Influence of Biometric and Corneal Tomographic Parameters on Normative Corneal Aberrations Measured by Root Mean Square
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, D.; McAlinden, C.; Flitcroft, I.; Tu, R.; Wang, Q.; Alió, J.; Marshall, J.; Huang, Y.; Song, B.; Hu, L.; et al. Postoperative Efficacy, Predictability, Safety, and Visual Quality of Laser Corneal Refractive Surgery: A Network Meta-analysis. Arch. Ophthalmol. 2017, 178, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Santhiago, M.R.; Giacomin, N.T.; Smadja, D.; Bechara, S.J. Ectasia risk factors in refractive surgery. Clin. Ophthalmol. 2016, 10, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Ambrósio, R.; Randleman, J.B. Screening for Ectasia Risk: What Are We Screening For and How Should We Screen For It? J. Refract. Surg. 2013, 29, 230–232. [Google Scholar] [CrossRef] [PubMed]
- Reddy, J.C.; Rapuano, C.J.; Cater, J.R.; Suri, K.; Nagra, P.K.; Hammersmith, K.M. Comparative evaluation of dual Scheimpflug imaging parameters in keratoconus, early keratoconus, and normal eyes. J. Cataract. Refract. Surg. 2014, 40, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Alió, J.L.; Shabayek, M.H. Corneal Higher Order Aberrations: A Method to Grade Keratoconus. J. Refract. Surg. 2006, 22, 539–545. [Google Scholar] [CrossRef]
- Oliveira, C.M.; Ferreira, A.; Franco, S. Wavefront analysis and Zernike polynomial decomposition for evaluation of corneal optical quality. J. Cataract. Refract. Surg. 2012, 38, 343–356. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, L.; Zhang, Y.; Wang, K. Analysis of Asphericity and Corneal Longitudinal Spherical Aberration of 915 Chinese Myopic Adult Eyes. Clin. Ophthalmol. 2023, 17, 591–600. [Google Scholar] [CrossRef]
- Namba, H.; Kawasaki, R.; Sugano, A.; Murakami, T.; Nishitsuka, K.; Kato, T.; Kayama, T.; Yamashita, H. Age-Related Changes in Ocular Aberrations and the Yamagata Study (Funagata). Cornea 2017, 36 (Suppl. S1), S34–S40. [Google Scholar] [CrossRef]
- Amano, S.; Amano, Y.; Yamagami, S.; Miyai, T.; Miyata, K.; Samejima, T.; Oshika, T. Age-related changes in corneal and ocular higher-order wavefront aberrations. Arch. Ophthalmol. 2004, 137, 988–992. [Google Scholar] [CrossRef]
- Berrio, E.; Tabernero, J.; Artal, P. Optical aberrations and alignment of the eye with age. J. Vis. 2010, 10, 34. [Google Scholar] [CrossRef]
- Atchison, D.A.; Markwell, E.L. Aberrations of emmetropic subjects at different ages. Vis. Res. 2008, 48, 2224–2231. [Google Scholar] [CrossRef] [PubMed]
- Athaide, H.V.Z.; Campos, M.; Costa, C. Study of ocular aberrations with age. Arq. Bras. Oftalmol. 2009, 72, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Nakano, E.M.; Bains, H.; Nakano, K.; Nakano, C.; Portellinha, W.; Oliveira, M.; Alvarenga, L. Wavefront Analysis in Asian-Brazilians. J. Refract. Surg. 2006, 22, S1024–S1026. [Google Scholar] [CrossRef] [PubMed]
- Osuagwu, U.L.; Suheimat, M.; Atchison, D.A. Peripheral aberrations in adult hyperopes, emmetropes and myopes. Ophthalmic Physiol. Opt. 2017, 37, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Prakash, G.; Srivastava, D.; Choudhuri, S.; Bacero, R. Comparison of Ocular Monochromatic Higher-Order Aberrations in Normal Refractive Surgery Candidates of Arab and South Asian Origin. Middle East Afr. J. Ophthalmol. 2016, 23, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Almorín-Fernández-Vigo, I.; Sánchez-Guillén, I.; Macarro-Merino, A.; Kudsieh, B.; Fernández-Vigo, C.; Fernández-Vigo, J.A. Normative Pentacam anterior and posterior corneal elevation measurements: Effects of age, sex, axial length and white-to-white. Int. Ophthalmol. 2019, 39, 1955–1963. [Google Scholar] [CrossRef]
- Feng, M.T.; Belin, M.W.; Ambrósio, R.; Grewal, S.P.; Yan, W.; Shaheen, M.S.; Jordon, C.A.; McGhee, C.; Maeda, N.; Neuhann, T.H.; et al. International values of corneal elevation in normal subjects by rotating Scheimpflug camera. J. Cataract. Refract. Surg. 2011, 37, 1817–1821. [Google Scholar] [CrossRef]
- Kim, J.T.; Cortese, M.; Belin, M.W.; Ambrosio, R., Jr.; Khachikian, S.S. Tomographic Normal Values for Corneal Elevation and Pachymetry in a Hyperopic Population. J. Clin. Exp. Ophthalmol. 2011, 2, 130. [Google Scholar] [CrossRef]
- Cheng, X.; Bradley, A.; Hong, X.; Thibos, L.N. Relationship between refractive error and monochromatic aberrations of the eye. Optom. Vis. Sci. 2003, 80, 43–49. [Google Scholar] [CrossRef]
- Yousif, M.O.; Elkitkat, R.S.; Alaarag, N.A.; Shams, A.; Gharieb, H.M. Relation of Corneal Astigmatism with Various Corneal Image Quality Parameters in a Large Cohort of Naïve Corneas. Clin. Ophthalmol. 2020, 14, 2203–2210. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Yin, X.; Li, J.; Cao, Y.; Lu, P. Distribution and related factors of corneal regularity and posterior corneal astigmatism in cataract patients. Clin. Ophthalmol. 2019, 13, 1341–1352. [Google Scholar] [CrossRef] [PubMed]
- Fujikado, T.; Kuroda, T.; Ninomiya, S.; Maeda, N.; Tano, Y.; Oshika, T.; Hirohara, Y.; Mihashi, T. Age-related changes in ocular and corneal aberrations. Am. J. Ophthalmol. 2004, 138, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Chen, X.; Ortega-Usobiaga, J.; Zheng, H.; Luo, W.; Tu, B.; Wang, Y. Characteristics and influencing factors of corneal higher-order aberrations in patients with cataract. BMC Ophthalmol. 2023, 23, 313. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Song, H.; Tang, X. Correlation of anterior corneal higher-order aberrations with age: A comprehensive investigation. Cornea 2014, 33, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Namba, H.; Kawasaki, R.; Narumi, M.; Sugano, A.; Homma, K.; Nishi, K.; Murakami, T.; Kato, T.; Kayama, T.; Yamashita, H. Ocular Higher-Order Wavefront Aberrations in the Japanese Adult Population: The Yamagata Study (Funagata). Investig. Opthalmol. Vis. Sci. 2015, 56, 90–97. [Google Scholar] [CrossRef]
- Nemeth, G.; Hassan, Z.; Szalai, E.; Berta, A.; Modis, L. Analysis of Age-Dependence of the Anterior and Posterior Cornea With Scheimpflug Imaging. J. Refract. Surg. 2013, 29, 326–331. [Google Scholar] [CrossRef]
- Kemraz, D.; Cheng, X.-Y.; Shao, X.; Zhou, K.-J.; Pan, A.-P.; Lu, F.; Yu, A.-Y. Age-Related Changes in Corneal Spherical Aberration. J. Refract. Surg. 2018, 34, 760–767. [Google Scholar] [CrossRef]
- Goto, S.; Maeda, N. Corneal Topography for Intraocular Lens Selection in Refractive Cataract Surgery. Ophthalmology 2021, 128, e142–e152. [Google Scholar] [CrossRef]
- Bühren, J.; Schäffeler, T.; Kohnen, T. Validation of metrics for the detection of subclinical keratoconus in a new patient collective. J. Cataract. Refract. Surg. 2014, 40, 259–268. [Google Scholar] [CrossRef]
- Castro-Luna, G.; Pérez-Rueda, A. A predictive model for early diagnosis of keratoconus. BMC Ophthalmol. 2020, 20, 263. [Google Scholar] [CrossRef]
- Bartsch, D.-U.; Bessho, K.; Gomez, L.; Freeman, W.R. Comparison of laser ray-tracing and skiascopic ocular wavefront-sensing devices. Eye 2008, 22, 1384–1390. [Google Scholar] [CrossRef] [PubMed]
- Read, S.A.; Collins, M.J.; Iskander, R.D.; Davis, B.A. Corneal topography with Scheimpflug imaging and videokeratography: Comparative study of normal eyes. J. Cataract. Refract. Surg. 2009, 35, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Prakash, G.; Sharma, N.; Choudhary, V.; Titiyal, J.S. Higher-order aberrations in young refractive surgery candidates in India: Establishment of normal values and comparison with white and Chinese Asian populations. J. Cataract. Refract. Surg. 2008, 34, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Fieß, A.; Schuster, A.K.; Kölb-Keerl, R.; Knuf, M.; Kirchhof, B.; Muether, P.S.; Bauer, J.; for the Prematurity Eye Study Group. Corneal Aberrations in Former Preterm Infants: Results from the Wiesbaden Prematurity Study. Investig. Opthalmology Vis. Sci. 2017, 58, 6374. [Google Scholar] [CrossRef] [PubMed]
- Fieß, A.; Berger, L.A.; Riedl, J.C.; Mildenberger, E.; Urschitz, M.S.; Hampel, U.; Wasielica-Poslednik, J.; Zepp, F.; Stoffelns, B.; Pfeiffer, N.; et al. The role of preterm birth, retinopathy of prematurity and perinatal factors on corneal aberrations in adulthood: Results from the Gutenberg prematurity eye study. Ophthalmic Physiol. Opt. 2022, 42, 1379–1389. [Google Scholar] [CrossRef]
- Anbar, M.; Mostafa, E.M.; Elhawary, A.M.; Awny, I.; Farouk, M.M.; Mounir, A. Evaluation of Corneal Higher-Order Aberrations by Scheimpflug–Placido Topography in Patients with Different Refractive Errors: A Retrospective Observational Study. J. Ophthalmol. 2019, 2019, 5640356. [Google Scholar] [CrossRef]
- Kasahara, K.; Maeda, N.; Fujikado, T.; Tomita, M.; Moriyama, M.; Fuchihata, M.; Ohno-Matsui, K. Characteristics of higher-order aberrations and anterior segment tomography in patients with pathologic myopia. Int. Ophthalmol. 2017, 37, 1279–1288. [Google Scholar] [CrossRef]
- Salman, A.; Kailani, O.; Ghabra, M.; Omran, R.; Darwish, T.R.; Shaaban, R.; Ibrahim, H.; Alhaji, H.; Khalil, H. Corneal higher order aberrations by Sirius topography and their relation to different refractive errors. BMC Ophthalmol. 2023, 23, 104. [Google Scholar] [CrossRef]
- Aksoy, S.; Akkaya, S.; Özkurt, Y.; Kurna, S.; Açıkalın, B.; Şengör, T. Topography and Higher Order Corneal Aberrations of the Fellow Eye in Unilateral Keratoconus. Turk. J. Ophthalmol. 2017, 47, 249–254. [Google Scholar] [CrossRef]
- Prakash, G.; Suhail, M.; Srivastava, D. Predictive Analysis Between Topographic, Pachymetric and Wavefront Parameters in Keratoconus, Suspects and Normal Eyes: Creating Unified Equations to Evaluate Keratoconus. Curr. Eye Res. 2016, 41, 334–342. [Google Scholar] [CrossRef]
- Feizi, S.; Einollahi, B.; Raminkhoo, A.; Salehirad, S. Correlation between Corneal Topographic Indices and Higher-Order Aberrations in Keratoconus. J. Ophthalmic Vis. Res. 2013, 8, 113–118. [Google Scholar] [PubMed] [PubMed Central]
- Gordon-Shaag, A.; Millodot, M.; Ifrah, R.; Shneor, E. Aberrations and Topography in Normal, Keratoconus-Suspect, and Keratoconic Eyes. Optom. Vis. Sci. 2012, 89, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, H.H.; Koc, M.; Kiziltoprak, H.; Tekin, K.; Aydemir, E. Evaluation of topographic, tomographic, topometric, densitometric, and aberrometric features of cornea with pentacam HR system in subclinical keratoconus. Int. Ophthalmol. 2021, 41, 1729–1741. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xue, C.; Zhang, Y.; Liu, C.; Du, J.; Li, Y.; Liu, J.; Wei, S.; Wu, Z. Diagnostic value of corneal higher-order aberrations in keratoconic eyes. Int. Ophthalmol. 2023, 43, 1195–1206. [Google Scholar] [CrossRef]
- Heidari, Z.; Jafarzadehpour, E.; Mohammadpour, M.; Hashemi, H. Best indices of dual Scheimpflug/Placido tomographer for keratoconus detection. Int. Ophthalmol. 2022, 43, 1353–1362. [Google Scholar] [CrossRef]
- Ni, Y.; Liu, X.; Lin, Y.; Guo, X.; Wang, X.; Liu, Y. Evaluation of corneal changes with accommodation in young and presbyopic populations using Pentacam High Resolution Scheimpflug system. Clin. Exp. Ophthalmol. 2013, 41, 244–250. [Google Scholar] [CrossRef]
Sig. | t | Standardized Coefficients | Unstandardized Coefficients | Dependent Variables Predicting RMS LOAs (Anterior Cornea) |
---|---|---|---|---|
Beta | B | |||
0.933 | −0.084 | −0.082 | (Constant) | |
0.000 * | 23.838 | 0.660 | 0.661 | ACA |
0.000 * | 7.454 | 0.171 | 0.009 | Age |
0.000 * | −10.746 | −0.387 | −0.270 | Ele F Apex |
0.000 * | −6.745 | −0.178 | −0.158 | RA |
0.003 * | −3.014 | −0.070 | −0.137 | WTW |
0.000 * | −4.798 | −0.163 | −1.021 | QF |
0.000 * | 4.242 | 0.106 | 0.058 | KmF |
R2 (%) = 69.8% Model F = 247.796 |
Sig. | t | Standardized Coefficients | Unstandardized Coefficients | Dependent Variables Predicting RMS LOAs (Anterior Cornea) |
---|---|---|---|---|
Beta | B | |||
0.000 * | −3.540 | −0.601 | (Constant) | |
0.000 * | 9.731 | 0.311 | 0.065 | ACA |
0.000 * | 9.307 | 0.306 | 0.036 | KmF |
0.000 * | −9.360 | −0.315 | −0.004 | Age |
0.000 * | −3.922 | −0.124 | −0.043 | Sex |
0.000 * | −4.677 | −0.218 | −0.032 | Ele F Apex |
0.000 * | 3.625 | 0.162 | 0.016 | Ele F Thin |
R2 (%) = 31.3% Model F = 57.772 |
Sig. | t | Standardized Coefficients | Unstandardized Coefficients | Dependent Variables Predicting RMS LOAs (Anterior Cornea) |
---|---|---|---|---|
Beta | B | |||
0.122 | 1.547 | 0.487 | (Constant) | |
0.000 * | 8.266 | 0.284 | 0.003 | Age |
0.000 * | 3.968 | 0.159 | 0.212 | QF |
0.000 * | 5.830 | 0.224 | 0.048 | ACA |
0.000 * | −6.288 | −0.258 | −0.025 | Ele F Thin |
0.000 * | −3.976 | −0.140 | −0.058 | WTW |
0.004 * | 2.894 | 0.103 | 0.012 | KmF |
0.025 * | 2.246 | 0.074 | 0.004 | Sphere |
0.033 * | 2.139 | 0.067 | 0.024 | Sex |
R2 (%) = 33.3% Model F = 47.649 |
Sig. | t | Standardized Coefficients | Unstandardized Coefficients | Dependent Variables Predicting RMS LOAs (Anterior Cornea) |
---|---|---|---|---|
Beta | B | |||
0.000 * | −7.098 | −0.264 | (Constant) | |
0.000 * | 12.915 | 0.441 | 0.011 | KmF |
0.000 * | −7.136 | −0.256 | −0.001 | Age |
0.000 * | −4.071 | −0.148 | −0.005 | Ele F Apex |
R2 (%) = 19.9% Model F = 62.794 |
Sig. | t | Standardized Coefficients | Unstandardized Coefficients | Dependent Variables Predicting RMS LOAs (Anterior Cornea) |
---|---|---|---|---|
Beta | B | |||
0.000 * | −4.074 | −0.462 | (Constant) | |
0.000 * | 16.572 | 0.431 | 0.432 | PCA |
0.000 * | 7.792 | 0.358 | 0.279 | QB |
0.000 * | −11.223 | −0.290 | −0.197 | KmB |
0.000 * | 11.200 | 0.448 | 0.013 | Ele B Thin |
0.000 * | −9.487 | −0.518 | −0.026 | Ele B Apex |
0.000 * | −5.061 | −0.144 | −0.002 | Age |
0.004 * | −2.907 | −0.068 | −0.024 | Sex |
0.010 * | −2.578 | −0.062 | −0.011 | RA |
R2 (%) = 63.4% Model F = 144.297 |
Sig. | t | Standardized Coefficients | Unstandardized Coefficients | Dependent Variables Predicting RMS LOAs (Anterior Cornea) |
---|---|---|---|---|
Beta | B | |||
0.000 * | −10.596 | −0.295 | (Constant) | |
0.000 * | −16.170 | −1.064 | −0.012 | Ele B Apex |
0.000 * | −18.005 | −0.536 | −0.079 | KmB |
0.000 * | 12.079 | 0.556 | 0.004 | Ele B Thin |
0.005 * | −2.810 | −0.093 | 0.000 | Age |
0.041 * | −2.050 | −0.113 | −0.019 | QB |
R2 (%) = 46.0% Model F = 128.154 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almorín-Fernández-Vigo, I.; Pagán Carrasco, S.; Sánchez-Guillén, I.; Fernández-Vigo, J.I.; Macarro-Merino, A.; Kudsieh, B.; Fernández-Vigo, J.Á. Influence of Biometric and Corneal Tomographic Parameters on Normative Corneal Aberrations Measured by Root Mean Square. J. Clin. Med. 2024, 13, 7125. https://doi.org/10.3390/jcm13237125
Almorín-Fernández-Vigo I, Pagán Carrasco S, Sánchez-Guillén I, Fernández-Vigo JI, Macarro-Merino A, Kudsieh B, Fernández-Vigo JÁ. Influence of Biometric and Corneal Tomographic Parameters on Normative Corneal Aberrations Measured by Root Mean Square. Journal of Clinical Medicine. 2024; 13(23):7125. https://doi.org/10.3390/jcm13237125
Chicago/Turabian StyleAlmorín-Fernández-Vigo, Ignacio, Silvia Pagán Carrasco, Inés Sánchez-Guillén, José Ignacio Fernández-Vigo, Ana Macarro-Merino, Bachar Kudsieh, and José Ángel Fernández-Vigo. 2024. "Influence of Biometric and Corneal Tomographic Parameters on Normative Corneal Aberrations Measured by Root Mean Square" Journal of Clinical Medicine 13, no. 23: 7125. https://doi.org/10.3390/jcm13237125
APA StyleAlmorín-Fernández-Vigo, I., Pagán Carrasco, S., Sánchez-Guillén, I., Fernández-Vigo, J. I., Macarro-Merino, A., Kudsieh, B., & Fernández-Vigo, J. Á. (2024). Influence of Biometric and Corneal Tomographic Parameters on Normative Corneal Aberrations Measured by Root Mean Square. Journal of Clinical Medicine, 13(23), 7125. https://doi.org/10.3390/jcm13237125