Orthobiologic Products: Preservation Options for Orthopedic Research and Clinical Applications
Abstract
1. Introduction
2. Preservation Techniques
2.1. Cryopreservation
2.2. Vitrification
2.3. Lyophilization
2.4. Cryoprotective Agents
3. Individual Cell Therapy Preservation
3.1. PRP
3.2. Mesenchymal Stem Cells (MSCs)/Stromal Cells/Progenitor Cells
4. Bone Marrow Stem/Stromal Cells (BMSCs)
5. Adipose Stem/Stromal Cells/Progenitor Cells (ASCs)
6. Gestational Tissue
7. Extracellular Vesicles/EVs
8. Discussion
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- McIntyre, J.A.; Jones, I.A.; Han, B.; Vangsness, C.T., Jr. Intra-articular mesenchymal stem cell therapy for the human joint: A systematic review. Am. J. Sports Med. 2018, 46, 3550–3563. [Google Scholar] [CrossRef] [PubMed]
- Sallent, I.; Capella-Monsonís, H.; Procter, P.; Bozo, I.Y.; Deev, R.V.; Zubov, D.; Vasyliev, R.; Perale, G.; Pertici, G.; Baker, J. The few who made it: Commercially and clinically successful innovative bone grafts. Front. Bioeng. Biotechnol. 2020, 8, 952. [Google Scholar] [CrossRef] [PubMed]
- Liddle, A.D.; Rodríguez-Merchán, E.C. Platelet-rich plasma in the treatment of patellar tendinopathy: A systematic review. Am. J. Sports Med. 2015, 43, 2583–2590. [Google Scholar] [CrossRef] [PubMed]
- Ho-Shui-Ling, A.; Bolander, J.; Rustom, L.E.; Johnson, A.W.; Luyten, F.P.; Picart, C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 2018, 180, 143–162. [Google Scholar] [CrossRef]
- Mavrogenis, A.F.; Karampikas, V.; Zikopoulos, A.; Sioutis, S.; Mastrokalos, D.; Koulalis, D.; Scarlat, M.M.; Hernigou, P. Orthobiologics: A review. Int. Orthop. 2023, 47, 1645–1662. [Google Scholar] [CrossRef]
- Perucca Orfei, C.; Boffa, A.; Sourugeon, Y.; Laver, L.; Magalon, J.; Sánchez, M.; Tischer, T.; Filardo, G.; de Girolamo, L. Cell-based therapies have disease-modifying effects on osteoarthritis in animal models. A systematic review by the ESSKA Orthobiologic Initiative. Part 1: Adipose tissue-derived cell-based injectable therapies. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 641–655. [Google Scholar] [CrossRef]
- Deinsberger, J.; Reisinger, D.; Weber, B. Global trends in clinical trials involving pluripotent stem cells: A systematic multi-database analysis. NPJ Regen. Med. 2020, 5, 15. [Google Scholar] [CrossRef]
- Manner, P.A.; Goodman, S.B. The Current Use of Biologics and Cellular Therapies in Orthopaedics: Are We Going Down the Right Path? Clin. Orthop. Relat. Res. 2020, 478, 1–3. [Google Scholar] [CrossRef]
- Wood, L. Global Stem Cell Therapy Market Report 2021–2030: Allogeneic Stem Cell & Therapy Autologous Stem Cell Therapy/Adult Stem Cells, Induced Pluripotent Stem Cells, & Embryonic Stem Cells. Available online: https://markets.businessinsider.com/news/stocks/global-stem-cell-therapy-market-report-2021-2030-allogeneic-stem-cell-therapy-autologous-stem-cell-therapy-adult-stem-cells-induced-pluripotent-stem-cells-embryonic-stem-cells-1030446715 (accessed on 28 March 2023).
- Weng, Z.; Wang, Y.; Ouchi, T.; Liu, H.; Qiao, X.; Wu, C.; Zhao, Z.; Li, L.; Li, B. Mesenchymal stem/stromal cell senescence: Hallmarks, mechanisms, and combating strategies. Stem Cells Transl. Med. 2022, 11, 356–371. [Google Scholar] [CrossRef]
- Erol, O.D.; Pervin, B.; Seker, M.E.; Aerts-Kaya, F. Effects of storage media, supplements and cryopreservation methods on quality of stem cells. World J. Stem Cells 2021, 13, 1197. [Google Scholar] [CrossRef]
- Whaley, D.; Damyar, K.; Witek, R.P.; Mendoza, A.; Alexander, M.; Lakey, J.R. Cryopreservation: An overview of principles and cell-specific considerations. Cell Transplant. 2021, 30, 0963689721999617. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.A.; Gibson, M.I. Chemical approaches to cryopreservation. Nat. Rev. Chem. 2022, 6, 579–593. [Google Scholar] [CrossRef] [PubMed]
- Shu, Z.; Kang, X.; Chen, H.; Zhou, X.; Purtteman, J.; Yadock, D.; Heimfeld, S.; Gao, D. Development of a reliable low-cost controlled cooling rate instrument for the cryopreservation of hematopoietic stem cells. Cytotherapy 2010, 12, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Balint, B.; Paunovic, D.; Vucetic, D.; Vojvodic, D.; Petakov, M.; Trkuljic, M.; Stojanovic, N. Controlled-rate versus uncontrolled-rate freezing as predictors for platelet cryopreservation efficacy. Transfusion 2006, 46, 230–235. [Google Scholar] [CrossRef]
- Amini, M.; Benson, J.D. Technologies for vitrification based cryopreservation. Bioengineering 2023, 10, 508. [Google Scholar] [CrossRef]
- De Munck, N.; Vajta, G. Safety and efficiency of oocyte vitrification. Cryobiology 2017, 78, 119–127. [Google Scholar] [CrossRef]
- Boafo, G.F.; Magar, K.T.; Ekpo, M.D.; Qian, W.; Tan, S.; Chen, C. The role of cryoprotective agents in liposome stabilization and preservation. Int. J. Mol. Sci. 2022, 23, 12487. [Google Scholar] [CrossRef]
- Mirasol, F. Lyophilization presents complex challenges. BioPharm Int. 2020, 33, 22–24. [Google Scholar]
- Balasubramanian, S.K.; Wolkers, W.F.; Bischof, J.C. Membrane hydration correlates to cellular biophysics during freezing in mammalian cells. Biochim. Biophys. Acta (BBA)-Biomembr. 2009, 1788, 945–953. [Google Scholar] [CrossRef]
- Wolstenholme, G.; O’Connor, M. Interactions of cooling rate warming rate and protective additive on the survival of frozen mammalian cells. In Ciba Foundation Symposium-The Frozen Cell; J. & A. Churchill: London, UK, 1970; pp. 69–88. [Google Scholar]
- Hunt, C.J. Technical considerations in the freezing, low-temperature storage and thawing of stem cells for cellular therapies. Transfus. Med. Hemotherapy 2019, 46, 134–150. [Google Scholar] [CrossRef]
- Elliott, G.D.; Wang, S.; Fuller, B.J. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 2017, 76, 74–91. [Google Scholar] [CrossRef] [PubMed]
- Dluska, E.; Metera, A.; Markowska-Radomska, A.; Tudek, B. Effective cryopreservation and recovery of living cells encapsulated in multiple emulsions. Biopreserv. Biobank. 2019, 17, 468–476. [Google Scholar] [CrossRef] [PubMed]
- McGann, L.E. Differing actions of penetrating and nonpenetrating cryoprotective agents. Cryobiology 1978, 15, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Jang, T.H.; Park, S.C.; Yang, J.H.; Kim, J.Y.; Seok, J.H.; Park, U.S.; Choi, C.W.; Lee, S.R.; Han, J. Cryopreservation and its clinical applications. Integr. Med. Res. 2017, 6, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Bartolac, L.K.; Lowe, J.L.; Koustas, G.; Grupen, C.G.; Sjöblom, C. Effect of different penetrating and non-penetrating cryoprotectants and media temperature on the cryosurvival of vitrified in vitro produced porcine blastocysts. Anim. Sci. J. 2018, 89, 1230–1239. [Google Scholar] [CrossRef]
- Hornberger, K.; Yu, G.; McKenna, D.; Hubel, A. Cryopreservation of hematopoietic stem cells: Emerging assays, cryoprotectant agents, and technology to improve outcomes. Transfus. Med. Hemother. 2019, 46, 188–196. [Google Scholar] [CrossRef]
- Porterfield, J.; Ashwood-Smith, M. Preservation of Cells in Tissue Culture: Preservation of Cells in Tissue Culture by Glycerol and Dimethyl Sulphoxide. Nature 1962, 193, 548–550. [Google Scholar] [CrossRef]
- Bender, M.; Tran, P.T.; Smith, L. Preservation of viable bone marrow cells by freezing. J. Appl. Physiol. 1960, 15, 520–524. [Google Scholar] [CrossRef]
- Pal, R.; Mamidi, M.K.; Das, A.K.; Bhonde, R. Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human embryonic stem cells. Arch. Toxicol. 2012, 86, 651–661. [Google Scholar] [CrossRef]
- Aita, K.; Irie, H.; Tanuma, Y.; Toida, S.; Okuma, Y.; Mori, S.; Shiga, J. Apoptosis in murine lymphoid organs following intraperitoneal administration of dimethyl sulfoxide (DMSO). Exp. Mol. Pathol. 2005, 79, 265–271. [Google Scholar] [CrossRef]
- David, N.A. The pharmacology of dimethyl sulfoxide. Annu. Rev. Pharmacol. 1972, 12, 353–374. [Google Scholar] [CrossRef] [PubMed]
- Santos, N.C.; Figueira-Coelho, J.; Martins-Silva, J.; Saldanha, C. Multidisciplinary utilization of dimethyl sulfoxide: Pharmacological, cellular, and molecular aspects. Biochem. Pharmacol. 2003, 65, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Shu, Z.; Heimfeld, S.; Gao, D. Hematopoietic SCT with cryopreserved grafts: Adverse reactions after transplantation and cryoprotectant removal before infusion. Bone Marrow Transplant. 2014, 49, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Awan, M.; Buriak, I.; Fleck, R.; Fuller, B.; Goltsev, A.; Kerby, J.; Lowdell, M.; Mericka, P.; Petrenko, A.; Petrenko, Y. Dimethyl sulfoxide: A central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regen. Med. 2020, 15, 1463–1491. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Title 21: Food and Drugs; PART 640—Additional Standards for Human Blood and Blood Products; Subpart D—Plasma. Electronic Code of Federal Regulations Web Site. Available online: https://www.ecfr.gov/cgi-bin/text-idx?SID=a9af1dccaf1136f06348fb8a753290ff&mc=true&node=se21.7.640_134&rgn=div8 (accessed on 1 April 2020).
- Kobayashi, Y.; Saita, Y.; Nishio, H.; Ikeda, H.; Takazawa, Y.; Nagao, M.; Takaku, T.; Komatsu, N.; Kaneko, K. Leukocyte concentration and composition in platelet-rich plasma (PRP) influences the growth factor and protease concentrations. J. Orthop. Sci. 2016, 21, 683–689. [Google Scholar] [CrossRef]
- Everts, P.A.; van Erp, A.; DeSimone, A.; Cohen, D.S.; Gardner, R.D. Platelet Rich Plasma in Orthopedic Surgical Medicine. Platelets 2021, 32, 163–174. [Google Scholar] [CrossRef]
- Valeri, C.; Feingold, H.; Marchionni, L. A simple method for freezing human platelets using 6% dimethylsulfoxide and storage at −80 °C. Blood 1974, 43, 131–136. [Google Scholar] [CrossRef]
- Dang, E.; Chen, Y.; Wang, W.; Zhang, L.; An, N.; Yin, W.; Yi, J.; Chen, Y. A comparative study of platelet storage lesion in platelet-rich plasma under cryopreservation. Ann. Hematol. 2024, 103, 631–643. [Google Scholar] [CrossRef]
- Melaragno, A.; Carciero, R.; Feingold, H.; Talarico, L.; Weintraub, L.; Valeri, C. Cryopreservation of Human Platelets Using 6% Dimethyl Sulfoxide and Storage at−80°: Effects of 2 Years of Frozen Storage at −80 °C and Transportation in Dry Ice 1. Vox Sang. 1985, 49, 245–258. [Google Scholar] [CrossRef]
- Daly, P.A.; Schiffer, C.A.; Aisner, J.; Wiernik, P.H. Successful transfusion of platelets cryopreserved for more than 3 years. Blood 1979, 54, 1023–1027. [Google Scholar] [CrossRef]
- do Amaral Kwirant, L.A.; De La Corte, F.D.; Cantarelli, C.; Cargnelutti, J.F.; Martins, M.; Cabral, M.W.; Maciel, N.; Rubin, M.I.B. Cooling and cryopreservation of equine platelet-rich plasma with dimethyl sulfoxide and trehalose. J. Equine Vet. Sci. 2019, 72, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Wolkers, W.F.; Walker, N.J.; Tablin, F.; Crowe, J.H. Human platelets loaded with trehalose survive freeze-drying. Cryobiology 2001, 42, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Shiga, Y.; Kubota, G.; Orita, S.; Inage, K.; Kamoda, H.; Yamashita, M.; Iseki, T.; Ito, M.; Yamauchi, K.; Eguchi, Y. Freeze-dried human platelet-rich plasma retains activation and growth factor expression after an eight-week preservation period. Asian Spine J. 2017, 11, 329. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.Q.; Montalvão, S.A.d.L.; Justo-Junior, A.d.S.; Cunha Júnior, J.L.R.; Huber, S.C.; Oliveira, C.C.; Annichino-Bizzacchi, J.M. Platelet-rich plasma lyophilization enables growth factor preservation and functionality when compared with fresh platelet-rich plasma. Regen. Med. 2018, 13, 775–784. [Google Scholar] [CrossRef]
- Roffi, A.; Filardo, G.; Assirelli, E.; Cavallo, C.; Cenacchi, A.; Facchini, A.; Grigolo, B.; Kon, E.; Mariani, E.; Pratelli, L. Does platelet-rich plasma freeze-thawing influence growth factor release and their effects on chondrocytes and synoviocytes? BioMed Res. Int. 2014, 2014, 692913. [Google Scholar] [CrossRef]
- Chahla, J.; Cinque, M.E.; Piuzzi, N.S.; Mannava, S.; Geeslin, A.G.; Murray, I.R.; Dornan, G.J.; Muschler, G.F.; LaPrade, R.F. A call for standardization in platelet-rich plasma preparation protocols and composition reporting: A systematic review of the clinical orthopaedic literature. JBJS 2017, 99, 1769–1779. [Google Scholar] [CrossRef]
- Andia, I.; Perez-Valle, A.; Del Amo, C.; Maffulli, N. Freeze-drying of platelet-rich plasma: The quest for standardization. Int. J. Mol. Sci. 2020, 21, 6904. [Google Scholar] [CrossRef]
- Bakaltcheva, I.; O’Sullivan, A.M.; Hmel, P.; Ogbu, H. Freeze-dried whole plasma: Evaluating sucrose, trehalose, sorbitol, mannitol and glycine as stabilizers. Thromb. Res. 2007, 120, 105–116. [Google Scholar] [CrossRef]
- Caplan, A.I. Mesenchymal stem cells. J. Orthop. Res. 1991, 9, 641–650. [Google Scholar] [CrossRef]
- Ma, S.; Xie, N.; Li, W.; Yuan, B.; Shi, Y.; Wang, Y. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014, 21, 216–225. [Google Scholar] [CrossRef]
- Ankrum, J.A.; Ong, J.F.; Karp, J.M. Mesenchymal stem cells: Immune evasive, not immune privileged. Nat. Biotechnol. 2014, 32, 252. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Vangsness, C.T., Jr. Governmental Regulations and Increasing FDA Oversight of Regenerative Medicine Products: What’s New in 2020? Arthrosc. J. Arthrosc. Relat. Surg. 2020, 36, 2765–2770. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, S.; Shi, Y.; Galipeau, J.; Krampera, M.; Leblanc, K.; Martin, I.; Nolta, J.; Phinney, D.; Sensebe, L. Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy 2019, 21, 1019–1024. [Google Scholar] [PubMed]
- Jones, I.A.; Chen, X.; Evseenko, D.; Vangsness, C.T., Jr. Nomenclature inconsistency and selective outcome reporting hinder understanding of stem cell therapy for the knee. JBJS 2019, 101, 186–195. [Google Scholar] [CrossRef]
- ROWLEY, S.D. Hematopoietic stem cell cryopreservation: A review of current techniques. J. Hematother. 1992, 1, 233–250. [Google Scholar] [CrossRef]
- Perez-Oteyza, J.; Bornstein, R.; Corral, M.; Hermosa, V.; Alegre, A.; Torrabadella, M.; Ramos, P.; Garcia, J.; Odriozola, J.; Navarro, J.L. Controlled-rate versus uncontrolled-rate cryopreservation of peripheral blood progenitor cells: A prospective multicenter study. Group for Cryobiology and Biology of Bone Marrow Transplantation (CBTMO), Spain. Haematologica 1998, 83, 1001–1005. [Google Scholar]
- Detry, G.; Calvet, L.; Straetmans, N.; Cabrespine, A.; Ravoet, C.; Bay, J.; Petre, H.; Paillard, C.; Husson, B.; Merlin, E. Impact of uncontrolled freezing and long-term storage of peripheral blood stem cells at −80 C on haematopoietic recovery after autologous transplantation. Report from two centres. Bone Marrow Transplant. 2014, 49, 780–785. [Google Scholar] [CrossRef]
- Montanari, M.; Capelli, D.; Poloni, A.; Massidda, D.; Brunori, M.; Spitaleri, L.; Offidani, M.; Lucesole, M.; Masia, M.C.; Balducci, F. Long-term hematologic reconstitution after autologous peripheral blood progenitor cell transplantation: A comparison between controlled-rate freezing and uncontrolled-rate freezing at 80 °C. Transfusion 2003, 43, 42–49. [Google Scholar] [CrossRef]
- Areman, E.; Sacher, R.; Deeg, H. Processing and storage of human bone marrow: A survey of current practices in North America. Bone Marrow Transplant. 1990, 6, 203–209. [Google Scholar]
- Liu, Y.; Xu, X.; Ma, X.; Martin-Rendon, E.; Watt, S.; Cui, Z. Cryopreservation of human bone marrow-derived mesenchymal stem cells with reduced dimethylsulfoxide and well-defined freezing solutions. Biotechnol. Prog. 2010, 26, 1635–1643. [Google Scholar] [CrossRef]
- Ginis, I.; Grinblat, B.; Shirvan, M.H. Evaluation of bone marrow-derived mesenchymal stem cells after cryopreservation and hypothermic storage in clinically safe medium. Tissue Eng. Part C Methods 2012, 18, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Windrum, P.; Morris, T.; Drake, M.; Niederwieser, D.; Ruutu, T. Variation in dimethyl sulfoxide use in stem cell transplantation: A survey of EBMT centres. Bone Marrow Transplant. 2005, 36, 601–603. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Q3C Tables and List Rev. 4. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/q3c-tables-and-list-rev-4 (accessed on 17 July 2020).
- Junior, A.; Arrais, C.; Saboya, R.; Velasques, R.; Junqueira, P.; Dulley, F. Neurotoxicity associated with dimethylsulfoxide-preserved hematopoietic progenitor cell infusion. Bone Marrow Transplant. 2008, 41, 95–96. [Google Scholar] [CrossRef] [PubMed]
- Bauwens, D.; Hantson, P.; Laterre, P.-F.; Michaux, L.; Latinne, D.; De Tourtchaninoff, M.; Cosnard, G.; Hernalsteen, D. Recurrent seizure and sustained encephalopathy associated with dimethylsulfoxide-preserved stem cell infusion. Leuk. Lymphoma 2005, 46, 1671–1674. [Google Scholar] [CrossRef] [PubMed]
- Hoyt, R.; Szer, J.; Grigg, A. Neurological events associated with the infusion of cryopreserved bone marrow and/or peripheral blood progenitor cells. Bone Marrow Transplant. 2000, 25, 1285–1287. [Google Scholar] [CrossRef]
- Morris, C.; De Wreede, L.; Scholten, M.; Brand, R.; Van Biezen, A.; Sureda, A.; Dickmeiss, E.; Trneny, M.; Apperley, J.; Chiusolo, P. Should the standard dimethyl sulfoxide concentration be reduced? Results of a E uropean G roup for B lood and M arrow T ransplantation prospective noninterventional study on usage and side effects of dimethyl sulfoxide. Transfusion 2014, 54, 2514–2522. [Google Scholar] [CrossRef]
- Valencia, J.; Blanco, B.; Yáñez, R.; Vázquez, M.; Sánchez, C.H.; Fernández-García, M.; Serrano, C.R.; Pescador, D.; Blanco, J.F.; Hernando-Rodríguez, M. Comparative analysis of the immunomodulatory capacities of human bone marrow–and adipose tissue–derived mesenchymal stromal cells from the same donor. Cytotherapy 2016, 18, 1297–1311. [Google Scholar] [CrossRef]
- Oberbauer, E.; Steffenhagen, C.; Wurzer, C.; Gabriel, C.; Redl, H.; Wolbank, S. Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: Current state of the art. Cell Regen. 2015, 4, 7. [Google Scholar] [CrossRef]
- Aronowitz, J.A.; Lockhart, R.A.; Hakakian, C.S. Mechanical versus enzymatic isolation of stromal vascular fraction cells from adipose tissue. Springerplus 2015, 4, 713. [Google Scholar] [CrossRef]
- Minonzio, G.; Corazza, M.; Mariotta, L.; Gola, M.; Zanzi, M.; Gandolfi, E.; De Fazio, D.; Soldati, G. Frozen adipose-derived mesenchymal stem cells maintain high capability to grow and differentiate. Cryobiology 2014, 69, 211–216. [Google Scholar] [CrossRef]
- Yong, K.W.; Pingguan-Murphy, B.; Xu, F.; Abas, W.A.B.W.; Choi, J.R.; Omar, S.Z.; Azmi, M.A.N.; Chua, K.H.; Safwani, W.K.Z.W. Phenotypic and functional characterization of long-term cryopreserved human adipose-derived stem cells. Sci. Rep. 2015, 5, 9596. [Google Scholar] [CrossRef] [PubMed]
- Bogdanova, A.; Berzins, U.; Nikulshin, S.; Skrastina, D.; Ezerta, A.; Legzdina, D.; Kozlovska, T. Characterization of human adipose-derived stem cells cultured in autologous serum after subsequent passaging and long term cryopreservation. J. Stem Cells 2014, 9, 135. [Google Scholar] [PubMed]
- Shaik, S.; Wu, X.; Gimble, J.; Devireddy, R. Effects of decade long freezing storage on adipose derived stem cells functionality. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pogozhykh, O.; Prokopyuk, V.; Figueiredo, C.; Pogozhykh, D. Placenta and placental derivatives in regenerative therapies: Experimental studies, history, and prospects. Stem Cells Int. 2018, 2018, 4837930. [Google Scholar] [CrossRef]
- Flores-Guzmán, P.; Fernández-Sánchez, V.; Mayani, H. Concise review: Ex vivo expansion of cord blood-derived hematopoietic stem and progenitor cells: Basic principles, experimental approaches, and impact in regenerative medicine. Stem Cells Transl. Med. 2013, 2, 830–838. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Cord Blood: What You Need to Know. Available online: https://www.fda.gov/vaccines-blood-biologics/consumers-biologics/cord-blood-banking-information-consumers (accessed on 31 October 2024).
- Dessels, C.; Alessandrini, M.; Pepper, M.S. Factors influencing the umbilical cord blood stem cell industry: An evolving treatment landscape. Stem Cells Transl. Med. 2018, 7, 643–650. [Google Scholar] [CrossRef]
- Berz, D.; McCormack, E.M.; Winer, E.S.; Colvin, G.A.; Quesenberry, P.J. Cryopreservation of hematopoietic stem cells. Am. J. Hematol. 2007, 82, 463–472. [Google Scholar] [CrossRef]
- Kobylka, P.; Ivanyi, P.; Breur-Vriesendorp, B.S. Preservation of immunological and colony-forming capacities of long-term (15 years) cryopreserved cord blood cells1. Transplantation 1998, 65, 1275–1278. [Google Scholar] [CrossRef]
- Chen, G.; Yue, A.; Ruan, Z.; Yin, Y.; Wang, R.; Ren, Y.; Zhu, L. Comparison of the effects of different cryoprotectants on stem cells from umbilical cord blood. Stem Cells Int. 2016, 2016, 1396783. [Google Scholar] [CrossRef]
- Raffo, D.; Perez Tito, L.; Pes, M.E.; Fernandez Sasso, D. Evaluation of DMSO dextrose as a suitable alternative for DMSO dextran in cord blood cryopreservation. Vox Sang. 2019, 114, 283–289. [Google Scholar] [CrossRef]
- Lapierre, V.; Pellegrini, N.; Bardey, I.; Malugani, C.; Saas, P.; Garnache, F.; Racadot, E.; Maddens, S.; Schillinger, F. Cord blood volume reduction using an automated system (Sepax) vs. a semi-automated system (Optipress II) and a manual method (hydroxyethyl starch sedimentation) for routine cord blood banking: A comparative study. Cytotherapy 2007, 9, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Nikiforow, S.; Li, S.; Snow, K.; Liney, D.; Kao, G.S.-H.; Haspel, R.; Shpall, E.J.; Glotzbecker, B.; Sica, R.A.; Armand, P. Lack of impact of umbilical cord blood unit processing techniques on clinical outcomes in adult double cord blood transplant recipients. Cytotherapy 2017, 19, 272–284. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, J.A.; Jones, I.A.; Danilkovich, A.; Vangsness, C.T., Jr. The placenta: Applications in orthopaedic sports medicine. Am. J. Sports Med. 2018, 46, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Pelekanos, R.A.; Sardesai, V.S.; Futrega, K.; Lott, W.B.; Kuhn, M.; Doran, M.R. Isolation and expansion of mesenchymal stem/stromal cells derived from human placenta tissue. JoVE (J. Vis. Exp.) 2016, 112, e54204. [Google Scholar]
- Brigido, S.A.; Carrington, S.C.; Protzman, N.M. The use of decellularized human placenta in full-thickness wound repair and periarticular soft tissue reconstruction: An update on regenerative healing. Clin. Podiatr. Med. Surg. 2018, 35, 95–104. [Google Scholar] [CrossRef]
- Cooke, M.; Tan, E.; Mandrycky, C.; He, H.; O’Connell, J.; Tseng, S. Comparison of cryopreserved amniotic membrane and umbilical cord tissue with dehydrated amniotic membrane/chorion tissue. J. Wound Care 2014, 23, 465–476. [Google Scholar] [CrossRef]
- Gibbons, G.W. Grafix®, a cryopreserved placental membrane, for the treatment of chronic/stalled wounds. Adv. Wound Care 2015, 4, 534–544. [Google Scholar] [CrossRef]
- Duan-Arnold, Y.; Gyurdieva, A.; Johnson, A.; Uveges, T.E.; Jacobstein, D.A.; Danilkovitch, A. Retention of endogenous viable cells enhances the anti-inflammatory activity of cryopreserved amnion. Adv. Wound Care 2015, 4, 523–533. [Google Scholar] [CrossRef]
- Mori, Y.; Ohshimo, J.; Shimazu, T.; He, H.; Takahashi, A.; Yamamoto, Y.; Tsunoda, H.; Tojo, A.; Nagamura-Inoue, T. Improved explant method to isolate umbilical cord-derived mesenchymal stem cells and their immunosuppressive properties. Tissue Eng. Part C Methods 2015, 21, 367–372. [Google Scholar] [CrossRef]
- Vellasamy, S.; Sandrasaigaran, P.; Vidyadaran, S.; George, E.; Ramasamy, R. Isolation and characterisation of mesenchymal stem cells derived from human placenta tissue. World J. Stem Cells 2012, 4, 53. [Google Scholar] [CrossRef]
- Yoon, J.H.; Roh, E.Y.; Shin, S.; Jung, N.H.; Song, E.Y.; Chang, J.Y.; Kim, B.J.; Jeon, H.W. Comparison of explant-derived and enzymatic digestion-derived MSCs and the growth factors from Wharton’s jelly. BioMed Res. Int. 2013, 2013, 428726. [Google Scholar] [CrossRef] [PubMed]
- Chatzistamatiou, T.K.; Papassavas, A.C.; Michalopoulos, E.; Gamaloutsos, C.; Mallis, P.; Gontika, I.; Panagouli, E.; Koussoulakos, S.L.; Stavropoulos-Giokas, C. Optimizing isolation culture and freezing methods to preserve W harton’s jelly’s mesenchymal stem cell (MSC) properties: An MSC banking protocol validation for the H ellenic C ord B lood B ank. Transfusion 2014, 54, 3108–3120. [Google Scholar] [CrossRef] [PubMed]
- Badowski, M.; Muise, A.; Harris, D.T. Mixed effects of long-term frozen storage on cord tissue stem cells. Cytotherapy 2014, 16, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Raposo, G.; Stahl, P.D. Extracellular vesicles: A new communication paradigm? Nat. Rev. Mol. Cell Biol. 2019, 20, 509–510. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef]
- Yáñez-Mó, M.; Siljander, P.R.-M.; Andreu, Z.; Bedina Zavec, A.; Borràs, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 2015, 4, 27066. [Google Scholar] [CrossRef]
- Smith, Z.J.; Lee, C.; Rojalin, T.; Carney, R.P.; Hazari, S.; Knudson, A.; Lam, K.; Saari, H.; Ibañez, E.L.; Viitala, T. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. J. Extracell. Vesicles 2015, 4, 28533. [Google Scholar] [CrossRef]
- L Isola, A.; Chen, S. Exosomes: The messengers of health and disease. Curr. Neuropharmacol. 2017, 15, 157–165. [Google Scholar] [CrossRef]
- Li, P.; Kaslan, M.; Lee, S.H.; Yao, J.; Gao, Z. Progress in exosome isolation techniques. Theranostics 2017, 7, 789. [Google Scholar] [CrossRef]
- Greening, D.W.; Xu, R.; Ji, H.; Tauro, B.J.; Simpson, R.J. A protocol for exosome isolation and characterization: Evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. In Proteomic Profiling; Springer: Berlin/Heidelberg, Germany, 2015; pp. 179–209. [Google Scholar]
- Bosch, S.; De Beaurepaire, L.; Allard, M.; Mosser, M.; Heichette, C.; Chrétien, D.; Jegou, D.; Bach, J.-M. Trehalose prevents aggregation of exosomes and cryodamage. Sci. Rep. 2016, 6, 36162. [Google Scholar] [CrossRef]
- Lee, M.; Ban, J.-J.; Im, W.; Kim, M. Influence of storage condition on exosome recovery. Biotechnol. Bioprocess Eng. 2016, 21, 299–304. [Google Scholar] [CrossRef]
- Cheng, Y.; Zeng, Q.; Han, Q.; Xia, W. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes. Protein Cell 2019, 10, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Maroto, R.; Zhao, Y.; Jamaluddin, M.; Popov, V.L.; Wang, H.; Kalubowilage, M.; Zhang, Y.; Luisi, J.; Sun, H.; Culbertson, C.T. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. J. Extracell. Vesicles 2017, 6, 1359478. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Han, D.; Cai, C.; Tang, X. An overview of liposome lyophilization and its future potential. J. Control. Release 2010, 142, 299–311. [Google Scholar] [CrossRef]
- Charoenviriyakul, C.; Takahashi, Y.; Nishikawa, M.; Takakura, Y. Preservation of exosomes at room temperature using lyophilization. Int. J. Pharm. 2018, 553, 1–7. [Google Scholar] [CrossRef]
- Frank, J.; Richter, M.; de Rossi, C.; Lehr, C.-M.; Fuhrmann, K.; Fuhrmann, G. Extracellular vesicles protect glucuronidase model enzymes during freeze-drying. Sci. Rep. 2018, 8, 12377. [Google Scholar] [CrossRef]
- Chahla, J.; Mannava, S.; Cinque, M.E.; Geeslin, A.G.; Codina, D.; LaPrade, R.F. Bone marrow aspirate concentrate harvesting and processing technique. Arthrosc. Tech. 2017, 6, e441–e445. [Google Scholar] [CrossRef]
- Condé-Green, A.; de Amorim, N.F.G.; Pitanguy, I. Influence of decantation, washing and centrifugation on adipocyte and mesenchymal stem cell content of aspirated adipose tissue: A comparative study. J. Plast. Reconstr. Aesthetic Surg. 2010, 63, 1375–1381. [Google Scholar] [CrossRef]
- Morgenstern, D.A.; Ahsan, G.; Brocklesby, M.; Ings, S.; Balsa, C.; Veys, P.; Brock, P.; Anderson, J.; Amrolia, P.; Goulden, N. Post-thaw viability of cryopreserved peripheral blood stem cells (PBSC) does not guarantee functional activity: Important implications for quality assurance of stem cell transplant programmes. Br. J. Haematol. 2016, 174, 942–951. [Google Scholar] [CrossRef]
- Murray, K.A.; Gibson, M.I. Post-Thaw culture and measurement of total cell recovery is crucial in the evaluation of new macromolecular cryoprotectants. Biomacromolecules 2020, 21, 2864–2873. [Google Scholar] [CrossRef]
- Galipeau, J.; Krampera, M.; Barrett, J.; Dazzi, F.; Deans, R.J.; DeBruijn, J.; Dominici, M.; Fibbe, W.E.; Gee, A.P.; Gimble, J.M. International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy 2016, 18, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento, M.; Ramirez, P.; Parody, R.; Salas, M.; Beffermann, N.; Jara, V.; Bertín, P.; Pizarro, I.; Lorca, C.; Rivera, E. Advantages of non-cryopreserved autologous hematopoietic stem cell transplantation against a cryopreserved strategy. Bone Marrow Transplant. 2018, 53, 960–966. [Google Scholar] [CrossRef] [PubMed]
- Meric, N.; Parmaksız, A.; Gulbas, Z. Patients experienced serious adverse reactions within one hour of hematopoietic stem-cell infusion. Transfus. Clin. Biol. 2023, 30, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Pollock, K.; Samsonraj, R.M.; Dudakovic, A.; Thaler, R.; Stumbras, A.; McKenna, D.H.; Dosa, P.I.; Van Wijnen, A.J.; Hubel, A. Improved post-thaw function and epigenetic changes in mesenchymal stromal cells cryopreserved using multicomponent osmolyte solutions. Stem Cells Dev. 2017, 26, 828–842. [Google Scholar] [CrossRef]
Freezing Method | CPA Used | Viability Assay | Results | Reference |
---|---|---|---|---|
Frozen with CPA in refrigerator maintained at −80 °C | 6% DMSO | Platelet concentration and transfusion of fresh and frozen platelets to patients | Recovery of freeze-preserved, washed platelet concentrates was 70% compared to control; Successfully stored at −80 °C for at least 6 weeks | [40] |
Frozen with CPA in a freezer bag in a refrigerator maintained at −80 °C | 6% DMSO | In vitro recovery of platelets and cultures and radioactive labeling of transfused platelets | Recovery of in vitro freeze–thaw wash recovery values of 85% In vivo recovery values of 31% 1–2 h after transfusion; Measured platelet life span was about 8 days | [42] |
Controlled-rate freezing of −1 °C/min to −80 °C vs. placing them in the vapor phase (−120 °C) of a liquid nitrogen freezer | 5% DMSO | In vitro platelet count and platelet survivability after transfusion | Recovery of frozen platelets was 46% or 11,800/microliter for frozen platelets and 25,900 for fresh platelets; Successful using these methods for greater than 3 yr with satisfactory post-transfusion increments | [43] |
PRP stored at 4 °C vs. cryopreserved PRP stored in a liquid nitrogen canister at −196 °C, both with and without cryoprotectants | 6% DMSO and 300 mM of trehalose | Platelet count, MPV determination, and TGF-β1 quantification | Recovery rate of PRP cryopreserved with DMSO was 58.08%; DMSO and trehalose failed to protect platelets against storage injuries caused by the cooling and cryopreservation processes (decreased platelet count and decreased growth factors) | [44] |
Incubated in trehalose and frozen at a rate between −5 and −2 °C/min and then lyophilized at −35 °C | 35 mM trehalose | Platelet recovery, aggregation studies, and protein structure analysis | Recovery rate of rehydrated platelets with trehalose was 85%; Reported platelets demonstrated almost identical optical density, thermotropic response of membranes, and overall protein secondary structure compared with control platelets | [45] |
Frozen and stored at −80 °C vs. freeze-dried and stored at room temperature | None | Platelet counts, growth factor content, and platelet activation rate | Recovery rate of freeze-dried PRP was 80%; Demonstrated freeze-dried preserved platelet counts and growth factor levels, while freezing only maintained the platelet counts (80%) | [46] |
Lyophilized for 20 h then stored in a −20 °C freezer | Buffer of tris, glycine, and sucrose | Analysis of platelet concentration, levels, and activities of growth factors | Recovery rates after lyophilization was 54%; Concentration of growth factors and ability to induce proliferation in fibroblasts after 24 h was similar for both lyophilized and fresh PRP | [47] |
Freezing Method | CPA Used | Viability Assay | Results | Reference |
---|---|---|---|---|
Comparison of freezing blood progenitor cells in a controlled-rate freezer vs. uncontrolled | 10% DMSO | Assessed viability, nucleated cell loss, mononuclear cell loss, loss of CD34+ cells, and recovery of colony-forming units | Viability of controlled-rate group of 88.8% compared to 89.7% uncontrolled rate No significant differences between 2 groups except for a significantly higher amount of colony-forming units in the controlled-rate technique | [59] |
3 groups: uncontrolled freeze, controlled freeze, and liquid nitrogen preservation of peripheral blood hematopoietic stem cells at −80 °C | 6% DMSO and 6% hydroxyl ethyl starch | Measured neutrophil recovery after hematopoietic recoveries following transplantation with cells | Median time required to reach 0.5 × 109/L neutrophils was 12 (1–43), 11 (7–28), and 11 (5–22) days in the groups uncontrolled, controlled, and liquid nitrogen, respectively Uncontrolled-rate freezing and cryopreservation with 5% DMSO combined with HES at − 80 °C supports hematopoietic reconstitution compared to other groups even after prolonged storage | [54] |
Comparison of controlled- vs. uncontrolled-rate freezing at −80 °C for peripheral blood hematopoietic stem cells | 10% DMSO and 2.5% albumin concentration | Cell counts, cell viability, CD34+, and CFU-GM assay | Median time required to reach 0.5 × 109/L neutrophils was 10 (range, 8–14) days in controlled and 11 (range, 7–22) days in uncontrolled Uncontrolled-rate freezing is slightly but statistically inferior to controlled rate in terms of speed of engraftment despite no differences in other variables | [55] |
Controlled-rate freezing of BM-MSCs with variable DMSO concentrations as CPA | 7.5%, 5%, and 2.5% DMSO with PEG or trehalose + albumin | Post-thaw cell viability, early apoptotic behavior, cell metabolic activities, and growth dynamics | Viability of BM-MSCs cryopreserved in controls were 82.7% (10% (v/v) DMSO), 83.8% (10% DMSO + 10% (v/v) FBS), and 90.2% (10% DMSO + 90% FBS), respectively Non-cryopreserved BM-MSCs showed a higher proliferation rate in comparison with the cryopreserved cells | [63] |
Controlled-rate freezing of BM-MSCs with variable DMSO concentrations as CPA | 10%, 5%, and 2% DMSO | Cell recovery, viability, apoptosis, proliferation rate, and expression of MSC markers | Viability of cryopreserved MSCs after 1 month with 2% DMSO was 91.7%, and viability of MSCs cryopreserved in CryoStor solutions with 5% and 10% DMSO was above 95%. Percentage of viable cells after 5 months was 72% and 80%, respectively | [64] |
Freezing Method | CPA Used | Viability Assay | Results | Reference |
---|---|---|---|---|
Stromal vascular fraction cells were frozen in a 25 mL cryobag using controlled-rate freezing and stored in liquid nitrogen | 5% DMSO and 5% albumin | Viability of adipose-derived stromal cells, cellular survival, differentiation ability, and colony-forming unit colonies | Viability of cells showed 85%, 180,890 cell/g yield, plus normal proliferative capacity and differentiation potential compared with fresh controls up to 193 days | [74] |
P2 human adipose stem cells were frozen in cryovials, kept at −80 °C overnight, and transferred to liquid nitrogen (−196 °C) for 3 months in different combinations of CPAs | (1) 0.25 M trehalose; (2) 5% DMSO; (3) 10% DMSO; (4) 5% DMSO + 20% fetal bovine serum (FBS); (5) 10% DMSO + 20% FBS; (6) 10% DMSO + 90% FBS | Measured cell viability rates, cell phenotype, and proliferation rates | Specific viability was not reported; however, 5% DMSO without FBS may be an ideal CPA for the long-term preservation of ASCs, maintaining the cell phenotype, and its functional properties, and it is less cytotoxic and leads to a high rate of cell viability; ASCs preserved in 0.25 M trehalose showed the lowest cell viability | [75] |
After 2nd passage, ASCs were frozen in an uncontrolled-rate freezer and stored in liquid nitrogen | 10% DMSO and 20% autologous serum | Surface marker expression, differentiation potential, and immunosuppressive effect in vitro | Specific viability was not reported; ASCs cultured in the medium supplemented with 5% AS were propagated through 8 passages without the loss of fibroblast-like morphology, MSC surface marker expression, differentiation, and immunomodulatory potential even after double freezing and more than 4 years of cryopreservation | [76] |
Cultured ASCs were frozen in cryovials in a rate-controlled freezer, transferred to liquid nitrogen, and stored for 10 years | 10% DMSO and FBS solution | Post-thaw viability, stromal surface markers, and qPCR analysis | Mean cell viability for the donors in the short-term group was 79%, whereas it was 78% in the long-term group; osteogenic differentiation potential was decreased in long-term cryopreserved group; post-thaw viability of ASCs also remained intact after decade-long freezing process in relation to fresh ASCs. | [77] |
Freezing Method | CPA Used | Viability Assay | Results | Reference |
---|---|---|---|---|
Exosomes were aliquoted in cooled 1.5 mL microcentrifuge tubes and stored at room temperature, 4 °C, and −70 °C for 10 days | None | Exosomal protein RNA and exosome markers were analyzed | Protein and RNA amounts were most reduced at room temperature, there was major loss of CD63, and exosomes were clumped together at −70 °C | [107] |
Exosomes were stored at different conditions, including temperatures, pH levels, and levels of freezing | None | Measured cell viability rates, cell phenotype, and proliferation rates | Levels of exosomal proteins decreased in all groups, but degradation rate at −80 °C was the lowest; however, there was decrease in the exosome concentration at all temperatures and freeze thawing affected the exosomal membrane | [108] |
Exosomes were stored for 4 days at +4 °C or −80 °C | None | Exosomal structure was assessed via protein content, dynamic light scattering, transmission electron microscopy, and charge density | Storage destabilizes the surface characteristics, morphological features, and protein content of exosomes; caused increases in diameter, significant reduction in zeta potential, and significant reduction in identifiable proteins | [109] |
Comparison between exosomes stored at −80 °C and ones lyophilized and stored at room temperature | 50 mM of trehalose | Analyzed protein and RNA contents and physicochemical and pharmacokinetic properties | Addition of trehalose reduced exosome aggregation and protected protein and RNA content post-thaw; lyophilization had little effect on pharmacokinetics after intravenous injection | [111] |
Comparison of EVs in various storage conditions, including −80 °C, 4 °C, room temperature, and freeze drying (lyophilization) | 4% trehalose | Analyzed stability and size of EVs, functionality, and protein and RNA contents | No immediate effect on size during freeze drying compared to storage at −80 °C; there was a decrease in the activity at 4 °C and −80 °C, which was less pronounced for EV samples lyophilized with 4% trehalose | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, W.H.; Vangsness, C.T., Jr. Orthobiologic Products: Preservation Options for Orthopedic Research and Clinical Applications. J. Clin. Med. 2024, 13, 6577. https://doi.org/10.3390/jcm13216577
Fang WH, Vangsness CT Jr. Orthobiologic Products: Preservation Options for Orthopedic Research and Clinical Applications. Journal of Clinical Medicine. 2024; 13(21):6577. https://doi.org/10.3390/jcm13216577
Chicago/Turabian StyleFang, William H., and C. Thomas Vangsness, Jr. 2024. "Orthobiologic Products: Preservation Options for Orthopedic Research and Clinical Applications" Journal of Clinical Medicine 13, no. 21: 6577. https://doi.org/10.3390/jcm13216577
APA StyleFang, W. H., & Vangsness, C. T., Jr. (2024). Orthobiologic Products: Preservation Options for Orthopedic Research and Clinical Applications. Journal of Clinical Medicine, 13(21), 6577. https://doi.org/10.3390/jcm13216577