Crossing Age Boundaries: The Unifying Potential of Presepsin in Sepsis Diagnosis Across Diverse Age Groups
Abstract
1. Introduction
2. Demographics of Sepsis
3. Pathophysiology and Immunological Aspects of Sepsis Across Ages
4. Biomarkers and Sepsis
5. Presepsin as a Sepsis Biomarker Across Age Groups
5.1. Presepsin as a Sepsis Biomarker in Neonates and Children
5.2. Presepsin as a Sepsis Biomarker in Adults
5.3. Presepsin as a Sepsis Biomarker in Older Adults
6. Published Meta-Analysis on Presepsin as a Sepsis Biomarker
7. Discussion
8. Conclusions
Funding
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Martín, S.; Pérez, A.; Aldecoa, C. Sepsis and Immunosenescence in the Elderly Patient: A Review. Front. Med. 2017, 4, 20. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk A Compass for Future Health. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef] [PubMed]
- Kerrigan, S.W.; Martin-Loeches, I. Public awareness of sepsis is still poor: We need to do more. Intensiv. Care Med. 2018, 44, 1771–1773. [Google Scholar] [CrossRef]
- Fiest, K.M.; Krewulak, K.D.; Brundin-Mather, R.; Leia, M.P.; Fox-Robichaud, A.; Lamontagne, F.; Leigh, J.P.; Canada, F.S. Patient, Public, and Healthcare Professionals’ Sepsis Awareness, Knowledge, and Information Seeking Behaviors: A Scoping Review. Crit. Care Med. 2022, 50, 1187–1197. [Google Scholar] [CrossRef]
- Kim, H.I.; Park, S. Sepsis: Early Recognition and Optimized Treatment. Tuberc. Respir. Dis. 2018, 81, 6–14. [Google Scholar] [CrossRef]
- Luo, J.; Jiang, W.; Weng, L.; Peng, J.; Hu, X.; Wang, C.; Liu, G.; Huang, H.; Du, B. Usefulness of qSOFA and SIRS scores for detection of incipient sepsis in general ward patients: A prospective cohort study. J. Crit. Care 2019, 51, 13–18. [Google Scholar] [CrossRef]
- Behnes, M.; Bertsch, T.; Lepiorz, D.; Lang, S.; Trinkmann, F.; Brueckmann, M.; Borggrefe, M.; Hoffmann, U. Diagnostic and prognostic utility of soluble CD 14 subtype (presepsin) for severe sepsis and septic shock during the first week of intensive care treatment. Crit. Care 2014, 18, 507. [Google Scholar] [CrossRef]
- CDC Centers for Disease Ccontrol and Prevention. About Multiple Cause of Death, 1999–2020. About Multiple Cause of Death, 1999–2020. Published September 8, 2023. Available online: https://wonder.cdc.gov/mcd-icd10.html (accessed on 23 July 2023).
- Oikonomakou, M.Z.; Gkentzi, D.; Gogos, C.; Akinosoglou, K. Biomarkers in pediatric sepsis: A review of recent literature. Biomark. Med. 2020, 14, 895–917. [Google Scholar] [CrossRef]
- Balamuth, F.; Weiss, S.L.; Neuman, M.I.; Scott, H.; Brady, P.W.M.; Paul, R.; Farris, R.W.D.; McClead, R.; Hayes, K.B.; Gaieski, D.; et al. Pediatric Severe Sepsis in U.S. Children’s Hospitals. Pediatr. Crit. Care Med. 2014, 15, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Gude, S.S.; Peddi, N.C.; Vuppalapati, S.; Gopal, S.V.; Ramesh, H.M.; Gude, S.S. Biomarkers of Neonatal Sepsis: From Being Mere Numbers to Becoming Guiding Diagnostics. Cureus 2022, 14, e23215. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Farahbakhsh, N.; Shastri, S.; Sharma, P. Biomarkers for diagnosis of neonatal sepsis: A literature review. J. Matern-Fetal Neonatal Med. 2018, 31, 1646–1659. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.S.; Mannino, D.M.; Moss, M. The effect of age on the development and outcome of adult sepsis. Crit. Care Med. 2006, 34, 15–21. [Google Scholar] [CrossRef]
- Kramarow, E.A. Sepsis-related Mortality Among Adults Aged 65 and Over: United States, 2019. NCHS Data Brief 2021, 422, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Arora, J.; Mendelson, A.A.; Fox-Robichaud, A. Sepsis: Network pathophysiology and implications for early diagnosis. Am. J. Physiol-Regul Integr. Comp. Physiol. 2023, 324, R613–R624. [Google Scholar] [CrossRef]
- Michels, E.H.A.; Butler, J.M.; Reijnders, T.D.Y.; Scicluna, B.P.; Uhel, F.; Peters-Sengers, H.; Schultz, M.J.; Knight, J.C.; van Vught, L.A.; van der Poll, T.; et al. Association between age and the host response in critically ill patients with sepsis. Crit. Care 2022, 26, 385. [Google Scholar] [CrossRef]
- Wynn, J.; Cornell, T.T.; Wong, H.R.; Shanley, T.P.; Wheeler, D.S. The Host Response to Sepsis and Developmental Impact. Pediatrics 2010, 125, 1031–1041. [Google Scholar] [CrossRef]
- Hincu, M.A.; Zonda, G.I.; Stanciu, G.D.; Nemescu, D.; Paduraru, L. Relevance of Biomarkers Currently in Use or Research for Practical Diagnosis Approach of Neonatal Early-Onset Sepsis. Children 2020, 7, 309. [Google Scholar] [CrossRef]
- de Camargo, J.F.; Caldas, J.P.d.S.; Marba, S.T.M. Early neonatal sepsis: Prevalence, complications and outcomes in newborns with 35 weeks of gestational age or more. Rev. Paul. Pediatr. 2021, 40, e2020388. [Google Scholar] [CrossRef]
- Goldstein, B.; Giroir, B.; Randolph, A. International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics. Pediatr. Crit. Care Med. 2005, 6, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Schlapbach, L.J.; Kissoon, N. Defining Pediatric Sepsis. JAMA Pediatr. 2018, 172, 313–314. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Pinto, L.N.; Bennett, T.D.; DeWitt, P.E.; Russell, S.; Rebull, M.N.; Martin, B.; Akech, S.; Albers, D.J.; Alpern, E.R.; Balamuth, F.; et al. Development and Validation of the Phoenix Criteria for Pediatric Sepsis and Septic Shock. JAMA 2024, 331, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Barsness, K.A.; Bensard, D.D.; Partrick, D.A.; Calkins, C.M.; Hendrickson, R.J.; McIntyre, R.C. Endotoxin induces an exaggerated interleukin-10 response in peritoneal macrophages of children compared with adults. J. Pediatr. Surg. 2004, 39, 912–915. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.L.; Scumpia, P.O.; Winfield, R.D.; Delano, M.J.; Kelly-Scumpia, K.; Barker, T.; Ungaro, R.; Levy, O.; Moldawer, L.L. Defective innate immunity predisposes murine neonates to poor sepsis outcome but is reversed by TLR agonists. Blood 2008, 112, 1750–1758. [Google Scholar] [CrossRef]
- Hall, M. Immune Modulation in Pediatric Sepsis. J. Pediatr. Intensiv. Care 2019, 8, 42–50. [Google Scholar] [CrossRef]
- Wong, H.R. Pediatric sepsis biomarkers for prognostic and predictive enrichment. Pediatr. Res. 2022, 91, 283–288. [Google Scholar] [CrossRef]
- Lim, P.P.C.; Bondarev, D.J.; Edwards, A.M.; Hoyen, C.M.; Macias, C.G. The evolving value of older biomarkers in the clinical diagnosis of pediatric sepsis. Pediatr. Res. 2023, 93, 789–796. [Google Scholar] [CrossRef]
- Jeevan, G.J.; Chandra, G.F.; Bahadur, T.S. Clinical, Demographic Profile and Outcome of Children Admitted in PICU with A Diagnosis of Severe Sepsis and Septic Shock. J. Med Sci. Clin. Res. 2017, 5, 31470–31474. [Google Scholar] [CrossRef]
- Wong, H.R.; Cvijanovich, N.Z.; Anas, N.; Allen, G.L.; Thomas, N.J.; Bigham, M.T.; Weiss, S.L.; Fitzgerald, J.; Checchia, P.A.; Meyer, K.; et al. Developing a Clinically Feasible Personalized Medicine Approach to Pediatric Septic Shock. Am. J. Respir. Crit. Care Med. 2015, 191, 309–315. [Google Scholar] [CrossRef]
- Wardi, G.; Tainter, C.R.; Ramnath, V.R.; Brennan, J.J.; Tolia, V.; Castillo, E.M.; Hsia, R.Y.; Malhotra, A.; Schmidt, U.; Meier, A. Age-related incidence and outcomes of sepsis in California, 2008–2015. J. Crit. Care 2021, 62, 212–217. [Google Scholar] [CrossRef] [PubMed]
- van der Poll, T.; Shankar-Hari, M.; Wiersinga, W.J. The immunology of sepsis. Immunity 2021, 54, 2450–2464. [Google Scholar] [CrossRef] [PubMed]
- Gentile, L.F.; Nacionales, D.C.; Lopez, M.C.; Vanzant, E.; Cuenca, A.; Cuenca, A.G.; Ungaro, R.; Szpila, B.E.; Larson, S.; Joseph, A.; et al. Protective Immunity and Defects in the Neonatal and Elderly Immune Response to Sepsis. J. Immunol. 2014, 192, 3156–3165. [Google Scholar] [CrossRef] [PubMed]
- Darden, D.B.; Kelly, L.S.; Fenner, B.P.; Moldawer, L.L.; Mohr, A.M.; Efron, P.A. Dysregulated Immunity and Immunotherapy after Sepsis. J. Clin. Med. 2021, 10, 1742. [Google Scholar] [CrossRef]
- Milbrandt, E.B.; Eldadah, B.; Nayfield, S.; Hadley, E.; Angus, D.C. Toward an Integrated Research Agenda for Critical Illness in Aging. Am. J. Respir. Crit. Care Med. 2012, 182, 995–1003. [Google Scholar] [CrossRef]
- Jia, L.; Hao, L.; Li, X.; Jia, R.; Zhang, H.L. Comparing the predictive values of five scales for 4-year all-cause mortality in critically ill elderly patients with sepsis. Ann. Palliat. Med. 2021, 10, 2387–2397. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, C.; Han, Y.; Gu, Z.; Sun, C. Immunosenescence, aging and successful aging. Front. Immunol. 2022, 13, 942796. [Google Scholar] [CrossRef]
- Martin-Loeches, I.; Guia, M.C.; Vallecoccia, M.S.; Suarez, D.; Ibarz, M.; Irazabal, M.; Ferrer, R.; Artigas, A. Risk factors for mortality in elderly and very elderly critically ill patients with sepsis: A prospective, observational, multicenter cohort study. Ann. Intensiv. Care 2019, 9, 26. [Google Scholar] [CrossRef]
- Kaukonen, K.M.; Bailey, M.; Suzuki, S.; Pilcher, D.; Bellomo, R. Mortality Related to Severe Sepsis and Septic Shock Among Critically Ill Patients in Australia and New Zealand, 2000–2012. JAMA 2014, 311, 1308–1316. [Google Scholar] [CrossRef]
- Woodcock, J. The Prospects for “Personalized Medicine” in Drug Development and Drug Therapy. Clin. Pharmacol. Ther. 2007, 81, 164–169. [Google Scholar] [CrossRef]
- Woodcock, J.; Woosley, R. The FDA Critical Path Initiative and Its Influence on New Drug Development. Annu. Rev. Med. 2008, 59, 1–12. [Google Scholar] [CrossRef]
- Kim, M.H.; Choi, J.H. An Update on Sepsis Biomarkers. Infect. Chemother. 2020, 52, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Llitjos, J.-F.; Carrol, E.D.; Osuchowski, M.F.; Bonneville, M.; Scicluna, B.P.; Payen, D.; Randolph, A.G.; Witte, S.; Rodriguez-Manzano, J.; François, B.; et al. Enhancing sepsis biomarker development: Key considerations from public and private perspectives. Crit. Care 2024, 28, 238. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Wu, Y.; Qu, S.; Younis, M.; Wang, W.; Wu, Z.; Huang, X. Exploring the biomarkers and potential therapeutic drugs for sepsis via integrated bioinformatic analysis. BMC Infect. Dis. 2024, 24, 32. [Google Scholar] [CrossRef] [PubMed]
- Deltell, J.M.M.; Boter, N.R. Biomarkers in emergencies: A never-ending race? Emergencias 2024, 36, 4–6. [Google Scholar] [CrossRef]
- Kadim, M.M.; AL-Dahmoshi, H.O.M.; AL-Khikan, F.H.O. Sepsis biomarkers: Current information and future visions. Microbes Infect. Dis. 2024, 5, 201–210. [Google Scholar] [CrossRef]
- Feng, L.; Liu, S.; Wang, J.; Gao, Y.; Xie, F.; Gong, J.; Bi, S.; Yao, Z.; Li, Y.; Liu, W.; et al. The performance of a combination of heparin-binding protein with other biomarkers for sepsis diagnosis: An observational cohort study. BMC Infect. Dis. 2024, 24, 755. [Google Scholar] [CrossRef] [PubMed]
- Clemente, C.; Fuentes, M.E.; Ortega, D.; Julián, A.; Martín-Sánchez, F.J.; González del Castillo, J. Utilidad de la combinación de biomarcadores de respuesta inflamatoria y escalas clínicas para la estratificación del riesgo en pacientes atendidos en urgencias por sospecha de infección. Emergencias 2024, 36, 9–16. [Google Scholar]
- Lippi, G. Sepsis biomarkers: Past, present and future. Clin. Chem. Lab. Med. 2019, 57, 1281–1283. [Google Scholar] [CrossRef]
- Poggi, C.; Bianconi, T.; Gozzini, E.; Generoso, M.; Dani, C. Presepsin for the detection of late-onset sepsis in preterm newborns. Pediatrics 2015, 135, 68–75. [Google Scholar] [CrossRef]
- Pugni, L.; Pietrasanta, C.; Milani, S.; Vener, C.; Ronchi, A.; Falbo, M.; Arghittu, M.; Mosca, F. Presepsin (Soluble CD14 Subtype): Reference Ranges of a New Sepsis Marker in Term and Preterm Neonates. PLoS ONE 2015, 10, e0146020. [Google Scholar] [CrossRef] [PubMed]
- Montaldo, P.; Rosso, R.; Santantonio, A.; Chello, G.; Giliberti, P. Presepsin for the detection of early-onset sepsis in preterm newborns. Pediatr. Res. 2017, 81, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Korpelainen, S.; Intke, C.; Hämäläinen, S.; Jantunen, E.; Juutilainen, A.; Pulkki, K. Soluble CD14 as a Diagnostic and Prognostic Biomarker in Hematological Patients with Febrile Neutropenia. Dis. Markers 2017, 2017, 9805609. [Google Scholar] [CrossRef] [PubMed]
- Bellos, I.; Fitrou, G.; Pergialiotis, V.; Thomakos, N.; Perrea, D.N.; Daskalakis, G. The diagnostic accuracy of presepsin in neonatal sepsis: A meta-analysis. Eur. J. Pediatr. 2018, 177, 625–632. [Google Scholar] [CrossRef]
- Baraka, A.; Zakaria, M. Presepsin as a diagnostic marker of bacterial infections in febrile neutropenic pediatric patients with hematological malignancies. Int. J. Hematol. 2018, 108, 184–191. [Google Scholar] [CrossRef]
- Yoon, S.H.; Kim, E.H.; Kim, H.Y.; Ahn, J.G. Presepsin as a diagnostic marker of sepsis in children and adolescents: A systemic review and meta-analysis. BMC Infect. Dis. 2019, 19, 760. [Google Scholar] [CrossRef]
- Puspaningtyas, N.W.; Karyanti, M.R.; Paramita, T.N.; Sjakti, H.A.; Putri, N.D.; Tridjaja, B.; Yanuarso, P.B.; Rinaldhy, K.; Yani, A.; Gayatri, P. Presepsin as a promising biomarker for early detection of post-operative infection in children. Front. Pediatr. 2023, 11, 1036993. [Google Scholar] [CrossRef]
- Shozushima, T.; Takahashi, G.; Matsumoto, N.; Kojika, M.; Okamura, Y.; Endo, S. Usefulness of presepsin (sCD14-ST) measurements as a marker for the diagnosis and severity of sepsis that satisfied diagnostic criteria of systemic inflammatory response syndrome. J. Infect. Chemother. 2011, 17, 764–769. [Google Scholar] [CrossRef]
- Endo, S.; Suzuki, Y.; Takahashi, G.; Shozushima, T.; Ishikura, H.; Murai, A.; Nishida, T.; Irie, Y.; Miura, M.; Iguchi, H.; et al. Usefulness of presepsin in the diagnosis of sepsis in a multicenter prospective study. J. Infect. Chemother. 2012, 18, 891–897. [Google Scholar] [CrossRef]
- Giavarina, D.; Carta, M. Determination of reference interval for presepsin, an early marker for sepsis. Biochem. Med. 2015, 25, 64–68. [Google Scholar] [CrossRef]
- Ali, F.T.; Ali, M.A.M.; Elnakeeb, M.M.; Bendary, H.N.M. Presepsin is an early monitoring biomarker for predicting clinical outcome in patients with sepsis. Clin. Chim. Acta 2016, 460, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Qi, Z.; Hang, C.; Fang, Y.; Shao, R.; Li, C. Evaluating the value of dynamic procalcitonin and presepsin measurements for patients with severe sepsis. Am. J. Emerg. Med. 2017, 35, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Claessens, Y.-E.; Trabattoni, E.; Grabar, S.; Quinquis, L.; Der Sahakian, G.; Anselmo, M.; Schmidt, J.; de la Coussaye, J.-E.; Plaisance, P.; Casalino, E.; et al. Plasmatic presepsin (sCD14-ST) concentrations in acute pyelonephritis in adult patients. Clin. Chim. Acta 2017, 464, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Kamohara, H.; Suda, S.; Nagura, T.; Tomino, M.; Sugi, M.; Wajima, Z. Comparative evaluation of endotoxin activity level and various biomarkers for infection and outcome of ICU-admitted patients. Biomedicines 2019, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Zvyagin, A.A.; Demidova, V.S.; Smirnov, G.V. Dinamika biomarkerov sepsisa kak pokazatel’ éffektivnosti intensivnoĭ terapii. Khirurgiia 2019, 2, 53–57. [Google Scholar] [CrossRef]
- Dragoş, D.; Ghenu, M.I.; Timofte, D.; Balcangiu-Stroescu, A.E.; Ionescu, D.; Manea, M.M. The cutoff value of presepsin for diagnosing sepsis increases with kidney dysfunction, a cross-sectional observational study. Medicine 2023, 102, E32620. [Google Scholar] [CrossRef]
- Imai, Y.; Taniguchi, K.; Iida, R.; Nitta, M.; Uchiyma, K.; Takasu, A. Diagnostic accuracy of presepsin in predicting bacteraemia in elderly patients admitted to the emergency department: Prospective study in Japan. BMJ Open 2019, 9, e030421. [Google Scholar] [CrossRef]
- Ruangsomboon, O.; Panjaikaew, P.; Monsomboon, A.; Chakorn, T.; Permpikul, C.; Limsuwat, C. Diagnostic and prognostic utility of presepsin for sepsis in very elderly patients in the emergency department. Clin. Chim. Acta 2020, 510, 723–732. [Google Scholar] [CrossRef]
- Schuetz, P.; Beishuizen, A.; Broyles, M.; Ferrer, R.; Gavazzi, G.; Gluck, E.H.; del Castillo, J.G.; Jensen, J.-U.; Kanizsai, P.L.; Kwa, A.L.H.; et al. Procalcitonin (PCT)-guided antibiotic stewardship: An international experts consensus on optimized clinical use. Clin. Chem. Lab. Med. 2019, 57, 1308–1318. [Google Scholar] [CrossRef]
- Vincent, J.L.; van der Poll, T.; Marshall, J.C. The End of “One Size Fits All” Sepsis Therapies: Toward an Individualized Approach. Biomedicines 2022, 10, 2260. [Google Scholar] [CrossRef]
- Bulatova, Y.Y.; Maltabarova, N.A.; Zhumabayev, M.B.; Li, T.A.; Ivanova, M.P. Modern Diagnostics of Sepsis and Septic Shock in Children. Electron. J. Gen. Med. 2020, 17, em216. [Google Scholar] [CrossRef] [PubMed]
- Lanziotti, V.S.; Póvoa, P.; Soares, M.; e Silva, J.R.L.; Barbosa, A.P.; Salluh, J.I.F. Use of biomarkers in pediatric sepsis: Literature review. Rev. Bras. Ter. Intensiv. 2016, 28, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Schuh, A.M.; Leger, K.J.; Summers, C.; Uspal, N.G. Lactic Acidosis in a Critically Ill Patient. Pediatr. Emerg. Care 2018, 34, e165–e167. [Google Scholar] [CrossRef] [PubMed]
- Kustán, P.; Horváth-Szalai, Z.; Mühl, D. Nonconventional Markers of Sepsis. EJIFCC 2017, 28, 122–133. [Google Scholar] [PubMed]
- Hung, S.K.; Lan, H.M.; Han, S.T.; Wu, C.C.; Chen, K.F. Current Evidence and Limitation of Biomarkers for Detecting Sepsis and Systemic Infection. Biomedicines 2020, 8, 494. [Google Scholar] [CrossRef]
- Teggert, A.; Datta, H.; Ali, Z. Biomarkers for Point-of-Care Diagnosis of Sepsis. Micromachines 2020, 11, 286. [Google Scholar] [CrossRef]
- Wagner, K.H.; Cameron-Smith, D.; Wessner, B.; Franzke, B. Biomarkers of Aging: From Function to Molecular Biology. Nutrients 2016, 8, 338. [Google Scholar] [CrossRef]
- Franceschi, C.; Bonafe, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging: An Evolutionary Perspective on Immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef]
- Ginde, A.A.; Blatchford, P.J.; Trzeciak, S.; Hollander, J.E.; Birkhahn, R.; Otero, R.; Osborn, T.M.; Moretti, E.; Nguyen, H.B.; Gunnerson, K.J.; et al. Age-Related Differences in Biomarkers of Acute Inflammation During Hospitalization for Sepsis. Shock 2014, 42, 99–107. [Google Scholar] [CrossRef]
- Yende, S.; D’Angelo, G.; Kellum, J.A.; Weissfeld, L.; Fine, J.; Welch, R.D.; Kong, L.; Carter, M.; Angus, D.C. Inflammatory Markers at Hospital Discharge Predict Subsequent Mortality after Pneumonia and Sepsis. Am. J. Respir. Crit. Care Med. 2008, 177, 1242–1247. [Google Scholar] [CrossRef]
- Velissaris, D.; Zareifopoulos, N.; Karamouzos, V.; Karanikolas, E.; Pierrakos, C.; Koniari, I.; Karanikolas, M. Presepsin as a Diagnostic and Prognostic Biomarker in Sepsis. Cureus 2021, 13, e15019. [Google Scholar] [CrossRef] [PubMed]
- Yaegashi, Y.; Sato, N.; Suzuki, Y.; Kojika, M.; Imai, S.; Takahashi, G.; Miyata, M.; Endo, S.; Shirakawa, K.; Furusako, S. Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. J. Infect. Chemother. 2005, 11, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Mizugishi, K.; Nonomura, K.; Naitoh, K.; Takaori-Kondo, A.; Yamashita, K. Phagocytosis by human monocytes is required for the secretion of presepsin. J. Infect. Chemother. 2015, 21, 564–569. [Google Scholar] [CrossRef] [PubMed]
- MDsave. Blood Culture. Published 24 July 2023. Available online: https://www.mdsave.com/procedures/blood-culture/d787ffc9 (accessed on 5 January 2024).
- Truehealthlabs. (Culture). 2023. Available online: https://truehealthlabs.com/product/blood-culture/ (accessed on 5 January 2024).
- Henriquez-Camacho, C.; Losa, J. Biomarkers for sepsis. BioMed Res. Int. 2014, 2014, 547818. [Google Scholar] [CrossRef]
- Park, J.; Yoon, J.H.; Ki, H.K.; Ko, J.H.; Moon, H.W. Performance of presepsin and procalcitonin predicting culture-proven bacterial infection and 28-day mortality: A cross sectional study. Front. Med. 2022, 9, 954114. [Google Scholar] [CrossRef]
- Pierrakos, C.; Velissaris, D.; Bisdorff, M.; Marshall, J.C.; Vincent, J.L. Biomarkers of sepsis: Time for a reappraisal. Crit. Care 2020, 24, 287. [Google Scholar] [CrossRef]
- Piccioni, A.; Santoro, M.C.; de Cunzo, T.; Tullo, G.; Cicchinelli, S.; Saviano, A.; Valletta, F.; Pascale, M.M.; Candelli, M.; Covino, M.; et al. Presepsin as Early Marker of Sepsis in Emergency Department: A Narrative Review. Medicina 2021, 57, 770. [Google Scholar] [CrossRef]
- Kim, H.; Hur, M.; Moon, H.-W.; Yun, Y.-M.; Di Somma, S.; on behalf of GREAT Network. Multi-marker approach using procalcitonin, presepsin, galectin-3, and soluble suppression of tumorigenicity 2 for the prediction of mortality in sepsis. Ann. Intensive Care 2017, 7, 27. [Google Scholar] [CrossRef]
- Lee, S.; Song, J.; Park, D.W.; Seok, H.; Ahn, S.; Kim, J.; Park, J.; Cho, H.J.; Moon, S. Diagnostic and prognostic value of presepsin and procalcitonin in non-infectious organ failure, sepsis, and septic shock: A prospective observational study according to the Sepsis-3 definitions. BMC Infect. Dis. 2022, 22, 8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, B.; Chen, Y.X.; Yin, Q.; Zhao, Y.Z.; Li, C.S. Diagnostic value and prognostic evaluation of Presepsin for sepsis in an emergency department. Crit. Care 2013, 17, R244. [Google Scholar] [CrossRef]
- Ulla, M.; Pizzolato, E.; Lucchiari, M.; Loiacono, M.; Soardo, F.; Forno, D.; Morello, F.; Lupia, E.; Moiraghi, C.; Mengozzi, G.; et al. Diagnostic and prognostic value of presepsin in the management of sepsis in the emergency department: A multicenter prospective study. Crit. Care 2013, 17, R168. [Google Scholar] [CrossRef] [PubMed]
- Memar, M.Y.; Baghi, H.B. Presepsin: A promising biomarker for the detection of bacterial infections. Biomed. Pharmacother. 2019, 111, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Maruna, P.; Nedelníková, K.; Gurlich, R. Physiology and genetics of procalcitonin. Physiol. Res. 2000, 49, S57–S61. [Google Scholar] [PubMed]
- Dong, R.; Wan, B.; Lin, S.; Wang, M.; Huang, J.; Wu, Y.; Wu, Y.; Zhang, N.; Zhu, Y. Procalcitonin and Liver Disease: A Literature Review. J. Clin. Transl. Hepatol. 2019, 7, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Oberhoffer, M.; Stonans, I.; Russwurm, S.; Stonane, E.; Vogelsang, H.; Junker, U.; Jäger, L.; Reinhart, K. Procalcitonin expression in human peripheral blood mononuclear cells and its modulation by lipopolysaccharides and sepsis-related cytokines in vitro. J. Lab. Clin. Med. 1999, 134, 49–55. [Google Scholar] [CrossRef]
- Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Investig. 2003, 111, 1805–1812. [Google Scholar] [CrossRef]
- Ragán, D.; Horváth-Szalai, Z.; Szirmay, B.; Mühl, D. Novel Damage Biomarkers of Sepsis-Related Acute Kidney Injury. EJIFCC 2022, 33, 11–22. [Google Scholar] [PubMed] [PubMed Central]
- Shimoyama, Y.; Umegaki, O.; Kadono, N.; Minami, T. Presepsin and prognostic nutritional index are predictors of septic acute kidney injury, renal replacement therapy initiation in sepsis patients, and prognosis in septic acute kidney injury patients: A pilot study. BMC Nephrol. 2021, 22, 219. [Google Scholar] [CrossRef]
- Takahashi, G.; Shibata, S.; Fukui, Y.; Okamura, Y.; Inoue, Y. Diagnostic accuracy of procalcitonin and presepsin for infectious disease in patients with acute kidney injury. Diagn. Microbiol. Infect. Dis. 2016, 86, 205–210. [Google Scholar] [CrossRef]
- Klouche, K.; Cristol, J.P.; Devin, J.; Gilles, V.; Kuster, N.; Larcher, R.; Amigues, L.; Corne, P.; Jonquet, O.; Dupuy, A.M. Diagnostic and prognostic value of soluble CD14 subtype (Presepsin) for sepsis and community-acquired pneumonia in ICU patients. Ann. Intensiv. Care 2016, 6, 59. [Google Scholar] [CrossRef]
- Maddaloni, C.; De Rose, D.U.; Santisi, A.; Martini, L.; Caoci, S.; Bersani, I.; Ronchetti, M.P.; Auriti, C. The Emerging Role of Presepsin (P-SEP) in the Diagnosis of Sepsis in the Critically Ill Infant: A Literature Review. Int. J. Mol. Sci. 2021, 22, 12154. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.; Candido, M.A.; Soriano, F.G. Sepsis biomarkers: A review of the diagnostic value of presepsin. Rev. Med. 2023, 102, e-182916. [Google Scholar] [CrossRef]
- Kyriazopoulou, E.; Leventogiannis, K.; Tavoulareas, G.; Mainas, E.; Toutouzas, K.; Mathas, C.; Prekates, A.; Sakka, V.; Panagopoulos, P.; Syrigos, K.; et al. Presepsin as a diagnostic and prognostic biomarker of severe bacterial infections and COVID-19. Sci. Rep. 2023, 13, 3814. [Google Scholar] [CrossRef]
- Tzialla, C.; Manzoni, P.; Achille, C.; Bollani, L.; Stronati, M.; Borghesi, A. New Diagnostic Possibilities for Neonatal Sepsis. Am. J. Perinatol. 2018, 35, 575–577. [Google Scholar] [CrossRef] [PubMed]
- Ruan, L.; Chen, G.-Y.; Liu, Z.; Zhao, Y.; Xu, G.-Y.; Li, S.-F.; Li, C.-N.; Chen, L.-S.; Tao, Z. The combination of procalcitonin and C-reactive protein or presepsin alone improves the accuracy of diagnosis of neonatal sepsis: A meta-analysis and systematic review. Crit. Care 2018, 22, 316. [Google Scholar] [CrossRef] [PubMed]
- Olad, E.; Sedighi, I.; Mehrvar, A.; Tashvighi, M.; Fallahazad, V.; Hedayatiasl, A.; Esfahani, H. Presepsin (scd14) as a marker of serious bacterial infections in chemotherapy induced severe neutropenia. Iran. J. Pediatr. 2014, 24, 715–722. [Google Scholar] [PubMed]
- Fischer, P.; Grigoras, C.; Bugariu, A.; Nicoara-Farcau, O.; Stefanescu, H.; Benea, A.; Hadade, A.; Margarit, S.; Sparchez, Z.; Tantau, M.; et al. Are presepsin and resistin better markers for bacterial infection in patients with decompensated liver cirrhosis? Dig. Liver Dis. 2019, 51, 1685–1691. [Google Scholar] [CrossRef]
- Fujii, E.; Fujino, K.; Eguchi, Y. An evaluation of clinical inflammatory and coagulation markers in patients with sepsis: A pilot study. Acute Med. Surg. 2019, 6, 158–164. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Z.-B.; Li, H.; Zheng, X.; Chen, J.-J.; Wang, X.-B.; Qian, Z.-P.; Liu, X.-X.; Fan, X.-G.; Hu, X.-W.; et al. Early Diagnostic Biomarkers of Sepsis for Patients with Acute-on-Chronic Liver Failure: A Multicenter Study. Infect. Dis. Ther. 2021, 10, 281–290. [Google Scholar] [CrossRef]
- Tsujimoto, K.; Hata, A.; Fujita, M.; Hatachi, S.; Yagita, M. Presepsin and procalcitonin as biomarkers of systemic bacterial infection in patients with rheumatoid arthritis. Int. J. Rheum. Dis. 2018, 21, 1406–1413. [Google Scholar] [CrossRef]
- Koizumi, Y.; Shimizu, K.; Shigeta, M.; Okuno, T.; Minamiguchi, H.; Kito, K.; Hodohara, K.; Yamagishi, Y.; Andoh, A.; Fujiyama, Y.; et al. Plasma presepsin level is an early diagnostic marker of severe febrile neutropenia in hematologic malignancy patients. BMC Infect. Dis. 2017, 17, 27. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.; Yoo, J.; Choi, H.; Lee, S.; Jekarl, D.W.; Kim, Y. Performance evaluation of presepsin using a Sysmex HISCL-5000 analyzer and determination of reference interval. J. Clin. Lab. Anal. 2022, 36, e24618. [Google Scholar] [CrossRef] [PubMed]
- Musso, C.G.; Oreopoulos, D.G. Aging and Physiological Changes of the Kidneys Including Changes in Glomerular Filtration Rate. Nephron Physiol. 2011, 119 (Suppl. S1), 1–5. [Google Scholar] [CrossRef] [PubMed]
- Chenevier-Gobeaux, C.; Trabattoni, E.; Roelens, M.; Borderie, D.; Claessens, Y.E. Presepsin (sCD14-ST) in emergency department: The need for adapted threshold values? Clin. Chim. Acta. 2014, 427, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Nagata, T.; Yasuda, Y.; Ando, M.; Abe, T.; Katsuno, T.; Kato, S.; Tsuboi, N.; Matsuo, S.; Maruyama, S. Clinical impact of kidney function on presepsin levels. PLoS ONE 2015, 10, e0129159. [Google Scholar] [CrossRef]
- Kim, H.; Song, J.; Lee, S.; Park, D.W.; Ahn, S.; Kim, J.; Park, J.; Cho, H.-J.; Moon, S.; Choi, S.-H. Presepsin levels for discriminating sepsis and predicting mortality among organ failure patients stratified by hypercreatinemia. Signa Vitae 2023, 19, 109–118. [Google Scholar] [CrossRef]
- van Maldeghem, I.; Nusman, C.M.; Visser, D.H. Soluble CD14 subtype (sCD14-ST) as biomarker in neonatal early-onset sepsis and late-onset sepsis: A systematic review and meta-analysis. BMC Immunol. 2019, 20, 17. [Google Scholar] [CrossRef]
- Wu, C.-C.; Lan, H.-M.; Han, S.-T.; Chaou, C.-H.; Yeh, C.-F.; Liu, S.-H.; Li, C.-H.; Blaney, G.N.; Liu, Z.-Y.; Chen, K.-F. Comparison of diagnostic accuracy in sepsis between presepsin, procalcitonin, and C-reactive protein: A systematic review and meta-analysis. Ann. Intensive Care 2017, 7, 91. [Google Scholar] [CrossRef]
- Zheng, Z.; Jiang, L.; Ye, L.; Gao, Y.; Tang, L.; Zhang, M. The accuracy of presepsin for the diagnosis of sepsis from SIRS: A systematic review and meta-analysis. Ann. Intensive Care 2015, 5, 48. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, J.-H.; Li, Q.; Chen, K.-J.; Wang, S.-N.; Wang, J.-M. Biomarkers for diagnosis of sepsis in patients with systemic inflammatory response syndrome: A systematic review and meta-analysis. SpringerPlus 2016, 5, 2091. [Google Scholar] [CrossRef]
- Kondo, Y.; Umemura, Y.; Hayashida, K.; Hara, Y.; Aihara, M.; Yamakawa, K. Diagnostic value of procalcitonin and presepsin for sepsis in critically ill adult patients: A systematic review and meta-analysis. J. Intensiv. Care 2019, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.S.; Hur, M.; Yi, A.; Kim, H.; Lee, S.; Kim, S.N. Prognostic value of presepsin in adult patients with sepsis: Systematic review and meta-analysis. PLoS ONE 2018, 13, e0191486. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, X.; Guo, P.; Chen, Y.; Li, J.; Tao, T. The accuracy assessment of presepsin (sCD14-ST) for mortality prediction in adult patients with sepsis and a head-to-head comparison to PCT: A meta-analysis. Ther. Clin. Risk Manag. 2019, 15, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Boyd, C.M.; Landefeld, C.S.; Counsell, S.R.; Palmer, R.M.; Fortinsky, R.H.; Kresevic, D.; Burant, C.; Covinsky, K.E. Recovery of Activities of Daily Living in Older Adults After Hospitalization for Acute Medical Illness. J. Am. Geriatr. Soc. 2008, 56, 2171–2179. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.L.; Wong, H.R. 152-Pathophysiology of Neonatal Sepsis. Fetal Neonatal Physiol. (Fifth Ed.) 2017, 2, 1536–1552.e10. [Google Scholar] [CrossRef]
- Sampson, D.; Yager, T.D.; Fox, B.; Shallcross, L.; McHugh, L.; Seldon, T.; Rapisarda, A.; Hendriks, R.A.; Brandon, R.B.; Navalkar, K.; et al. Blood transcriptomic discrimination of bacterial and viral infections in the emergency department: A multi-cohort observational validation study. BMC Med. 2020, 18, 185. [Google Scholar] [CrossRef]
- Kwizera, A.; Baelani, I.; Mer, M.; Kissoon, N.; Schultz, M.J.; Patterson, A.J.; Musa, N.; Farmer, J.C.; Dünser, M.W. The long sepsis journey in low- and middle-income countries begins with a first step...but on which road? Crit. Care 2018, 22, 64. [Google Scholar] [CrossRef]
Age Group | Author | Number of Patients (n) | Septic Group Mortality—% (Period in Days) | Admission Medium PSP Levels (ng/mL) | Cutoff Values (ng/mL) | |||
---|---|---|---|---|---|---|---|---|
Sepsis | Non sepsis | Survivor | Non Survivor | |||||
Neonates & children | Poggi et al. 2015 [51] | 40 | 21 | 1295 | 562 | - | - | 885 |
Pugni et al. 2015 [52] | 684 | - | - | 649 | - | - | - | |
Montaldo et al. 2016 [53] | 70 | 9 | 598 | 328 | - | - | 788 * | |
Korpelainen et al. 2017 [54] | 87 | 3 (in-hospital) | 1432 | - | - | - | - | |
Bellos et al. 2018 [55] | 783 | - | - | - | - | - | 650–850 ** | |
Baraka et al. 2018 [56] | 60 | - | 1014 | 178 | - | - | Multiple | |
Yoon et al. 2019 [57] | 308 | - | - | - | - | - | 650 ** | |
Puspaningtyas et al. 2023 [58] | 100 | 5,6 | 806.5 | 717 | - | - | 761 * | |
Adults | Shozushima et al. 2011 [59] | 169 | - | 817.9 | 190 | - | - | 399 |
Endo et al. 2012 [60] | 185 | - | 1579 | 312 | - | - | Multiple | |
Giavarina et al. 2015 [61] | 200 | - | 55–184 | - | - | - | - | |
Ali et al. 2016 [62] | 76 | 57.6 (28) | 1183 | 472 | 615.5 | 1301 | Multiple | |
Yu et al. 2017 [63] | 109 | 59.6 (90) | - | - | 1230.5 | 1269 | - | |
Claessens et al. 2017 [64] | 359 | - | 476 | 200 | - | - | - | |
Ikeda et al. 2019 [65] | 129 | 22.5 (28) | - | - | 3251 | 1108 | - | |
Zvyagyn et al. 2019 [66] | 41 | - | - | 1718 | 3266 | - | ||
Dragoş et al. 2023 [67] | 510 | 45 | 1039 | 372 | - | - | - | |
Old adults | Imai et al. 2019 [68] | 46 | - | 639.93 | 866.56 | - | - | 285 |
Ruangsomboon et al. 2020 [69] | 250 | 48,2 (30) | 746 | 316 | 470 | 795 | Multiple |
Aspects | Pediatric | Adult | Elderly |
---|---|---|---|
Positive | Early elevation, affordable cost, better diagnostic performance (PCT and CRP) and prognostic validity (30-day mortality), monitoring of antibiotic therapy, levels not influenced by gestational age, predictor of clinical evolution in febrile neutropenics | Better prognostic validity (PCT, CRP, ESR), correlation with hospital mortality in sepsis and septic shock, prognostic validity (28-day mortality), correlation with clinical outcomes, stable in different clinical scenarios (cirrhosis, rheumatoid arthritis, febrile neutropenia) | A better predictor of bacteremia in the Emergency Department (PCT, CRP), similar diagnostic accuracy to PCT, similar prognostic accuracy (qSOFA, SIRS) |
Negative | Poor predictor of bacterial infection (PCT), non-standardized cutoff points, inaccessible in most scenarios | Poor predictor of bacterial infection (PCT), requires adjustments when kidney function is altered | Diagnostic and prognostic accuracy lower than combination (PCT + CRP + PSP), major renal dysfunction in older adults, specific cutoff point (immunosenescence) |
Period | Authors | Studies Included (Number of Patients, n) | Main Conclusions | |
---|---|---|---|---|
Neonatal | Early-onset | Hincu et al., 2020 [20] | 28 | PSP increases in the first 24 h; not influenced by GA, postnatal age or by other perinatal factors; monitoring the response to therapy; high accuracy. |
Late-onset | Yoon et al., 2019 [57] | 4 (308) | PSP showed higher sensitivity and accuracy but relatively lower specificity for the diagnosis of pediatric sepsis than either PCT or CRP. | |
Maldeghem et al., 2019 [120] | 10 (1369) | PSP is a promising diagnostic biomarker for EOS and LOS. | ||
Adults | Wu et al., 2017 [121] | 9 (2159) | PSP is a promising marker for diagnosis of sepsis as PCT or CRP; it cannot be recommended as a single test for sepsis diagnosis. | |
Zheng et al., 2015 [122] | 8 (1757) | PSP has moderate diagnostic capacity for the detection of sepsis. | ||
Liu et al., 2016 [123] | 86 (10,438) | PSP has moderate diagnostic utility in differentiating sepsis from SIRS. | ||
Kondo et al., 2019 [124] | 19 (3012) | PSP has similar diagnostic accuracy to PCT in detecting infection, and is useful for early diagnosis of sepsis and subsequent reduction of mortality. | ||
Yang et al., 2018 [125] | 10 (1617) | PSP first day levels had prognostic value to predict mortality in adult patients with sepsis, especially in-hospital or 30-day mortality. | ||
Zhu et al., 2019 [126] | 9 (1561) | PSP is a promising biomarker for the prognosis of mortality in sepsis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Moura, E.L.B.; Pereira, R.W. Crossing Age Boundaries: The Unifying Potential of Presepsin in Sepsis Diagnosis Across Diverse Age Groups. J. Clin. Med. 2024, 13, 7038. https://doi.org/10.3390/jcm13237038
de Moura ELB, Pereira RW. Crossing Age Boundaries: The Unifying Potential of Presepsin in Sepsis Diagnosis Across Diverse Age Groups. Journal of Clinical Medicine. 2024; 13(23):7038. https://doi.org/10.3390/jcm13237038
Chicago/Turabian Stylede Moura, Edmilson Leal Bastos, and Rinaldo Wellerson Pereira. 2024. "Crossing Age Boundaries: The Unifying Potential of Presepsin in Sepsis Diagnosis Across Diverse Age Groups" Journal of Clinical Medicine 13, no. 23: 7038. https://doi.org/10.3390/jcm13237038
APA Stylede Moura, E. L. B., & Pereira, R. W. (2024). Crossing Age Boundaries: The Unifying Potential of Presepsin in Sepsis Diagnosis Across Diverse Age Groups. Journal of Clinical Medicine, 13(23), 7038. https://doi.org/10.3390/jcm13237038