remodeling in Patients with Diabetes Mellitus and Heart Failure. Life 2023, 13, 1778. [Google Scholar] [CrossRef] [PubMed]
- Theofilis, P.; Antonopoulos, A.S.; Katsimichas, T.; Oikonomou, E.; Siasos, G.; Aggeli, C.; Tsioufis, K.; Tousoulis, D. The impact of SGLT2 inhibition on imaging markers of cardiac function: A systematic review and meta-analysis. Pharmacol. Res. 2022, 180, 106243. [Google Scholar] [CrossRef]
- Frantz, S.; Hundertmark, M.J.; Schulz-Menger, J.; Bengel, F.M.; Bauersachs, J. Left ventricular remodelling post-myocardial infarction: Pathophysiology, imaging, and novel therapies. Eur. Heart J. 2022, 43, 2549–2561. [Google Scholar] [CrossRef]
- Marketou, M.; Kontaraki, J.; Maragkoudakis, S.; Danelatos, C.; Papadaki, S.; Zervakis, S.; Plevritaki, A.; Vardas, P.; Parthenakis, F.; Kochiadakis, G. Effects of Sodium-Glucose Cotransporter-2 Inhibitors on Cardiac Structural and Electrical Remodeling: From Myocardial Cytology to Cardiodiabetology. Curr. Vasc. Pharmacol. 2022, 20, 178–188. [Google Scholar] [CrossRef]
- Leung, M.; Leung, D.Y.; Wong, V.W. Effects of dipeptidyl peptidase-4 inhibitors on cardiac and endothelial function in type 2 diabetes mellitus: A pilot study. Diabetes Vasc. Dis. Res. 2016, 13, 236–243. [Google Scholar] [CrossRef]
All Patients (n = 60) | Dulaglutide + Dapagliflozin (n = 30) | DPP-4i (n = 30) | p-Value | |
---|---|---|---|---|
Diabetes duration (y.) | 9 [4,5,6,7,8,9,10,11,12,13,14,15,16,17] | 8 [5,6,7,8,9,10,11,12,13] | 10 ± 4 | 0.118 |
Age (y.) | 61 ± 7 | 59 ± 7 | 63 ± 7 | 0.143 |
Sex (male/female), n (%) | (48/12), (80/20) | 26/4 (87/13) | 22/8 (73/27) | 0.110 |
Risk factors | ||||
LVEF, (%) | 54 ± 10 | 56 ± 9 | 53 ± 8 | 0.210 |
Active smoking | (27/33) (45/55) | (14/16) (46/54) | (13/17) (43/57) | 0.799 |
Arterial hypertension | (60/0) (100/0) | (30/0) (100/0) | (30/0) (100/0) | 0.000 |
Dyslipidemia | (54/6) (90/10) | (28/2) (93/7) | (26/4) (87/13) | 0.682 |
Family history of CAD | (25/35) (41/59) | (14/16) (46/54) | (11/19) (36/64) | 0.419 |
eGFR, mL/min per 1.73 m2 | 92 ± 10 | 91 ± 9 | 93 ± 10 | 0.322 |
Cardiovascular medications, n (%) | ||||
Beta-blockers | (20/40) (33/67) | (11/19) (36/64) | (9/21) (30/70) | 0.669 |
CCBs | (21/39) (35/65) | (13/17) (43/57) | (8/22) (26/74) | 0.176 |
ACEis or ARBs | (100/0) (100/0) | (30/0) (100/0) | (30/0) (100/0) | 0.000 |
Diuretics | (16/44) (26/74) | (7/23) (23/77) | (9/21) (30/70) | 0.559 |
MRAs | (7/53) (11/89) | (4/26) (13/87) | (3/27) (10/90) | 0.688 |
Statins | (54/6) (90/10) | (28/2) (93/7) | (26/4) (86/14) | 0.389 |
Variable | Total (n = 60) | DPP4i (n = 30) | Dulaglutide + Dapagliflozin (n = 30) |
---|---|---|---|
HbA1C, % | |||
Baseline | 8 ± 0.7 | 8.1 ± 0.8 | 7.9 ± 0.7 |
4 months | 7.3 ± 0.7 ††† | 7.5 ± 0.7 †† | 7.2 ± 0.6 †† |
Δ% | −8.7 | −0.6 | −0.7 |
12 months | 7 ± 1 ††† | 7.2 ± 0.7 † | 6.9 ± 0.6 †† |
Δ% | −12.5 | −0.9 | −1.0 |
Fasting Blood Glucose, mg/dL | |||
Baseline | 152 ± 42 | 157 ± 48 | 149 ± 45 |
4 months | 129 ± 30 ††† | 136 ± 44 †† | 124 ± 27 †† |
Δ% | −15.1 | −13.3 | −16.7 |
12 months | 120 ± 31 ††† | 123 ± 40 ††† | 119 ± 24 ††† |
Δ% | −21 | −21.65 | −20.9 |
Body Mass Index, kg/m2 | |||
Baseline | 32.7 ± 5 | 29.7 ± 6 | 35.2 ± 7 |
4 months | 31.1 ± 3 ††† | 29.4 ± 6 | 32.4 ± 5 †,* |
Δ% | −4.89 | −1.01 | −7.95 |
12 months | 30.5 ± 4 ††† | 29.3 ± 5 | 31.4 ± 4 †,** |
Δ% | −6.72 | −1.34 | −10.79 |
Variable | Total (n = 60) | DPP4i (n = 30) | Dulaglutide + Dapagliflozin (n = 30) |
---|---|---|---|
eGFR, mL/min per 1.73 m2 | |||
Baseline | 92 ± 10 | 91 ± 9 | 93 ± 10 |
4 months | 91 ± 9 | 90 ± 6 | 95 ± 8 * |
Δ% | −1.1 | −1.1 | 2.1 |
12 months | 91 ± 8 | 88 ± 9 | 97 ± 6 ††,** |
Δ% | −1.1 | −3.3 | 4.3 |
ACR, mg/g | |||
Baseline | 335 ± 57 | 345 ± 48 | 326 ± 61 |
4 months | 256 ± 49 †† | 306 ± 60 † | 207 ± 55 ††,* |
Δ% | −23.6 | −11,4 | −33.7 |
12 months | 218 ± 40 ††† | 295 ± 51 †† | 142 ± 47 †††,** |
Δ% | −35 | −14.5 | −52.3 |
Variable | Total (n = 60) | DPP4i (n = 30) | Dulaglutide + Dapagliflozin (n = 30) |
---|---|---|---|
PBR, 5–25 μm | |||
Baseline | 2.11 ± 0.31 | 2.11 ± 0.31 | 2.10 ± 0.31 |
4 months | 2.08 ± 0.29 | 2.16 ± 0.32 | 2.02 ± 0.26 †,* |
Δ% | −1.42 | 2.37 | −3.81 |
12 months | 2 ± 0.25 †† | 2.08 ± 0.28 | 1.93 ± 0.23 ††,** |
Δ% | −5.21 | −1.42 | −8.10 |
PWV, m/s | |||
Baseline | 11.26 ± 2.45 | 10.64 ± 2.44 | 11.77 ± 2.37 |
4 months | 10.75 ± 2.27 | 10.61 ± 2.55 | 10.89 ± 2.10 †,** |
Δ% | −4.6 | −0.3 | −7.48 |
12 months | 10.62 ± 2.52 | 10.54 ± 2.84 | 10.70 ± 2.29 ††,*** |
Δ% | −5.7 | −0.9 | −9.1 |
SBP, mmHg | |||
Baseline | 135.50 ± 19.80 | 131.13 ± 14.17 | 139.58 ± 23.17 |
4 months | 135.17 ± 16.17 | 135.36 ± 15.80 † | 135 ± 16.74 †,** |
Δ% | −0.24 | 3.22 | −3.28 |
12 months | 132.15 ± 15.46 | 133.10 ± 12.51 | 131.30 ± 17.87 ††,** |
Δ% | −2.47 | 1.50 | −5.93 |
DBP, mmHg | |||
Baseline | 83.32 ± 11.25 | 81.47 ± 11.30 | 85 ± 11.12 |
4 months | 80.96 ± 10.40 † | 81 ± 10.40 | 80.93 ± 10.57 †† |
Δ% | −2.83 | −0.57 | −4.78 |
12 months | 79.23 ± 9.75 †† | 78.33 ± 10.27 †† | 80.06 ± 9.34 ††† |
Δ% | −4.91 | −3.85 | −5.81 |
Central SBP, mmHg | |||
Baseline | 126.84 ± 18.80 | 123.13 ± 11.66 | 130.21 ± 17.23 |
4 months | 126.25 ± 14.20 | 124.46 ± 14.10 | 127.42 ± 14.41 |
Δ% | −0.46 | 1.08 | −2.14 |
12 months | 124.20 ± 16.18 | 125.13 ± 13.56 | 123.36 ± 18.42 †,* |
Δ% | −2.08 | 1.62 | −5.26 |
Variable | Total (n = 60) | DPP4i (n = 30) | Dulaglutide + Dapagliflozin (n = 30) |
---|---|---|---|
GLS, % | |||
Baseline | −17.89 ± 3.92 | −18.45 ± 3.38 | −17.42 ± 4.38 |
4 months | −18.50 ± 4.13 † | −19.06 ± 3.45 | −18.02 ± 4.67 |
Δ% | 3.40 | 3.30 | 3.44 |
12 months | −20.03 ± 3.68 †† | −19.56 ± 3.85 † | −20.59 ± 3.51 ††† |
Δ% | 11.96 | 6.01 | 18.19 |
PWV/GLS | |||
Baseline | −0.68 ± 0.15 | −0.64 ± 0.17 | −0.71 ± 0.24 |
4 months | −0.64 ± 0.20 † | −0.63 ± 0.16 | −0.64 ± 0.18 † |
Δ% | 5.88 | 1.56 | 9.86 |
12 months | −0.56 ± 0.15 †† | −0.58 ± 0.16 † | −0.54 ± 0.13 ††† |
Δ% | 17.64 | 9.37 | 23.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korakas, E.; Thymis, J.; Oikonomou, E.; Mourouzis, K.; Kountouri, A.; Pliouta, L.; Pililis, S.; Pavlidis, G.; Lampsas, S.; Katogiannis, K.; et al. Dulaglutide and Dapagliflozin Combination Concurrently Improves the Endothelial Glycocalyx and Vascular and Myocardial Function in Patients with T2DM and Albuminuria vs. DPP-4i. J. Clin. Med. 2024, 13, 7497. https://doi.org/10.3390/jcm13247497
Korakas E, Thymis J, Oikonomou E, Mourouzis K, Kountouri A, Pliouta L, Pililis S, Pavlidis G, Lampsas S, Katogiannis K, et al. Dulaglutide and Dapagliflozin Combination Concurrently Improves the Endothelial Glycocalyx and Vascular and Myocardial Function in Patients with T2DM and Albuminuria vs. DPP-4i. Journal of Clinical Medicine. 2024; 13(24):7497. https://doi.org/10.3390/jcm13247497
Chicago/Turabian StyleKorakas, Emmanouil, John Thymis, Evangelos Oikonomou, Konstantinos Mourouzis, Aikaterini Kountouri, Loukia Pliouta, Sotirios Pililis, George Pavlidis, Stamatios Lampsas, Konstantinos Katogiannis, and et al. 2024. "Dulaglutide and Dapagliflozin Combination Concurrently Improves the Endothelial Glycocalyx and Vascular and Myocardial Function in Patients with T2DM and Albuminuria vs. DPP-4i" Journal of Clinical Medicine 13, no. 24: 7497. https://doi.org/10.3390/jcm13247497
APA StyleKorakas, E., Thymis, J., Oikonomou, E., Mourouzis, K., Kountouri, A., Pliouta, L., Pililis, S., Pavlidis, G., Lampsas, S., Katogiannis, K., Palaiodimou, L., Tsivgoulis, G., Siasos, G., Ikonomidis, I., Raptis, A., & Lambadiari, V. (2024). Dulaglutide and Dapagliflozin Combination Concurrently Improves the Endothelial Glycocalyx and Vascular and Myocardial Function in Patients with T2DM and Albuminuria vs. DPP-4i. Journal of Clinical Medicine, 13(24), 7497. https://doi.org/10.3390/jcm13247497