Iron Deficiency Anemia and Dyslipidemia Among Hospital Nurses: A Cross-Sectional Study in Turkey
Abstract
:1. Introduction
2. Materials and Methods
- For hemoglobin: 12.0–14.6 g/dL in women and 13.0–16.9 g/dL in men;
- For hematocrit: 36.6–44.0% in women and 40.0–49.4% in men;
- For ferritin: 11–307 ng/mL in women and 23.9–336.2 ng/mL in men;
- For iron: 60–180 μg/dL in women and 70–180 μg/dL in men;
- For iron-binding capacity:155–355 μg/dL in both men and women;
- For transferrin saturation: 15–45% in both men and women;
- For total cholesterol: <200 mg/dL in both men and women;
- For HDL-cholesterol: >50 mg/dL in women and >40 mg/dL in men;
- For LDL-cholesterol: <130 mg/dL in both men and women;
- For triglycerides: <150 mg/dL in both men and women.
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Portal Health Topics. Anemia. Available online: https://www.who.int/health-topics/anaemia#tab=tab_1 (accessed on 31 October 2024).
- Garcia-Casal, M.N.; Dary, O.; Jefferds, M.E.; Pasricha, S.R. Diagnosing anemia: Challenges selecting methods, addressing underlying causes, and implementing actions at the public health level. Ann. N. Y. Acad. Sci. 2023, 1524, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2021 (GBD 2021) Anemia Prevalence and Years Lived with Disability by Cause 1990–2021. Institute for Health Metrics and Evaluation. 2023. Available online: https://ghdx.healthdata.org/record/ihme-data/gbd-2021-anemia-prevalence-ylds (accessed on 12 November 2024).
- Walters, D.; Kakietek, J.; Eberwein, J.D.; Shekar, M. An Investment Framework for Meeting the Global Nutrition Target for Anemia; World Bank: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Warner, M.J.; Kamran, M.T. Iron Deficiency Anemia. StatPearls. Available online: https://www.ncbi.nlm.nih.gov/books/NBK448065/ (accessed on 4 June 2024).
- Camaschella, C. Iron deficiency. Blood J. Am. Soc. Hematol. 2019, 133, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Mawani, M.; Ali, S.A.; Bano, G.; Ali, S.A. Iron deficiency anemia among women of reproductive age, an important public health problem: Situation analysis. Reprod. Syst. Sex. Disord. Curr. Res. 2016, 5, 1. [Google Scholar] [CrossRef]
- Kılınçarslan, M.G.; Şahinoğlu, E.M. First step in dyslipidemia management: Lifestyle modifications according to up-to-date guidelines. Turk. J. Fam. Pract. 2019, 23, 31–40. [Google Scholar] [CrossRef]
- World Health Organization. Global Health Observatory Data. Cholesterol. Available online: http://www.who.int/gho/ncd/risk_factors/cholesterol_prevalence/en/ (accessed on 4 August 2024).
- Kayıkçıoğlu, M.; Tokgozoglu, L.; Kılıçkap, M.; Göksülük, H.; Karaaslan, D.; Özer, N.; Abacı, A.; Yılmaz, M.B.; Barçın, C.; Ateş, K.; et al. Data on prevalence of dyslipidemia and lipid values in Turkey: Systematic review and meta-analysis of epidemiological studies on cardiovascular risk factors. Turk Kardiyol Dern Ars. 2018, 46, 556–574. (In Turkish) [Google Scholar]
- Öngün Yılmaz, H. Hyperlipidemia and Nutrition. Turk. J. Health Sci. Res. 2019, 1, 72–78. (In Turkish) [Google Scholar]
- Yılmaz, N.; Öztürk, H.; Erduran, D.; Yönden, Z.; Ulutaş, K. Evaluation of Relationship Between Iron Defficiency Anemia and Lipid Profile. Med. J. Mustafa Kemal Univ. 2015, 2, 6–14. (In Turkish) [Google Scholar]
- Yang, S.; Chen, X.Y.; Xu, X.P. The Relationship Between Lipoprotein-Associated Phospholipase A (2), Cholesteryl Ester Transfer Protein and Lipid Profile and Risk of Atherosclerosis in Women with Iron Deficiency Anaemia. Clin. Lab. 2015, 61, 1463–1469. [Google Scholar] [CrossRef]
- Lee, J.; Lee, H.J.; Jang, H.; Lee, J.J.; Ha, J.H. High-iron consumption decreases copper accumulation and colon length, and alters serum lipids. Appl. Biol. Chem. 2024, 67, 10. [Google Scholar] [CrossRef]
- Güleç, Ş. The Effect of Diet and Blood Derived Iron on Iron Deficiency Anemia in the Model of Human Intestine. J. Nutr. Diet. 2018, 46, 107–117. (In Turkish) [Google Scholar] [CrossRef]
- World Health Organization. Anaemia in Women and Children. Global Health Observatory Data. Available online: https://www.who.int/data/gho/data/themes/topics/anaemia_in_women_and_children (accessed on 4 August 2024).
- Institute for Health Metrics and Evaluation. The Lancet: New Study Reveals Global Anemia Cases Remain Persistently High Among Women and Children. Anemia Rates Decline for Men. Available online: https://www.healthdata.org/news-events/newsroom/news-releases/lancet-new-study-reveals-global-anemia-cases-remain-persistently (accessed on 4 August 2024).
- Schuepbach, R.A.; Bestmann, L.; Béchir, M.; Fehr, J.; Bachli, E.B. High prevalence of iron deficiency among educated hospital employees in Switzerland. Int. J. Biomed. Sci. 2011, 7, 150. [Google Scholar] [CrossRef] [PubMed]
- Pongudom, S.; Tantiworawit, A. Prevalence and Risk Factors of Iron Deficiency Anemia Amongst High Risk Health Care Workers in Udonthani Hospital, Thailand. Blood 2015, 126, 5590. [Google Scholar] [CrossRef]
- Kapoor, M.P.; Sugita, M.; Kawaguchi, M.; Timm, D.; Kawamura, A.; Abe, A.; Okubo, T. Influence of iron supplementation on fatigue, mood states and sweating profiles of healthy non-anemic athletes during a training exercise: A double-blind, randomized, placebo-controlled, parallel-group study. Contemp. Clin. Trials Commun. 2023, 32, 101084. [Google Scholar] [CrossRef] [PubMed]
- Marcus, H.; Schauer, C.; Zlotkin, S. Effect of Anemia on Work Productivity in Both Labor- and Nonlabor-Intensive Occupations: A Systematic Narrative Synthesis. Food Nutr. Bull. 2021, 42, 289–308. [Google Scholar] [CrossRef]
- Haas, J.D.; Brownlie, T., 4th. Iron deficiency and reduced work capacity: A critical review of the research to determine a causal relationship. J. Nutr. 2001, 131, 676S–688S. [Google Scholar] [CrossRef]
- Alturkistani, S. Correlation between chronic conditions and job absenteeism among healthcare administration employees at King Abdullah Medical City in Makkah, Saudi Arabia. Work 2023, 75, 349–355. [Google Scholar] [CrossRef]
- Papier, K.; Fensom, G.K.; Knuppel, A.; Appleby, P.N.; Tong, T.Y.; Schmidt, J.A.; Travis, R.C.; Key, T.J.; Perez-Cornago, A. Meat consumption and risk of 25 common conditions: Outcome-wide analyses in 475,000 men and women in the UK Biobank study. BMC Med. 2021, 19, 53. [Google Scholar] [CrossRef]
- Sun, H.; Weaver, C.M. Decreased iron intake parallels rising iron deficiency anemia and related mortality rates in the US population. J. Nutr. 2021, 151, 1947–1955. [Google Scholar] [CrossRef]
- Mota, J.D.O.; Guillou, S.; Pierre, F.; Membré, J.M. Public health risk-benefit assessment of red meat in France: Current consumption and alternative scenarios. Food Chem. Toxicol. 2021, 149, 111994. [Google Scholar] [CrossRef]
- Gardner, W.M.; Razo, C.; McHugh, T.A.; Hagins, H.; Vilchis-Tella, V.M.; Hennessy, C.; Taylor, H.J.; Perumal, N.; Fuller, K.; Cercy, K.M.; et al. Prevalence, years lived with disability, and trends in anaemia burden by severity and cause, 1990–2021: Findings from the Global Burden of Disease Study 2021. Lancet Haematol. 2023, 10, e713–e734. [Google Scholar] [CrossRef]
- Lee, H.J.; Pak, H.; Han, J.J.; Chang, M.H. Comprehensive Analysis of Iron Deficiency Anemia and Its Related Disorders in Premenopausal Women Based on a Propensity Score Matching Case Control Study Using National Health Insurance Service Database in Korea. J. Korean Med. Sci. 2023, 38, e299. [Google Scholar] [CrossRef] [PubMed]
- Jingi, A.M.; Kuate-Mfeukeu, L.; Hamadou, B.; Ateba, N.A.; Nganou, C.N.; Amougou, S.N.; Guela-Wawo, E.; Kingue, S. Prevalence and associates of anemia in adult men and women urban dwellers in Cameroon: A cross-sectional study in a Sub-Saharan setting. Ann. Blood 2018, 3, 34. [Google Scholar] [CrossRef]
- Basheikh, K.; Felemban, A.H.; Felemban, M.H.; Al-Raddadi, R.M.; Al-Nuqali, E.; Abaalkhail, B.A.; Alshareef, K.M. Prevalence of dyslipidemia and its associated factors among employees of primary health care centers, Jeddah, Saudi Arabia. Int. J. Med. Sci. Public Health 2016, 5, 946–951. [Google Scholar] [CrossRef]
- Meera, D.K.; Divakar, S. Prevalence of Hypercholesterolemia among Nurses in Hospitals of Thiruvananthapuram, Kerala. Asian Rev. Soc. Sci. 2018, 7, 76–79. [Google Scholar] [CrossRef]
- Dele-Ojo, B.F.; Raimi, T.H.; Fadare, J.O.; Dada, S.A.; Ajayi, E.A.; Ajayi, D.D.; Ogunmodede, J.A.; Ajayi, A.O. Association between metabolic syndrome and healthcare work status in Ekiti State, Nigeria. Pan Afr. Med. J. 2021, 39, 257. [Google Scholar] [CrossRef]
- Solymanzadeh, F.; Rokhafroz, D.; Asadizaker, M.; Dastoorpoor, M. Association of shift work with hypercholesterolemia among nurses: A cross-sectional and descriptive-analytical study. J. Hum. Behav. Soc. Environ. 2024, 34, 673–683. [Google Scholar] [CrossRef]
- Gharib, M.A.A.; Abd Elalal, N.S.; Elhassaneen, Y.A.E.E. A Study of the Correlation Between Dyslipidemia and Iron Deficiency Anemia in Egyptian Adult Subjects. Alex. Sci. Exch. J. 2022, 43, 53–63. [Google Scholar] [CrossRef]
- Choi, J.W.; Kim, S.K.; Pai, S.H. Changes in serum lipid concentrations during iron depletion and after iron supplementation. Ann. Clin. Lab. Sci. 2001, 31, 151–156. [Google Scholar] [PubMed]
- Chowta, N.; Reddy, S.; Chowta, M.; Shet, A.; Achappa, B.; Madi, D. Lipid profile in anemia: Is there any correlation? Ann. Trop. Med. Public Health 2017, 10, 837–840. [Google Scholar] [CrossRef]
- Verma, U.; Shankar, N.; Madhu, S.V.; Tandon, O.P.; Madan, N.; Verma, N. Relationship between iron deficiency anaemia and serum lipid levels in Indian adults. J. Indian Med. Assoc. 2010, 108, 555–558. [Google Scholar] [PubMed]
- Tanzer, F.; Hizel, S.; Çetinkaya, Ö.; Sekreter, E. Serum free carnitine and total triglycerid levels in children with iron deficiency anemia. Int. J. Vitam. Nutr. Res. 2001, 71, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, A.; Sevinç, C.; Selamet, U.; Türkmen, F. The relationship between iron deficiency anemia and lipid metabolism in premenopausal women. Am. J. Med. Sci. 2007, 334, 331–333. [Google Scholar] [CrossRef] [PubMed]
- Shirvani, M.; Vakili Sadeghi, M.; Hosseini, S.R.; Bijani, A.; Ghadimi, R. Does Serum lipid profile differ in anemia and non-anemic older subjects? Casp. J. Intern. Med. 2017, 8, 305–310. [Google Scholar] [CrossRef]
- Shimakawa, T.; Bild, D.E. Relationship between hemoglobin and cardiovascular risk factors in young adults. J. Clin. Epidemiol. 1993, 46, 1257–1266. [Google Scholar] [CrossRef]
- Chonchol, M.; Nielson, C. Hemoglobin levels and coronary artery disease. Am. Heart J. 2008, 155, 494–498. [Google Scholar] [CrossRef]
Iron Deficiency Anemia | ||||||
---|---|---|---|---|---|---|
(n) | (%) | Yes | No | |||
(n) | (%) | (n) | (%) | |||
Age Groups (n = 712) | ||||||
25 years and below | 78 | 11.0 | 16 | 20.5 | 62 | 79.5 |
26–30 years old | 194 | 27.2 | 14 | 7.2 | 180 | 92.8 |
31–35 years old | 88 | 12.3 | 9 | 10.2 | 79 | 89.8 |
36–40 years old | 120 | 16.9 | 15 | 12.5 | 105 | 87.5 |
41–45 years old | 114 | 16.0 | 16 | 14.0 | 98 | 86.0 |
46–50 years old | 78 | 11.0 | 6 | 7.7 | 72 | 92.3 |
51 years and older | 40 | 5.6 | 0 | 0.0 | 40 | 100.0 |
χ2 = 17.647 | p = 0.007 | |||||
Gender (n = 712) | ||||||
Female | 649 | 91.2 | 76 | 11.7 | 573 | 88.3 |
Male | 63 | 8.8 | 0 | 0.0 | 63 | 100.0 |
NA | ||||||
Department (n = 712) | ||||||
Ward | 320 | 44.9 | 37 | 11.6 | 283 | 88.4 |
Intensive care | 143 | 20.1 | 17 | 11.9 | 126 | 88.1 |
Operation room | 58 | 8.2 | 6 | 10.3 | 52 | 89.7 |
Outpatient clinic | 53 | 7.4 | 5 | 9.4 | 48 | 90.6 |
Emergency room | 37 | 5.2 | 4 | 10.8 | 33 | 89.2 |
Ambulatory treatment unit | 34 | 4.8 | 2 | 5.9 | 32 | 94.1 |
Imaging unit | 30 | 4.2 | 4 | 13.3 | 26 | 86.7 |
Administrative unit | 26 | 3.7 | 1 | 3.8 | 25 | 96.2 |
Blood collection unit | 11 | 1.5 | 0 | 0.0 | 11 | 100.0 |
χ2 = 4.206 | p = 0.838 | |||||
Weekly Consumption of Iron-Rich Foods | ||||||
High | 262 | 36.8 | 18 | 6.8 | 244 | 93.2 |
Low | 450 | 63.2 | 58 | 12.9 | 392 | 87.1 |
χ2 = 5.676 | p = 0.017 | |||||
Weekly Consumption of Iron Absorption-Supporting Foods | ||||||
High | 330 | 46.3 | 34 | 10.3 | 296 | 89.7 |
Low | 382 | 53.7 | 42 | 11.0 | 340 | 89.0 |
χ2 = 0.089 | p = 0.765 | |||||
Weekly Consumption of Other Foods | ||||||
High | 349 | 49.1 | 39 | 11.1 | 310 | 88.9 |
Low | 363 | 50.9 | 37 | 10.2 | 326 | 89.8 |
χ2 = 0.178 | p = 0.671 |
Male | Female | Total | ||||
---|---|---|---|---|---|---|
(n) | (%) | (n) | (%) | (n) | (%) | |
Iron Deficiency Anemia (n = 712) | ||||||
Yes | 0 | 0.0 | 76 | 11.7 | 76 | 10.7 |
No | 63 | 100.0 | 573 | 88.3 | 636 | 89.3 |
Hemoglobin (n = 712) | ||||||
Low | 0 | 0.0 | 116 | 17.9 | 116 | 16.3 |
Normal | 63 | 100.0 | 506 | 78.0 | 569 | 79.9 |
High | 0 | 0.0 | 27 | 4.2 | 27 | 3.8 |
Hematocrit (n = 712) | ||||||
Low | 0 | 0.0 | 118 | 18.2 | 118 | 16.6 |
Normal | 58 | 92.1 | 510 | 78.6 | 568 | 79.8 |
High | 5 | 7.9 | 21 | 3.2 | 26 | 3.7 |
Ferritin (n = 712) | ||||||
Low | 3 | 4.8 | 215 | 33.1 | 218 | 30.6 |
Normal | 60 | 95.2 | 434 | 66.9 | 494 | 69.4 |
Transferrin Saturation (n = 712) | ||||||
Low | 5 | 7.9 | 251 | 38.7 | 256 | 36.0 |
Normal | 58 | 92.1 | 391 | 60.2 | 449 | 63.0 |
High | 0 | 0.0 | 7 | 1.1 | 7 | 1.0 |
Iron (n = 712) | ||||||
Low | 16 | 25.4 | 271 | 41.8 | 287 | 40.3 |
Normal | 47 | 74.6 | 373 | 57.5 | 420 | 59.0 |
High | 0 | 0.0 | 5 | 0.8 | 5 | 0.7 |
Iron-Binding Capacity (n = 712) | ||||||
Low | 0 | 0.0 | 7 | 1.1 | 7 | 1.0 |
Normal | 59 | 93.7 | 469 | 72.3 | 528 | 74.2 |
High | 4 | 6.3 | 173 | 26.7 | 177 | 24.9 |
Total Cholesterol (n = 712) | ||||||
Normal | 46 | 73.0 | 418 | 64.4 | 464 | 65.2 |
High | 17 | 27.0 | 231 | 35.6 | 248 | 34.8 |
Triglyceride (n = 712) | ||||||
Normal | 36 | 57.1 | 569 | 87.7 | 605 | 85.0 |
High | 27 | 42.9 | 80 | 12.3 | 107 | 15.0 |
HDL-Cholesterol (n = 712) | ||||||
Low | 16 | 25.4 | 176 | 27.1 | 192 | 27.0 |
Normal | 47 | 74.6 | 473 | 72.9 | 520 | 73.0 |
LDL-Cholesterol (n = 712) | ||||||
Normal | 47 | 74.6 | 454 | 70.0 | 501 | 70.4 |
High | 16 | 25.4 | 195 | 30.0 | 211 | 29.6 |
Hemoglobin Levels | ||||||
---|---|---|---|---|---|---|
Low | Normal | High | ||||
(n) | (%) | (n) | (%) | (n) | (%) | |
Total Cholesterol (n = 712) | ||||||
Normal | 81 | 17.5 | 373 | 80.4 | 10 | 2.2 |
High | 35 | 14.1 | 196 | 79.0 | 17 | 6.9 |
χ2 = 10.560 | p = 0.005 | |||||
LDL-Cholesterol (n = 712) | ||||||
Normal | 88 | 17.6 | 402 | 80.2 | 11 | 2.2 |
High | 28 | 13.3 | 167 | 79.1 | 16 | 7.6 |
χ2 = 13.060 | p = 0.001 | |||||
HDL-Cholesterol (n = 712) | ||||||
Normal | 81 | 15.6 | 421 | 81.0 | 18 | 3.5 |
Low | 35 | 18.2 | 148 | 77.1 | 9 | 4.7 |
χ2 = 1.425 | p = 0.490 | |||||
Triglyceride (n = 712) | ||||||
Normal | 101 | 16.7 | 486 | 80.3 | 18 | 3.0 |
Low | 15 | 14.0 | 83 | 77.6 | 9 | 8.4 |
χ2 = 7.571 | p = 0.023 |
Iron Deficiency Anemia | ||
---|---|---|
Yes | No | |
Total Cholesterol (mg/dL) | ||
Mean ± SD | 185.16 ± 35.45 | 191.03 ± 39.08 |
Median | 182.00 | 186.00 |
Range (min–max) | 115.00–320.00 | 104.00–329.00 |
p = 0.231 | ||
HDL-Cholesterol (mg/dL) | ||
Mean ± SD | 57.32 ± 11.94 | 56.88 ± 11.17 |
Median | 55.00 | 55.00 |
Range (min–max) | 38.00–93.00 | 32.00–110.00 |
p = 0.957 | ||
LDL-Cholesterol (mg/dL) | ||
Mean ± SD | 110.70 ± 30.05 | 115.08 ± 32.49 |
Median | 109.00 | 112.00 |
Range (min–max) | 48.00–191.00 | 35.00–229.00 |
p = 0.308 | ||
Triglyceride (mg/dL) | ||
Mean ± SD | 86.14 ± 49.48 | 96.04 ± 53.89 |
Median | 70.50 | 81.00 |
Range (min–max) | 24.00–280.00 | 27.00–418.00 |
p = 0.044 |
Hemoglobin | Ferritin | Iron | Transferrin | |||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | |
Total Cholesterol | 0.076 | 0.043 | 0.047 | 0.206 | 0.051 | 0.171 | 0.012 | 0.749 |
LDL-Cholesterol | 0.087 | 0.020 | 0.048 | 0.203 | 0.017 | 0.654 | −0.010 | 0.781 |
HDL-Cholesterol | −0.174 | <0.001 | −0.155 | <0.001 | 0.049 | 0.190 | 0.018 | 0.629 |
Triglyceride | 0.203 | <0.001 | 0.175 | <0.001 | 0.115 | 0.002 | 0.094 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medeni, V.; Aygür, R.; Medeni, İ.; Türk, K.N.; Uğraş Dikmen, A.; İlhan, M.N. Iron Deficiency Anemia and Dyslipidemia Among Hospital Nurses: A Cross-Sectional Study in Turkey. J. Clin. Med. 2024, 13, 7042. https://doi.org/10.3390/jcm13237042
Medeni V, Aygür R, Medeni İ, Türk KN, Uğraş Dikmen A, İlhan MN. Iron Deficiency Anemia and Dyslipidemia Among Hospital Nurses: A Cross-Sectional Study in Turkey. Journal of Clinical Medicine. 2024; 13(23):7042. https://doi.org/10.3390/jcm13237042
Chicago/Turabian StyleMedeni, Volkan, Rabia Aygür, İrem Medeni, Kübra Nur Türk, Asiye Uğraş Dikmen, and Mustafa Necmi İlhan. 2024. "Iron Deficiency Anemia and Dyslipidemia Among Hospital Nurses: A Cross-Sectional Study in Turkey" Journal of Clinical Medicine 13, no. 23: 7042. https://doi.org/10.3390/jcm13237042
APA StyleMedeni, V., Aygür, R., Medeni, İ., Türk, K. N., Uğraş Dikmen, A., & İlhan, M. N. (2024). Iron Deficiency Anemia and Dyslipidemia Among Hospital Nurses: A Cross-Sectional Study in Turkey. Journal of Clinical Medicine, 13(23), 7042. https://doi.org/10.3390/jcm13237042