Screening for Fabry Disease-Related Mutations Among 829 Kidney Transplant Recipients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michaud, M.; Mauhin, W.; Belmatoug, N.; Bedreddine, N.; Garnotel, R.; Catros, F.; Lidove, O.; Gaches, F. Maladie de Fabry: Quand y penser? [Fabry disease: A review]. Rev. Med. Interne 2021, 42, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, B.; Mayatepek, E. Fabry Disease—Often Seen, Rarely Diagnosed. Dtsch. Arztebl. Int. 2009, 106, 440–447. [Google Scholar] [PubMed]
- Kermond-Marino, A.; Weng, A.; Zhang, S.K.X.; Tran, Z.; Huang, M.; Savige, J. Population Frequency of Undiagnosed Fabry Disease in the General Population. Kidney Int. Rep. 2023, 8, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Feriozzi, S.; Rozenfeld, P. Pathology and pathogenic pathways in fabry nephropathy. Clin. Exp. Nephrol. 2021, 25, 925–934. [Google Scholar] [CrossRef]
- Pećin, I.; Merćep, I.; Bašić-Kes, V.; Bilić, E.; Borovečki, F.; Bradamante, M.; Čikeš, M.; Fumić, K.; Godan Hauptman, A.; Jelaković, B.; et al. Smjernice za dijagnostiku i liječenje odraslih bolesnika s Fabryjevom bolesti. Liječnički Vjesnik 2024, 146, 157–169. [Google Scholar]
- HGMD®. Home Page. Available online: http://www.hgmd.cf.ac.uk/ac/index.php (accessed on 24 February 2022).
- Amodio, F.; Caiazza, M.; Monda, E.; Rubino, M.; Capodicasa, L.; Chiosi, F.; Simonelli, V.; Dongiglio, F.; Fimiani, F.; Pepe, N.; et al. An Overview of Molecular Mechanisms in Fabry Disease. Biomolecules 2022, 12, 1460. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- The Genome Aggregation Database (gnomAD)|gnomAD Browser [Internet]. Available online: https://gnomad.broadinstitute.org/news/2017-02-the-genome-aggregation-database/ (accessed on 28 July 2024).
- ClinVar. Available online: https://www.ncbi.nlm.nih.gov/clinvar/ (accessed on 3 March 2020).
- Simoncini, C.; Torri, S.; Montano, V.; Chico, L.; Gruosso, F.; Tuttolomondo, A.; Pinto, A.; Simonetta, I.; Cianci, V.; Salviati, A.; et al. Oxidative stress biomarkers in Fabry disease: Is there a room for them? J. Neurol. 2020, 267, 3741–3752. [Google Scholar] [CrossRef]
- Romani, I.; Sarti, C.; Nencini, P.; Pracucci, G.; Zedde, M.; Cianci, V.; Nucera, A.; Moller, J.; Orsucci, D.; Toni, D.; et al. Prevalence of Fabry disease and GLA variants in young patients with acute stroke: The challenge to widen the screening. The Fabry-Stroke Italian Registry. J. Neurol. Sci. 2024, 457, 122905. [Google Scholar] [CrossRef]
- Skrinska, V.; Khneisser, I.; Schielen, P.; Loeber, G. Introducing and Expanding Newborn Screening in the MENA Region. Int. J. Neonatal Screen. 2020, 6, 12. [Google Scholar] [CrossRef]
- Živná, M.; Dostálová, G.; Barešová, V.; Mušálková, D.; Kuchař, L.; Asfaw, B.; Poupětová, H.; Vlášková, H.; Kmochová, T.; Vyletal, P.; et al. AGAL misprocessing-induced ER stress and the unfolded protein response: Lysosomal storage-independent mechanism of Fabry disease pathogenesis? bioRxiv 2022, bioRxiv:509714. [Google Scholar]
- Nance, C.S.; Klein, C.J.; Banikazemi, M.; Dikman, S.H.; Phelps, R.G.; McArthur, J.C.; Rodriguez, M.; Desnick, R.J. Later-onset Fabry disease: An adult variant presenting with the cramp-fasciculation syndrome. Arch. Neurol. 2006, 63, 453–457. [Google Scholar] [CrossRef]
- Spada, M.; Pagliardini, S.; Yasuda, M.; Tukel, T.; Thiagarajan, G.; Sakuraba, H.; Ponzone, A.; Desnick, R.J. High Incidence of Later-Onset Fabry Disease Revealed by Newborn Screening. Am. J. Hum. Genet. 2006, 79, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Terryn, W.; Deschoenmakere, G.; De Keyser, J.; Meersseman, W.; Van Biesen, W.; Wuyts, B.; Hemelsoet, D.; Pascale, H.; De Backer, J.; De Paepe, A.; et al. Prevalence of Fabry disease in a predominantly hypertensive population with left ventricular hypertrophy. Int. J. Cardiol. 2012, 167, 2555–2560. [Google Scholar] [CrossRef] [PubMed]
- Terryn, W.; Vanholder, R.; Hemelsoet, D.; Leroy, B.P.; Van Biesen, W.; De Schoenmakere, G.; Wuyts, B.; Claes, K.; De Backer, J.; De Paepe, G.; et al. Questioning the Pathogenic Role of the GLA p.Ala143Thr “Mutation” in Fabry Disease: Implications for Screening Studies and ERT. In JIMD Reports; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8, pp. 101–108. [Google Scholar]
- Smid, B.E.; Hollak, C.E.; Poorthuis, B.J.; van den Bergh Weerman, M.A.; Florquin, S.; Kok, W.E.; Lekanne Deprez, R.H.; Timmermans, J.; Linthorst, G.E. Diagnostic dilemmas in Fabry disease: A case series study on GLA mutations of unknown clinical significance. Clin. Genet. 2015, 88, 161–166. [Google Scholar] [CrossRef]
- Lenders, M.; Weidemann, F.; Kurschat, C.; Canaan-Kühl, S.; Duning, T.; Stypmann, J.; Schmitz, B.; Reiermann, S.; Krämer, J.; Blaschke, D.; et al. Alpha-Galactosidase A p.A143T, a non-Fabry disease-causing variant. Orphanet J. Rare Dis. 2016, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Morais, P.; Santos, A.L.; Baudrier, T.; Mota, A.V.; Oliveira, J.P.; Azevedo, F. Angiokeratomas of Fabry successfully treated with intense pulsed light. J. Cosmet. Laser Ther. 2008, 10, 218–222. [Google Scholar] [CrossRef]
- Baptista, M.V.; Ferreira, S.; Pinho-E-Melo, T.; Carvalho, M.; Cruz, V.T.; Carmona, C.; Silva, F.A.; Tuna, A.; Rodrigues, M.; Ferreira, C.; et al. Mutations of the GLA gene in young patients with stroke: The PORTYSTROKE study—Screening genetic conditions in Portuguese young stroke patients. Stroke 2010, 41, 431–436. [Google Scholar] [CrossRef]
- Lanthier, S.; Saposnik, G.; Lebovic, G.; Pope, K.; Selchen, D.; Moore, D.F.; Selchen, D.; Boulanger, J.-M.; Buck, B.; Butcher, K.; et al. Prevalence of Fabry Disease and Outcomes in Young Canadian Patients with Cryptogenic Ischemic Cerebrovascular Events. Stroke 2017, 48, 1766–1772. [Google Scholar] [CrossRef]
- Genoni, G.; Demarchi, I.; Bellone, S.; Petri, A.; Settanni, F.; Dondi, E.; Negro, M.; Cortese, L.; Prodam, F.; Bona, G. Early diagnosis of Fabry disease in children. Minerva Pediatr. 2011, 63, 425–430. [Google Scholar]
- Gaspar, P.; Herrera, J.; Rodrigues, D.; Cerezo, S.; Delgado, R.; Andrade, C.F.; Forascepi, R.; Macias, J.; del Pino, M.D.; Prados, M.D.; et al. Frequency of Fabry disease in male and female haemodialysis patients in Spain. BMC Med. Genet. 2010, 11, 19. [Google Scholar] [CrossRef]
- Connaughton, D.M.; Kennedy, C.; Shril, S.; Mann, N.; Murray, S.L.; Williams, P.A.; Conlon, E.; Nakayama, M.; van der Ven, A.T.; Ityel, H.; et al. Monogenic causes of chronic kidney disease in adults. Kidney Int. 2019, 95, 914–928. [Google Scholar] [CrossRef] [PubMed]
- Capuano, I.; Buonanno, P.; Riccio, E.; Crocetto, F.; Pisani, A. Parapelvic Cysts: An Imaging Marker of Kidney Disease Potentially Leading to the Diagnosis of Treatable Rare Genetic Disorders? A Narrative Review of the Literature. J. Nephrol. 2022, 35, 2035–2046. [Google Scholar] [CrossRef] [PubMed]
- Ries, M.; Bettis, K.E.; Choyke, P.; Kopp, J.B.; Austin, H.A., III; Brady, R.O.; Schiffmann, R. Parapelvic kidney cysts: A distinguishing feature with high prevalence in Fabry disease. Kidney Int. 2004, 66, 978–982. [Google Scholar] [CrossRef]
- Cerón-Rodríguez, M.; Ramón-García, G.; Barajas-Colón, E.; Franco-Álvarez, I.; Salgado-Loza, J.L. Renal globotriaosylceramide deposits for Fabry disease linked to uncertain pathogenicity gene variant c.352C>T/p.Arg118Cys: A family study. Mol. Genet. Genom. Med. 2019, 7, e981. [Google Scholar] [CrossRef]
- Ferreira, S.; Ortiz, A.; Germain, D.P.; Viana-Baptista, M.; Caldeira-Gomes, A.; Camprecios, M.; Fenollar-Cortés, M.; Gallegos-Villalobos, Á.; Garcia, D.; García-Robles, J.A.; et al. The alpha-galactosidase A p.Arg118Cys variant does not cause a Fabry disease phenotype: Data from individual patients and family studies. Mol. Genet. Metab. 2015, 114, 248–258. [Google Scholar] [CrossRef]
- Caetano, F.; Botelho, A.; Mota, P.; Silva, J.; Leitão Marques, A. Fabry disease presenting as apical left ventricular hypertrophy in a patient carrying the missense mutation R118C. Rev. Port. Cardiol. 2014, 33, 183.e1–183.e5. [Google Scholar] [CrossRef]
- Chaves-Markman, Â.V.; Markman, M.; Calado, E.B.; Pires, R.F.; Santos-Veloso, M.A.O.; Pereira, C.M.F.; Lordsleem, A.B.; Lima, S.G.; Markman Filho, B.; Oliveira, D.C. GLA Gene Mutation in Hypertrophic Cardiomyopathy with a New Variant Description: Is it Fabry’s Disease? Arq. Bras. Cardiol. 2019, 113, 77–84. [Google Scholar] [CrossRef]
- Azevedo, O.; Marques, N.; Reis, L.; Cruz, I.; Craveiro, N.; Antunes, H.; Lourenço, C.; Gomes, R.; Guerreiro, R.A.; Faria, R.; et al. Predictors of Fabry disease in patients with hypertrophic cardiomyopathy: How to guide the diagnostic strategy? Am. Heart J. 2020, 226, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Talbot, A.; Nicholls, K. Elevated Lyso-Gb3 Suggests the R118C GLA Mutation Is a Pathological Fabry Variant. In JIMD Reports; Morava, E., Baumgartner, M., Patterson, M., Rahman, S., Zschocke, J., Peters, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 45, pp. 95–98. [Google Scholar] [CrossRef]
- Shen, J.-S.; Meng, X.-L.; Moore, D.F.; Quirk, J.M.; Shayman, J.A.; Schiffmann, R.; Kaneski, C.R. Globotriaosylceramide induces oxidative stress and up-regulates cell adhesion molecule expression in Fabry disease endothelial cells. Mol. Genet. Metab. 2008, 95, 163. [Google Scholar] [CrossRef]
- Kang, J.J.; Kaissarian, N.M.; Desch, K.C.; Kelly, R.J.; Shu, L.; Bodary, P.F.; Shayman, J.A. α-galactosidase A deficiency promotes von Willebrand factor secretion in models of Fabry disease. Kidney Int. 2018, 95, 149–159. [Google Scholar] [CrossRef]
- Waldek, S.; Feriozzi, S. Fabry nephropathy: A review—How can we optimize the management of Fabry nephropathy? BMC Nephrol. 2014, 15, 72. [Google Scholar] [CrossRef] [PubMed]
- Palaiodimou, L.; Kokotis, P.; Zompola, C.; Papagiannopoulou, G.; Bakola, E.; Papadopoulou, M.; Zouvelou, V.; Petras, D.; Vlachopoulos, C.; Tsivgoulis, G. Fabry Disease: Current and Novel Therapeutic Strategies. A Narrative Review. Curr. Neuropharmacol. 2023, 21, 440–456. [Google Scholar]
- El Dib, R.; Gomaa, H.; Carvalho, R.P.; Camargo, S.E.; Bazan, R.; Barretti, P.; Barreto, F.C. Enzyme replacement therapy for Anderson-Fabry disease. Cochrane Database Syst. Rev. 2016, 2017, CD006663. [Google Scholar] [CrossRef]
- Tsuboi, K.; Yamamoto, H. Efficacy and safety of enzyme-replacement-therapy with agalsidase alfa in 36 treatment-naïve Fabry disease patients. BMC Pharmacol. Toxicol. 2017, 18, 43. [Google Scholar] [CrossRef]
- Alegra, T.; Vairo, F.; de Souza, M.V.; Krug, B.C.; Schwartz, I.V. Enzyme replacement therapy for Fabry disease: A systematic review and meta-analysis. Genet. Mol. Biol. 2012, 35, 947–954. [Google Scholar] [CrossRef]
- West, M.; Nicholls, K.; Mehta, A.; Clarke, J.T.; Steiner, R.; Beck, M.; Barshop, B.A.; Rhead, W.; Mensah, R.; Ries, M.; et al. Agalsidase Alfa and Kidney Dysfunction in Fabry Disease. J. Am. Soc. Nephrol. 2009, 20, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.; Cruz, J.; Brignani, E.; Acuna, L.; Lazaro, E.; Soria, C. Quality of life and unmet needs in patients with fabry disease: A qualitative study. Orphanet J. Rare Dis. 2024, 19, 389. [Google Scholar] [CrossRef] [PubMed]
- Laney, D.A.; Bennett, R.L.; Clarke, V.; Fox, A.; Hopkin, R.J.; Johnson, J.; O’Rourke, E.; Sims, K.; Walter, G. Fabry disease practice guidelines: Recommendations of the National Society of Genetic Counselors. J. Genet. Couns. 2013, 22, 555–564. [Google Scholar] [CrossRef]
- Capelli, I.; Aiello, V.; Gasperoni, L.; Comai, G.; Corradetti, V.; Ravaioli, M.; Biagini, E.; Graziano, C.; La Manna, G. Kidney Transplant in Fabry Disease: A Revision of the Literature. Medicina 2020, 56, 284. [Google Scholar] [CrossRef]
- Linares, D.; Luna, B.; Loayza, E.; Taboada, G.; Ramaswami, U. Prevalence of Fabry disease in patients with chronic kidney disease: A systematic review and meta-analysis. Mol. Genet. Metab. 2023, 140, 107714. [Google Scholar] [CrossRef]
- Erdogmus, S.; Kutlay, S.; Kumru, G.; Sendogan, D.O.; Erturk, S.; Keven, K.; Ceylaner, G.; Sengul, S. Fabry Disease Screening in Patients With Kidney Transplant: A Single-Center Study in Turkey. Exp. Clin. Transplant. 2020, 18, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Hasbal, N.B.; Caglayan, F.B.; Sakaci, T.; Ahbap, E.; Koc, Y.; Sevinc, M.; Ucar, Z.A.; Unsal, A.; Basturk, T. Unexpectedly High Prevalence of Low Alpha-Galactosidase A Enzyme Activity in Patients with Focal Segmental Glomerulosclerosis. Clinics 2020, 75, e1811. [Google Scholar] [CrossRef] [PubMed]
Sex [n (%)] | ||
---|---|---|
Male | 495 (59.7) | |
Female | 334 (40.3) | |
Age (years) [Median (IQR)] | 59 (45–68) | min 19 max 87 |
PHD of native kidney disease (n = 798) [n (%)] | ||
No | 492 (61.7) | |
Yes | 306 (38.3) | |
Donor type—1st Tx (n = 822) [n (%)] | ||
Deceased | 759 (92.3) | |
Living related | 61 (7.4) | |
Living unrelated | 2 (0.3) | |
Donor type—2nd Tx (n = 59) [n (%)] | ||
Deceased | 55/59 (93.2) | |
Living related | 4/59 (6.8) | |
Donor type—3rd Tx (n = 2) | ||
Deceased | 1/2 | |
Living unrelated | 1/2 | |
Type of dialysis [n (%)] (n = 829) | ||
Pre-emptive | 28 (3.4) | |
HD | 574 (69.2) | |
PD | 132 (16.0) | |
HD + PD | 95 (11.4) | |
Dialysis vintage (months) [Median (IQR)] | 33 (16–56) | min 0 max 300 |
eGFR [Median (IQR)] | 51 (35–67) | min < 15 max 138 |
Proteinuria/24 h [Median (IQR)] | 213 (113–428.3) | min 25 max 10,072 |
CNI [n (%)] (n = 724) | ||
Tacrolimus | 532 (73.5) | |
Cyclosporine | 192 (26.5) | |
mTORi [n (%)] (n = 173) | ||
Everolimus | 166 (96) | |
Sirolimus | 7 (4) | |
Antimetabolites [n (%)] (n = 703) | ||
Mycophenolate | 661 (94) | |
Azathioprine | 42 (6) | |
Corticosteroid dose (n = 829) [Median (IQR)] | 5 (5–5) | min 2.5 max 20 |
Alpha-gal A activity (µmol/L/h) (n = 422) | 19 (16.1–23.5) | min 6.8 max 101.0 |
Alpha-gal A [n (%)] (n = 423) | ||
Reference value (≥15.3 µmol/L/h) | 353 (83.5) | |
<15.3 µmol/L/h | 69 (16.3) | |
Lyso Gb3 level (ng/mL) (n = 142) | 1.25 (1.10–1.43) | min 0.60 max 1.90 |
Lyso Gb3 [n (%)] (n = 142) | ||
Reference value (≤1.8 ng/mL) | 141 (99.3) | |
>1.8 ng/mL | 1 (0.7) | |
Fabry disease-related mutation [n (%)] | 3 (0.4) | |
GLA mutation testing [n (%)] (n = 476) | ||
no clinically relevant variant | 473 (99.4) | |
GLA, c.427G>A p.(Ala143Thr) | 1 (0.2) | |
GLA, c.1181T>C p.(Leu394Pro) | 1 (0.2) | |
GLA, c.352C>T p.(Arg118Cys) | 1 (0.2) |
Patient | Sex | Age | Alpha-Galactosidase A (µmol/L/h) | Lyso-Gb3 (ng/mL) | GLA Mutation | Kidney Biopsy | Diagnosis Prior to Testing | Other Non-Renal Manifestations | Follow Up | Centogene’s Classification of Variant Based on ACMG Guidelines |
---|---|---|---|---|---|---|---|---|---|---|
1 | M | 61 | >100 | 0.9 | c.1181T>C p.(Leu394Pro) | No | Chronic GN | LVH, paraesthesia, angiokeratomas, deafness | Preserved graft function, on regular ERT. | Likely pathogenic |
2 | M | 32 | 6.8 | 1.5 | c.427G>A p.(Ala143Thr) | Yes | IgAN | Headaches | Preserved graft function, not on ERT. | VUS |
3 | M | 45 | 7.8 | 1.4 | c.352C>T p.(Arg118Cys) | Yes | Renal carcinoma | PE in 2024, LVH, muscle/joint pain | Preserved graft function, not on ERT. | VUS |
Pearson’s Correlation Coefficient R (p Value) | 95% Confidence Interval (CI) | |||
---|---|---|---|---|
Alpha-Galactosidase A Activity | Lyso Gb3 Level | Lower | Upper | |
Age | −0.094 (0.05) | 0.154 (0.08) | −1488 | 2550 |
Dialysis vintage (months) | 0.002 (0.97) | 0.002 (0.98) | −10,873 | 1166 |
eGFR | −0.092 (0.06) | 0.088 (0.32) | −4657 | 1620 |
Proteinuria | 0.054 (0.26) | −0.055 (0.54) | 40,956 | 282,714 |
Corticosteroid dose | 0.158 (0.001) | −0.189 (0.03) | 0.1075 | 0.8724 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kljajic, M.; Atic, A.; Pecin, I.; Jelakovic, B.; Basic-Jukic, N. Screening for Fabry Disease-Related Mutations Among 829 Kidney Transplant Recipients. J. Clin. Med. 2024, 13, 7069. https://doi.org/10.3390/jcm13237069
Kljajic M, Atic A, Pecin I, Jelakovic B, Basic-Jukic N. Screening for Fabry Disease-Related Mutations Among 829 Kidney Transplant Recipients. Journal of Clinical Medicine. 2024; 13(23):7069. https://doi.org/10.3390/jcm13237069
Chicago/Turabian StyleKljajic, Marina, Armin Atic, Ivan Pecin, Bojan Jelakovic, and Nikolina Basic-Jukic. 2024. "Screening for Fabry Disease-Related Mutations Among 829 Kidney Transplant Recipients" Journal of Clinical Medicine 13, no. 23: 7069. https://doi.org/10.3390/jcm13237069
APA StyleKljajic, M., Atic, A., Pecin, I., Jelakovic, B., & Basic-Jukic, N. (2024). Screening for Fabry Disease-Related Mutations Among 829 Kidney Transplant Recipients. Journal of Clinical Medicine, 13(23), 7069. https://doi.org/10.3390/jcm13237069