Novel Strategies for Lung Cancer Interventional Diagnostics
Abstract
:1. Introduction
2. Tissue Acquisition Considerations
- (1)
- As the majority of patients are smokers, concurrent respiratory compromise is common [16], making diagnostic procedures difficult or impractical. The need for conscious sedation or general anesthesia during bronchoscopy can lead to respiratory depression that, in this patient population, may cause clinically significant desaturation [17], contributing to not only patient morbidity but also potentially a premature termination of the procedure.
- (2)
- Diagnostic biopsies can cause bleeding (1.9%) as tumor tissue can be friable and highly vascular due to disordered angiogenesis. This is problematic within the lung as it is usually not compressible in the airway [18]. Airway bleeding can also result in hypoxia that may be life threatening. Similarly, bleeding into the pleural space post-biopsy can be difficult to detect clinically until at an advanced state, which subjects the patient to further invasive procedures. Indeed, a study investigating barriers to re-biopsy for the molecular classification of lung cancer found that in 18% of cases, it was mostly due to the patient being on anti-coagulation that the physician assessment concluded that the procedure was too high risk [19].
- (3)
- The other major complication of lung biopsy is pneumothorax. This may require the need for further intervention with the placement of an intercostal tube into the thoracic cavity, invariably an in-patient admission and subsequent patient morbidity. Pneumothorax is most common in procedures where the lung tumor is accessed transthoracically with a CT-guided biopsy. Large case series have shown that patient features that increase this risk are smaller lesions or more peripheral lesions [20]. A recent meta-analysis of 46 eligible studies of transthoracic CT-core vs. CT-FNA showed a rate of pneumothorax of 25.3% and 18.8%, respectively, with 5.6% vs. 4.3% requiring further intervention. Major complication rates were 5.7% and 4.4%, respectively, overall [21]. Furthermore, recent evidence has shown that this technique may lead to local recurrence in the pleura of younger patients (<55 years old) with stage I disease [22].
3. Radial EBUS (rEBUS)
4. Electromagnetic Navigation Bronchoscopy (ENB)
5. Robotic Bronchoscopy
6. Imaging Adjuncts
7. Full-Field Optical Coherence Tomography with Dynamic Cell Imaging (FFOCT-DCI)
8. Liquid Biopsies
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Warren, G.W.; Alberg, A.J.; Kraft, A.S.; Cummings, K.M. The 2014 Surgeon General’s report: “The Health Consequences of Smoking–50 Years of Progress”: A paradigm shift in cancer care. Cancer 2014, 120, 1914–1916. [Google Scholar] [CrossRef]
- Song, M.-A.; Benowitz, N.L.; Berman, M.; Brasky, T.M.; Cummings, K.M.; Hatsukami, D.K.; Marian, C.; O’connor, R.; Rees, V.W.; Woroszylo, C.; et al. Cigarette Filter Ventilation and its Relationship to Increasing Rates of Lung Adenocarcinoma. JNCI J. Natl. Cancer Inst. 2017, 109, djx075. [Google Scholar] [CrossRef]
- Subramanian, J.; Govindan, R. Lung Cancer in Never Smokers: A Review. J. Clin. Oncol. 2007, 25, 561–570. [Google Scholar] [CrossRef]
- Planchard, D.; Besse, B. Lung cancer in never-smokers. Eur. Respir. J. 2015, 45, 1214–1217. [Google Scholar] [CrossRef]
- Lortet-Tieulent, J.; Soerjomataram, I.; Ferlay, J.; Rutherford, M.; Weiderpass, E.; Bray, F. International trends in lung cancer incidence by histological subtype: Adenocarcinoma stabilizing in men but still increasing in women. Lung Cancer 2014, 84, 13–22. [Google Scholar] [CrossRef]
- Johnson, D.H.; Fehrenbacher, L.; Novotny, W.F.; Herbst, R.S.; Nemunaitis, J.J.; Jablons, D.M.; Langer, C.J.; DeVore, R.F.; Gaudreault, J.; Damico, L.A.; et al. Randomized Phase II Trial Comparing Bevacizumab Plus Carboplatin and Paclitaxel With Carboplatin and Paclitaxel Alone in Previously Untreated Locally Advanced or Metastatic Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2004, 22, 2184–2191. [Google Scholar] [CrossRef]
- Scagliotti, G.V.; Parikh, P.; Von Pawel, J.; Biesma, B.; Vansteenkiste, J.; Serwatowski, C.M.; Serwatowski, P.; Gatzemeier, U.; Digumarti, R.; Zukin, M.; et al. Phase III Study Comparing Cisplatin Plus Gemcitabine With Cisplatin Plus Pemetrexed in Chemotherapy-Naive Patients With Advanced-Stage Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2008, 26, 3543–3551. [Google Scholar] [CrossRef]
- Liam, C.K.; Lee, P.; Yu, C.J.; Bai, C.; Yasufuku, K. The diagnosis of lung cancer in the era of interventional pulmonology. Int. J. Tuberc. Lung Dis. 2021, 25, 6–15. [Google Scholar] [CrossRef]
- Nizzoli, R.; Tiseo, M.; Gelsomino, F.; Bartolotti, M.; Majori, M.; Ferrari, L.; De Filippo, M.; Rindi, G.; Silini, E.M.; Guazzi, A.; et al. Accuracy of Fine Needle Aspiration Cytology in the Pathological Typing of Non-small Cell Lung Cancer. J. Thorac. Oncol. 2011, 6, 489–493. [Google Scholar] [CrossRef]
- Coghlin, C.L.; Smith, L.J.; Bakar, S.; Stewart, K.N.; Devereux, G.S.; Nicolson, M.C.; Kerr, K.M. Quantitative Analysis of Tumor in Bronchial Biopsy Specimens. J. Thorac. Oncol. 2010, 5, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Tomic, R.; Podgaetz, E.; Andrade, R.S.; Dincer, H.E. Cryotechnology in Diagnosing and Treating Lung Diseases. J. Bronchol. Interv. Pulmonol. 2015, 22, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Hetzel, J.; Eberhardt, R.; Herth, F.J.F.; Petermann, C.; Reichle, G.; Freitag, L.; Dobbertin, I.; Franke, K.J.; Stanzel, F.; Beyer, T.; et al. Cryobiopsy increases the diagnostic yield of endobronchial biopsy: A multicentre trial. Eur. Respir. J. 2011, 39, 685–690. [Google Scholar] [CrossRef]
- Forde, P.M.; Spicer, J.; Lu, S.; Provencio, M.; Mitsudomi, T.; Awad, M.M.; Felip, E.; Broderick, S.R.; Brahmer, J.R.; Swanson, S.J.; et al. Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer. N. Engl. J. Med. 2022, 386, 1973–1985. [Google Scholar] [CrossRef]
- Heymach, J.V.; Harpole, D.; Mitsudomi, T.; Taube, J.M.; Galffy, G.; Hochmair, M.; Winder, T.; Zukov, R.; Garbaos, G.; Gao, S.; et al. Perioperative Durvalumab for Resectable Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2023, 389, 1672–1684. [Google Scholar] [CrossRef]
- Ytterstad, E.; Moe, P.; Hjalmarsen, A. COPD in primary lung cancer patients: Prevalence and mortality. Int. J. Chronic. Obstr. 2016, 11, 625–636. [Google Scholar] [CrossRef]
- Jones, A.M.; O’Driscoll, R. Do All Patients Require Supplemental Oxygen During Flexible Bronchoscopy? Chest 2001, 119, 1906–1909. [Google Scholar] [CrossRef]
- Cordasco, E.M.; Mehta, A.C.; Ahmad, M. Bronchoscopically Induced Bleeding A Summary of Nine Years’ Cleveland Clinic Experience and Review of the Literature. Chest 1991, 100, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Chouaid, C.; Dujon, C.; Do, P.; Monnet, I.; Madroszyk, A.; Le Caer, H.; Auliac, J.B.; Berard, H.; Thomas, P.; Lena, H.; et al. Feasibility and clinical impact of re-biopsy in advanced non small-cell lung cancer: A prospective multicenter study in a real-world setting (GFPC study 12-01). Lung Cancer 2014, 86, 170–173. [Google Scholar] [CrossRef]
- Yeow, K.-M.; Su, I.-H.; Pan, K.-T.; Tsay, P.-K.; Lui, K.-W.; Cheung, Y.-C.; Chou, A.S.-B. Risk Factors of Pneumothorax and Bleeding. Chest 2004, 126, 748–754. [Google Scholar] [CrossRef]
- Heerink, W.J.; Bock, G.H.; de Jonge, G.J.; de Groen, H.J.M.; Vliegenthart, R.; Oudkerk, M. Complication rates of CT-guided transthoracic lung biopsy: Meta-analysis. Eur. Radiol. 2017, 27, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Hahn, S.; Matsuguma, H.; Inoue, M.; Shintani, Y.; Honda, O.; Izumi, Y.; Asakura, K.; Asamura, H.; Isaka, T.; et al. Pleural recurrence after transthoracic needle lung biopsy in stage I lung cancer: A systematic review and individual patient-level meta-analysis. Thorax 2021, 76, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, G.A.; Goldman, L.; Tanner, N.T.; Burleson, J.; Gould, M.; Kazerooni, E.A.; Mazzone, P.J.; Rivera, M.P.; Doria-Rose, V.P.; Rosenthal, L.S.; et al. Outcomes From More Than 1 Million People Screened for Lung Cancer With Low-Dose CT Imaging. Chest 2023, 164, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Smith-Bindman, R.; Kwan, M.L.; Marlow, E.C.; Theis, M.K.; Bolch, W.; Cheng, S.Y.; Bowles, E.J.A.; Duncan, J.R.; Greenlee, R.T.; Kushi, L.H.; et al. Trends in Use of Medical Imaging in US Health Care Systems and in Ontario, Canada, 2000–2016. JAMA 2019, 322, 843–856. [Google Scholar] [CrossRef] [PubMed]
- Gould, M.K.; Tang, T.; Liu, I.-L.A.; Lee, J.; Zheng, C.; Danforth, K.N.; Kosco, A.E.; Di Fiore, J.L.; Suh, D.E. Recent Trends in the Identification of Incidental Pulmonary Nodules. Am. J. Respir. Crit. Care Med. 2015, 192, 1208–1214. [Google Scholar] [CrossRef]
- Gould, M.K.; Donington, J.; Lynch, W.R.; Mazzone, P.J.; Midthun, D.E.; Naidich, D.P.; Wiener, R.S. Evaluation of Individuals With Pulmonary Nodules: When Is It Lung Cancer? Chest 2013, 143, e93S–e120S. [Google Scholar] [CrossRef]
- Young, R.P.; Duan, F.; Chiles, C.; Hopkins, R.J.; Gamble, G.D.; Greco, E.M.; Gatsonis, C.; Aberle, D. Airflow Limitation and Histology Shift in the National Lung Screening Trial. The NLST-ACRIN Cohort Substudy. Am. J. Respir. Crit. Care Med. 2015, 192, 1060–1067. [Google Scholar] [CrossRef]
- Baaklini, W.A.; Reinoso, M.A.; Gorin, A.B.; Sharafkaneh, A.; Manian, P. Diagnostic Yield of Fiberoptic Bronchoscopy in Evaluating Solitary Pulmonary Nodules. Chest 2000, 117, 1049–1054. [Google Scholar] [CrossRef]
- McGuire, A.L.; Myers, R.; Grant, K.; Lam, S.; Yee, J. The Diagnostic Accuracy and Sensitivity for Malignancy of Radial-Endobronchial Ultrasound and Electromagnetic Navigation Bronchoscopy for Sampling of Peripheral Pulmonary Lesions. J. Bronchol. Interv. Pulmonol. 2020, 27, 106–121. [Google Scholar] [CrossRef]
- Ali, M.S.; Trick, W.; Mba, B.I.; Mohananey, D.; Sethi, J.; Musani, A.I. Radial endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions: A systematic review and meta-analysis. Respirology 2017, 22, 443–453. [Google Scholar] [CrossRef]
- Chen, A.; Chenna, P.; Loiselle, A.; Massoni, J.; Mayse, M.; Misselhorn, D. Radial Probe Endobronchial Ultrasound for Peripheral Pulmonary Lesions. A 5-Year Institutional Experience. Ann. Am. Thorac. Soc. 2014, 11, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Imabayashi, T.; Matsumoto, Y.; Uchimura, K.; Furuse, H.; Tsuchida, T. Computed Tomography Bronchus Sign Subclassification during Radial Endobronchial Ultrasound-Guided Transbronchial Biopsy: A Retrospective Analysis. Diagnostics 2023, 13, 1064. [Google Scholar] [CrossRef]
- Ishida, T.; Asano, F.; Yamazaki, K.; Shinagawa, N.; Oizumi, S.; Moriya, H.; Munakata, M.; Nishimura, M.; Virtual Navigation in Japan (V-NINJA) trial group. Virtual bronchoscopic navigation combined with endobronchial ultrasound to diagnose small peripheral pulmonary lesions: A randomised trial. Thorax 2011, 66, 1072–1077. [Google Scholar] [CrossRef]
- Folch, E.E.; Labarca, G.; Ospina-Delgado, D.; Kheir, F.; Majid, A.; Khandhar, S.J.; Mehta, H.J.; Jantz, M.A.; Fernandez-Bussy, S. Sensitivity and Safety of Electromagnetic Navigation Bronchoscopy for Lung Cancer Diagnosis. Chest 2020, 158, 1753–1769. [Google Scholar] [CrossRef] [PubMed]
- Cicenia, J.; Avasarala, S.K.; Gildea, T.R. Navigational bronchoscopy: A guide through history, current use, and developing technology. J. Thorac. Dis. 2020, 12, 3263–3271. [Google Scholar] [CrossRef]
- Schreiber, G.; McCrory, D.C. Performance Characteristics of Different Modalities for Diagnosis of Suspected Lung Cancer Summary of Published Evidence. Chest 2003, 123, 115S–128S. [Google Scholar] [CrossRef] [PubMed]
- Memoli, J.S.W.; Nietert, P.J.; Silvestri, G.A. Meta-analysis of Guided Bronchoscopy for the Evaluation of the Pulmonary Nodule. Chest 2012, 142, 385–393. [Google Scholar] [CrossRef]
- Folch, E.E.; Pritchett, M.A.; Nead, M.A.; Bowling, M.R.; Murgu, S.D.; Krimsky, W.S.; Murillo, B.A.; LeMense, G.P.; Minnich, D.J.; Bansal, S.; et al. Electromagnetic Navigation Bronchoscopy for Peripheral Pulmonary Lesions: One-Year Results of the Prospective, Multicenter NAVIGATE Study. J. Thorac. Oncol. 2018, 14, 445–458. [Google Scholar] [CrossRef]
- Lentz, R.J.; Frederick-Dyer, K.; Planz, V.B.; Koyama, T.; Aboudara, M.C.; Swanner, B.; Roller, L.; Low, S.W.; Salmon, C.; Avasarala, S.K.; et al. Navigational Bronchoscopy vs. CT Scan-Guided Transthoracic Needle Biopsy for the Diagnosis of Indeterminate Lung Nodules Protocol and Rationale for the Navigation Endoscopy to Reach Indeterminate Lung Nodules vs Transthoracic Needle Aspiration, a Randomized Controlled Study Multicenter Randomized Trial. CHEST Pulm. 2024, 2, 100050. [Google Scholar]
- Kops, S.E.; Heus, P.; Korevaar, D.A.; Damen, J.A.; Idema, D.L.; Verhoeven, R.L.; Annema, J.T.; Hooft, L.; van der Heijden, E.H. Diagnostic yield and safety of navigation bronchoscopy: A systematic review and meta-analysis. Lung Cancer 2023, 180, 107196. [Google Scholar] [CrossRef]
- Gex, G.; Pralong, J.A.; Combescure, C.; Seijo, L.; Rochat, T.; Soccal, P.M. Diagnostic yield and safety of electromagnetic navigation bronchoscopy for lung nodules: A systematic review and meta-analysis. Respir. Int. Rev. Thorac. Dis. 2013, 87, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.C.; Gillespie, C.T. Robotic Endoscopic Airway Challenge: REACH Assessment. Ann. Thorac. Surg. 2018, 106, 293–297. [Google Scholar] [CrossRef]
- Chen, A.C.; Pastis, N.J.; Mahajan, A.K.; Khandhar, S.J.; Simoff, M.J.; Machuzak, M.S.; Cicenia, J.; Gildea, T.R.; Silvestri, G.A. Robotic Bronchoscopy for Peripheral Pulmonary Lesions: A Multicenter Pilot and Feasibility Study (BENEFIT). Chest 2020, 159, 845–852. [Google Scholar] [CrossRef]
- Kalchiem-Dekel, O.; Connolly, J.G.; Lin, I.-H.; Husta, B.C.; Adusumilli, P.S.; Beattie, J.A.; Buonocore, D.J.; Dycoco, J.; Fuentes, P.; Jones, D.R.; et al. Shape-Sensing Robotic-Assisted Bronchoscopy in the Diagnosis of Pulmonary Parenchymal Lesions. Chest 2021, 161, 572–582. [Google Scholar] [CrossRef]
- E Folch, E.; A Pritchett, M.; Reisenauer, J.; Casal, R.F.; Simoff, M.J.; Keyes, C.; I Diaz-Mendoza, J.; Fernandez-Bussy, S.; Majid, A.; Parikh, M.; et al. Prospective, multicenter Analysis of shape-sensing robotic-assisted bronchoscopy: Updates from the precise study. Chest 2022, 162, A2655–A2656. [Google Scholar] [CrossRef]
- McLoughlin, K.C.; Bott, M.J. Robotic Bronchoscopy for the Diagnosis of Pulmonary Lesions. Thorac. Surg. Clin. 2022, 33, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Sagar, A.-E.S.; Sabath, B.F.; Eapen, G.A.; Song, J.; Marcoux, M.; Sarkiss, M.; Arain, M.H.; Grosu, H.B.; Ost, D.E.; Jimenez, C.A.; et al. Incidence and Location of Atelectasis Developed During Bronchoscopy Under General Anesthesia. Chest 2020, 158, 2658–2666. [Google Scholar] [CrossRef]
- Salahuddin, M.; Sarkiss, M.; Sagar, A.E.S.; Vlahos, I.; Chang, C.H.; Shah, A.; Sabath, B.F.; Lin, J.; Song, J.; Moon, T.; et al. Ventilatory Strategy to Prevent Atelectasis During Bronchoscopy Under General Anesthesia a Multicenter Randomized Controlled Trial (Ventilatory Strategy to Prevent Atelectasis-VESPA-Trial). Chest 2022, 162, 1393–1401. [Google Scholar] [CrossRef]
- Setser, R.; Chintalapani, G.; Bhadra, K.; Casal, R.F. Cone beam CT imaging for bronchoscopy: A technical review. J. Thorac. Dis. 2020, 12, 7416–7428. [Google Scholar] [CrossRef]
- Pritchett, M.A.; Schampaert, S.; De Groot, J.A.; Schirmer, C.C.; van der Bom, I. Cone-Beam CT with Augmented Fluoroscopy Combined with Electromagnetic Navigation Bronchoscopy for Biopsy of Pulmonary Nodules. J. Bronchol. Interv. Pulmonol. 2018, 25, 274–282. [Google Scholar] [CrossRef]
- Benn, B.S.; Romero, A.O.; Lum, M.; Krishna, G. Robotic-Assisted Navigation Bronchoscopy as a Paradigm Shift in Peripheral Lung Access. Lung 2021, 199, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.Z.; Liu, L.; Nobari, M.; Miller, R.; Wahidi, M. Cone beam navigation bronchoscopy: The next frontier. J. Thorac. Dis. 2020, 12, 3272–3278. [Google Scholar] [CrossRef] [PubMed]
- Chambers, J.; Knox, D.; Leclair, T. O-arm CT for Confirmation of Successful Navigation During Robotic Assisted Bronchoscopy. J. Bronchol. Interv. Pulmonol. 2022, 30, 155–162. [Google Scholar] [CrossRef]
- Hedstrom, G.; Wagh, A.A. Combining real-time 3-d imaging and augmented fluoroscopy with robotic bronchoscopy for the diagnosis of peripheral lung nodules. Chest 2022, 162, A2082. [Google Scholar] [CrossRef]
- Rolfo, C.; Mack, P.; Scagliotti, G.V.; Aggarwal, C.; Arcila, M.E.; Barlesi, F.; Bivona, T.; Diehn, M.; Dive, C.; Dziadziuszko, R.; et al. Liquid Biopsy for Advanced NSCLC: A Consensus Statement from the International Association for the Study of Lung Cancer. J. Thorac. Oncol. 2021, 16, 1647–1662. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.; Corbett, M.; Melton, H.; Harden, M.; Palmer, S.; Soares, M.; Simmonds, M. EarlyCDT Lung blood test for risk classification of solid pulmonary nodules: Systematic review and economic evaluation. Health Technol. Assess. 2022, 26, 1–184. [Google Scholar] [CrossRef]
- Gaga, M.; Chorostowska-Wynimko, J.; Horváth, I.; Tammemagi, M.C.; Shitrit, D.; Eisenberg, V.H.; Liang, H.; Stav, D.; Faber, D.L.; Jansen, M.; et al. Validation of Lung EpiCheck, a novel methylation-based blood assay, for the detection of lung cancer in European and Chinese high-risk individuals. Eur. Respir. J. 2020, 57, 2002682. [Google Scholar] [CrossRef]
- Mathios, D.; Johansen, J.S.; Cristiano, S.; Medina, J.E.; Phallen, J.; Larsen, K.R.; Bruhm, D.C.; Niknafs, N.; Ferreira, L.; Adleff, V.; et al. Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nat. Commun. 2021, 12, 1–14. [Google Scholar] [CrossRef]
- E Ost, D.; Maldonado, F.; Shafrin, J.; Kim, J.; A Marin, M.; Amos, T.B.; Hertz, D.S.; Kalsekar, I.; Vachani, A. Economic Value of Bronchoscopy Technologies that Improves Sensitivity for Malignancy for Peripheral Pulmonary Lesions. Ann. Am. Thorac. Soc. 2024. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smyth, R.; Billatos, E. Novel Strategies for Lung Cancer Interventional Diagnostics. J. Clin. Med. 2024, 13, 7207. https://doi.org/10.3390/jcm13237207
Smyth R, Billatos E. Novel Strategies for Lung Cancer Interventional Diagnostics. Journal of Clinical Medicine. 2024; 13(23):7207. https://doi.org/10.3390/jcm13237207
Chicago/Turabian StyleSmyth, Robert, and Ehab Billatos. 2024. "Novel Strategies for Lung Cancer Interventional Diagnostics" Journal of Clinical Medicine 13, no. 23: 7207. https://doi.org/10.3390/jcm13237207
APA StyleSmyth, R., & Billatos, E. (2024). Novel Strategies for Lung Cancer Interventional Diagnostics. Journal of Clinical Medicine, 13(23), 7207. https://doi.org/10.3390/jcm13237207