Longitudinal Evaluation of Renal Function in Patients with Acquired Solitary Kidney—Urological Perspectives Post-Nephrectomy
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kovesdy, C.P. Epidemiology of Chronic Kidney Disease: An Update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Brück, K.; Stel, V.S.; Gambaro, G.; Hallan, S.; Völzke, H.; Ärnlöv, J.; Kastarinen, M.; Guessous, I.; Vinhas, J.; Stengel, B.; et al. European CKD Burden Consortium. CKD Prevalence Varies across the European General Population. J. Am. Soc. Nephrol. 2016, 27, 2135–2147. [Google Scholar] [CrossRef] [PubMed]
- Tantisattamo, E.; Dafoe, D.C.; Reddy, U.G.; Ichii, H.; Rhee, C.M.; Streja, E.; Landman, J.; Kalantar-Zadeh, K. Current Management of Patients with Acquired Solitary Kidney. Kidney Int. Rep. 2019, 4, 1205–1218. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, E.; Goldfarb, D.A.; Ritchey, M.L. The Congenital and Acquired Solitary Kidney. Rev. Urol. 2003, 5, 2–8. [Google Scholar]
- International Agency for Research on Cancer. Global Cancer Observatory: Cancer Today. Available online: https://gco.iarc.fr/today (accessed on 1 November 2024).
- Heller, M.T.; Schnor, N. MDCT of Renal Trauma: Correlation to AAST Organ Injury Scale. Clin. Imaging 2014, 38, 410–417. [Google Scholar] [CrossRef]
- Levey, A.S.; Eckardt, K.-U.; Dorman, N.M.; Christiansen, S.L.; Hoorn, E.J.; Ingelfinger, J.R.; Inker, L.A.; Levin, A.; Mehrotra, R.; Palevsky, P.M.; et al. Nomenclature for Kidney Function and Disease: Report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int. 2020, 97, 1117–1129. [Google Scholar] [CrossRef]
- Trevisani, F.; Floris, M.; Trepiccione, F.; Rosiello, G.; Capasso, G.; Pani, A.; Maculan, M.; Mascia, G.; Silvestre, C.; Bettiga, A.; et al. Surgery or Comorbidities: What Is the Primum Movens of Kidney Dysfunction after Nephrectomy? A Multicenter Study in Living Donors and Cancer Patients. J. Clin. Med. 2024, 13, 6551. [Google Scholar] [CrossRef]
- Ellis, R.J.; Cameron, A.; Gobe, G.C.; Diwan, V.; Healy, H.G.; Lee, J.; Tan, K.-S.; Venuthurupalli, S.; Zhang, J.; Hoy, W.E. Kidney Failure, CKD Progression, and Mortality after Nephrectomy. Int. Urol. Nephrol. 2022, 54, 2239–2245. [Google Scholar] [CrossRef]
- Lau, W.K.; Blute, M.L.; Weaver, A.L.; Torres, V.E.; Zincke, H. Matched Comparison of Radical Nephrectomy vs. Nephron-Sparing Surgery in Patients with Unilateral Renal Cell Carcinoma and a Normal Contralateral Kidney. Mayo Clin. Proc. 2000, 75, 1236–1242. [Google Scholar] [CrossRef]
- McKiernan, J.; Simmons, R.; Katz, J.; Russo, P. Natural History of Chronic Renal Insufficiency after Partial and Radical Nephrectomy. Urology 2002, 59, 816–820. [Google Scholar] [CrossRef]
- Huang, W.C.; Levey, A.S.; Serio, A.M.; Snyder, M.; Vickers, A.J.; Raj, G.V.; Scardino, P.T.; Russo, P. Chronic Kidney Disease after Nephrectomy in Patients with Renal Cortical Tumors: A Retrospective Cohort Study. Lancet Oncol. 2006, 7, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Velmahos, G.C.; Constantinou, C.; Gkiokas, G. Does Nephrectomy for Trauma Increase the Risk of Renal Failure? World J. Surg. 2005, 29, 1472–1475. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.; Muzaale, A.D.; Massie, A.B.; Bae, S.; Luo, X.; Grams, M.E.; Lentine, K.L.; Garg, A.X.; Segev, D.L. Patterns of End-Stage Renal Disease Caused by Diabetes, Hypertension, and Glomerulonephritis in Live Kidney Donors. Am. J. Transplant. 2016, 16, 3540–3547. [Google Scholar] [CrossRef] [PubMed]
- Pricop, C.; Puia, D.; Chiriac, I.; Miron, A. The Follow-Up of Patients with Surgical Solitary Kidney—The Underestimated Role of Comorbidities. Med. Surg. J.–Rev. Med. Chir. Soc. Med. Nat. 2023, 127, 402–407. [Google Scholar] [CrossRef]
- Garg, A.X.; Arnold, J.B.; Cuerden, M.S.; Dipchand, C.; Feldman, L.S.; Gill, J.S.; Karpinski, M.; Klarenbach, S.; Knoll, G.; Lok, C.E.; et al. Hypertension and Kidney Function after Living Kidney Donation. JAMA 2024, 332, 287–299. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Wang, W.; Ren, H.; Zhang, W.; Chen, N. Analysis of Factors Associated with Renal Function in Chinese Adults with Congenital Solitary Kidney. Intern. Med. 2010, 49, 2203–2209. [Google Scholar] [CrossRef]
- Alp, A.; Saruhan, E.; Doğan, E.; Genek, D.G.; Huddam, B. Time to Change Our Viewpoints to Assess Renal Risks in Patients with Solitary Kidneys beyond Traditional Approaches? J. Clin. Med. 2023, 12, 6885. [Google Scholar] [CrossRef]
- Jungers, P.; Joly, D.; Barbey, F.; Choukroun, G.; Daudon, M. ESRD Caused by Nephrolithiasis: Prevalence, Mechanisms, and Prevention. Am. J. Kidney Dis. 2004, 44, 799–805. [Google Scholar] [CrossRef]
- Rule, A.D.; Bergstralh, E.J.; Melton, L.J., 3rd; Li, X.; Weaver, A.L.; Lieske, J.C. Kidney Stones and the Risk for Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2009, 4, 804–811. [Google Scholar] [CrossRef]
- Hoshino, J.; Ohigashi, T.; Tsunoda, R.; Ito, Y.; Kai, H.; Saito, C.; Okada, H.; Narita, I.; Wada, T.; Maruyama, S.; et al. Physical Activity and Renal Outcome in Diabetic and Non-Diabetic Patients with Chronic Kidney Disease Stage G3b to G5. Sci. Rep. 2024, 14, 26378. [Google Scholar] [CrossRef]
- Brenner, B.M. Hemodynamically Mediated Glomerular Injury and the Progressive Nature of Kidney Disease. Kidney Int. 1983, 23, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, G.B.; Deagostini, M.C.; Vigotti, F.N.; Ferraresi, M.; Moro, I.; Consiglio, V.; Scognamiglio, S.; Mongilardi, E.; Clari, R.; Aroasio, E.; et al. Which Low-Protein Diet for Which CKD Patient? An Observational, Personalized Approach. Nutrition 2014, 30, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Alvarez Paredes, A.R.; Gómez García, A.; Alvarez Paredes, M.A.; Velázquez, N.; Ojeda Bolaños, D.C.; Padilla Sandoval, M.S.; Gallardo, J.M.; Muñoz Cortés, G.; Reyes Granados, S.C.; Rodríguez Morán, M.F.; et al. Prevalence and Metabolic Risk Factors of Chronic Kidney Disease among a Mexican Adult Population: A Cross-Sectional Study in Primary Healthcare Medical Units. PeerJ 2024, 12, e17817. [Google Scholar] [CrossRef] [PubMed]
- Frymoyer, P.A.; Scheinman, S.J.; Dunham, P.B.; Jones, D.B.; Hueber, P.; Schroeder, E.T. X-Linked Recessive Nephrolithiasis with Renal Failure. N. Engl. J. Med. 1991, 325, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Worcester, E.M.; Coe, F.L.; Evan, A.P.; Parks, J.H. Reduced Renal Function and Benefits of Treatment in Cystinuria vs. Other Forms of Nephrolithiasis. BJU Int. 2006, 97, 1285–1290. [Google Scholar] [CrossRef]
- Nerli, R.; Jali, M.; Guntaka, A.K.; Patne, P.; Patil, S.; Hiremath, M.B. Type 2 Diabetes Mellitus and Renal Stones. Adv. Biomed. Res. 2015, 4, 180. [Google Scholar] [CrossRef]
- Pricop, C.; Ivănuță, M.; Nikolic, M.; Puia, D. Kidney Stones of Type I vs. Type II Diabetic Patients: Are There Any Differences? J. Clin. Med. 2024, 13, 6110. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Fouque, D. Nutritional Management of Chronic Kidney Disease. N. Engl. J. Med. 2017, 377, 1765–1776. [Google Scholar] [CrossRef]
- Ozbek, L.; Abdel-Rahman, S.M.; Unlu, S.; Guldan, M.; Copur, S.; Burlacu, A.; Covic, A.; Kanbay, M. Exploring Adiposity and Chronic Kidney Disease: Clinical Implications, Management Strategies, Prognostic Considerations. Medicina 2024, 60, 1668. [Google Scholar] [CrossRef]
Parameter | n | % | |
---|---|---|---|
Gender | Male | 69 | 60 |
Female | 46 | 40 | |
Hypertension | Yes | 51 | 44.3 |
No | 64 | 55.7 | |
Diabetes | Yes | 62 | 53.9 |
No | 53 | 46.1 | |
Dyslipidaemia | Yes | 69 | 60 |
No | 46 | 40 | |
History of kidney stones | Yes | 29 | 25.2 |
No | 86 | 74.8 | |
Smoking | Yes | 61 | 53 |
No | 54 | 47 | |
Alcohol consumption | Yes | 54 | 47 |
No | 61 | 53 | |
Preoperative status of the remaining kidney | Normal | 87 | 75.7 |
Non-obstructive lithiasis | 18 | 15.6 | |
Cysts | 10 | 8.7 | |
The primary indication for nephrectomy | Renal tumour | 56 | 48.7 |
Urothelial tumour | 18 | 15.7 | |
Pyonephrosis | 26 | 22.6 | |
Trauma | 5 | 5.2 | |
Congenital hydronephrosis | 2 | 1.7 | |
Emphysematous pyelonephritis | 6 | 5.2 | |
Post percutaneous nephrolithotomy | 1 | 0.9 |
Whole Sample (n = 115) | RT (n = 56) | UT (n = 18) | PYN (n = 26) | TR (n = 5) | CH (n = 2) | EP (n = 6) | |
---|---|---|---|---|---|---|---|
Mean preoperative creatinine (mg/dL) (±SD) | 1.27 (±0.45) | 1.16 (±0.24) | 1.27 (±0.22) | 1.21 (±0.18) | 1.04 (±0.21) | 1.33 (±0.11) | 2.92 (±0.51) |
Mean postoperative creatinine (mg/dL) (±SD) | 1.47 (±0.85) | 1.42 (±0.80) | 1.35 (±0.66) | 1.35 (±0.63) | 1.25 (±0.74) | 1.05 (±0.16) | 3.32 (±0.89) |
Mean creatinine 1 month postoperatively (mg/dL) (±SD) | 1.29 (±0.37) | 1.16 (±0.24) | 1.27 (±0.25) | 1.28 (±0.33) | 1.34 (±0.37) | 1.56 (±0.53) | 2.19 (±1.09) |
Mean creatinine 12 months postoperatively (mg/dL) (±SD) | 1.74 (±0.50) | 1.82 (±0.69) | 1.83 (±0.43) | 1.42 (±0.52) | 1.42 (±0.78) | 1.33 (±0.58) | 2.88 (±1.04) |
Mean creatinine 24 months postoperatively (mg/dL) (±SD) | 1.72 (±0.69) | 1.78 (±0.70) | 1.82 (±0.38) | 1.42 (±0.51) | 1.45 (±0.80) | 1.38 (±0.54) | 2.84 (±1.02) |
Mean creatinine 36 months postoperatively (mg/dL) (±SD) | 1.71 (±0.70) | 1.76 (±0.67) | 1.88 (±0.59) | 1.39 (±0.52) | 1.37 (±0.73) | 1.40 (±0.57) | 2.73 (±0.91) |
Whole Sample | RT | UT | PYN | TR | CH | EP | |
---|---|---|---|---|---|---|---|
Preoperative vs. immediate postoperative (CI 95%) | 0.007 (−0.337–−0.054) | 0.02 (−0.478–−0.027) | 0.57 (−0.405–−0.233) | 0.30 (−0.404–0.132) | 0.54 (−1.063–0.633) | 0.08 (−0.169–0.719) | 0.38 (−1.489–0.689) |
Preoperative vs. 1 month postoperative (CI 95%) | 0.45 (−0.070–0.157) | 0.01 (−0.295–−0.029) | 0.97 (−0.083–−0.083) | 0.39 (0.083–−0.009) | 0.17 (−0.789–0.186) | 0.57 (−3.983–3.513) | 0.002 (1.041–2.334) |
Preoperative vs. 12 months postoperative (CI 95%) | <0.001 (−0.529–−0.282) | <0.001 (−0.416–−6.413) | 0.003 (−0.660–−0.166) | 0.04 (0.415–0.009) | 0.217 (−1.085–0.315) | 0.91 (−6.354–6.224) | 0.862 (−1.401–1.225) |
Preoperative vs. 24 months postoperative (CI 95%) | <0.001 (−0.500–−0.282) | <0.001 (−0.794–0.416) | 0.001 (−0.627–0.188) | 0.02 (−0.398–− 0.031) | 0.19 (−1.135–0.305) | 0.92 (−5.963–5.853) | 0.91 (−1.338–1.234) |
Preoperative vs. 36 months postoperative (CI 95%) | <0.001 (−0.534–−0.283) | <0.001 (−0395–−6.317) | 0.003 (−0.909–−0.217) | 0.06 (−0.379–0.010) | 0.26 (−1.001–0.341) | 0.90 (−6.237–6.087) | 0.96 (1.225–−0.049) |
Whole Sample (n = 115) | RT (n = 56) | UT (n = 18) | PYN (n = 26) | TR (n = 5) | CH (n = 2) | EP (n = 6) | |
---|---|---|---|---|---|---|---|
Mean preoperative eGFR (±SD) (mL/min/1.73 m2) | 70.67 (±19.6) | 73.95 (±17.38) | 71.16 (±11.56) | 71.67 (±17.80) | 77.32 (±17.65) | 54.75 (±27.29) | 23.13 (±8.90) |
Mean postoperative eGFR (±SD) (mL/min/1.73 m2) | 70.65 (±19.58) | 62.53 (±27.82) | 58.08 (±24.14) | 64.06 (±25.99) | 75.81 (±32.68) | 80.90 (±12.93) | 45.80 (±48.79) |
Mean eGFR (±SD) (mL/min/1.73 m2) 1 month postoperatively | 60.55 (±20.06) | 57.70 (±18.59) | 62.56 (±22.05) | 60.89 (±20.69) | 68.08 (±21.84) | 56.09 (±20.66) | 65.90 (±12.91) |
Mean eGFR (±SD) (mL/min/1.73 m2) 12 months postoperatively | 52.29 (±27.02) | 50.13 (±24.22) | 61.93 (±21.09) | 60.01 (±31.49) | 69.95 (±38.14) | 80.30 (±13.57) | 18.45 (±6.71) |
Mean eGFR (±SD) (mL/min/1.73 m2) 24 months postoperatively | 52.36 (±26.42) | 51.87 (±24.17) | 43.62 (±17.57) | 59.33 (±30.78) | 70.68 (±34.42) | 58.75 (±29.90) | 18.77 (±6.99) |
Mean eGFR (±SD) (mL/min/1.73 m2) 36 months postoperatively | 51.73 (±26.55) | 49.02 (±23.89) | 44.77 (±20.50) | 60.77 (±31.37) | 73.21 (±32.18) | 53.55 (±23.96) | 19.01 (±7.17) |
Whole Sample | RT | UT | PYN | TR | CH | EP | |
---|---|---|---|---|---|---|---|
Preoperative vs. immediate postoperative (CI 95%) | 0.22 (−0.009–0.042) | 0.01 (2.741–20.095) | 0.03 (0.732–25.538) | 0.22 (−4.954–20.163) | 0.92 (−38.033–41.049) | 0.23 (−155.186–102.876) | 0.24 (−67.047–21.681) |
Preoperative vs. 1 month postoperative (CI 95%) | 0.01 (5.112 –15.137) | <0.001 (9.506–22.984) | 0.11 (−1.920–19.122) | 0.04 (0.328–21.231) | 0.39 (−16.003–34.486) | 0.82 (−60.932–58.252) | 0.002 (−60.543–−25.029) |
Preoperative vs. 12 months postoperative (CI 95%) | 0.001 (13.189–23.577) | <0.001 (16.546–31.090) | <0.001 (14.890–33.761) | 0.09 (−2.106–25.402) | 0.45 (−18.340–35.090) | 0.53 (−392.759–341.659) | 0.21 (−5.46–18.166) |
Preoperative vs. 24 months postoperative (CI 95%) | 0.001 (13.212–23.401) | <0.001 (14.784–29.366) | <0.001 (17.964–37.117) | 0.06 (−0.723–25.402) | 0.53 (−18.785–32.069) | 0.93 (−517.907–509.897) | 0.23 (−5.946–18.014) |
Preoperative vs. 36 months postoperative (CI 95%) | 0.002 (13.720–24.153) | <0.001 (17.748–32.106) | <0.001 (14.595–38.197) | 0.10 (−2.487–24.281) | 0.64 (−24.310–27.560) | 0.97 (−459.341–461.731) | 0.25 (−6.390–18.002) |
Parameter | B | p | OR | 95% CI | |
---|---|---|---|---|---|
Gender | 0.344 | 0.493 | 1.4 | 0.527 | 3.776 |
Age | 0.034 | 0.01 | 1.03 | 1.007 | 1.063 |
Preoperative creatinine | 0.374 | 0.416 | 1.45 | 0.590 | 3.580 |
Hypertension | 0.995 | 0.03 | 2.7 | 1.066 | 6.862 |
Diabetes | 1.255 | 0.01 | 3.5 | 1.350 | 9.114 |
Dyslipidaemia | 0.850 | 0.06 | 2.3 | 0.951 | 5.758 |
Alcohol | 0.323 | 0.48 | 1.31 | 0.561 | 3.397 |
Smoking | −0.202 | 0.66 | 0.81 | 0.332 | 2.012 |
Preoperative lithiasis on the remaining kidney | 1.184 | 0.04 | 3.2 | 1.010 | 10.563 |
Preoperative cyst on the remaining kidney | −1.231 | 0.15 | 0.29 | 0.053 | 1.617 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivănuță, M.; Puia, D.; Cimpoeșu, D.C.; Ivănuță, A.-M.; Bîcă, O.D.; Pricop, C. Longitudinal Evaluation of Renal Function in Patients with Acquired Solitary Kidney—Urological Perspectives Post-Nephrectomy. J. Clin. Med. 2024, 13, 7470. https://doi.org/10.3390/jcm13237470
Ivănuță M, Puia D, Cimpoeșu DC, Ivănuță A-M, Bîcă OD, Pricop C. Longitudinal Evaluation of Renal Function in Patients with Acquired Solitary Kidney—Urological Perspectives Post-Nephrectomy. Journal of Clinical Medicine. 2024; 13(23):7470. https://doi.org/10.3390/jcm13237470
Chicago/Turabian StyleIvănuță, Marius, Dragoș Puia, Diana Carmen Cimpoeșu, Ana-Maria Ivănuță, Ovidiu Daniel Bîcă, and Cătălin Pricop. 2024. "Longitudinal Evaluation of Renal Function in Patients with Acquired Solitary Kidney—Urological Perspectives Post-Nephrectomy" Journal of Clinical Medicine 13, no. 23: 7470. https://doi.org/10.3390/jcm13237470
APA StyleIvănuță, M., Puia, D., Cimpoeșu, D. C., Ivănuță, A.-M., Bîcă, O. D., & Pricop, C. (2024). Longitudinal Evaluation of Renal Function in Patients with Acquired Solitary Kidney—Urological Perspectives Post-Nephrectomy. Journal of Clinical Medicine, 13(23), 7470. https://doi.org/10.3390/jcm13237470