Pre-Transplant Dual-Energy X-ray Absorptiometry (DXA)-Derived Body Composition Measures as Predictors of Treatment Outcomes and Early Post-Transplant Complications in Patients with Multiple Myeloma (MM) Treated with Autologous Hematopoietic Stem Cell Transplantation (AutoHSCT)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Patients Characteristics and Diagnostic Approach
3.2. DXA-Derived Body Composition Measures vs. Treatment Outcomes
3.3. DXA-Derived Body Composition Measures vs. Early Complications after autoHSCT
3.4. DXA-Derived Body Composition Measures vs. Number of AutoHSCTs
3.5. DXA-Derived Body Composition Measures vs. Selected Laboratory Parameters
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Egan, P.; Drain, S.; Conway, C.; Bjourson, A.J.; Alexander, H.D. Towards Stratified Medicine in Plasma Cell Myeloma. Int. J. Mol. Sci. 2016, 17, 1760. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kyle, R.A.; Rajkumar, S.V. Multiple myeloma. Blood 2008, 111, 2962–2972. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muchtar, E.; Dagan, A.; Robenshtok, E.; Shochat, T.; Oniashvili, N.; Amitai, I.; Raanani, P.; Magen, H. Bone mineral density utilization in patients with newly diagnosed multiple myeloma. Hematol. Oncol. 2017, 35, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Mukkamalla, S.K.R.; Malipeddi, D. Myeloma Bone Disease: A Comprehensive Review. Int. J. Mol. Sci. 2021, 22, 6208. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shah, U.A.; Mailankody, S. Emerging immunotherapies in multiple myeloma. BMJ 2020, 370, m3176. [Google Scholar] [CrossRef] [PubMed]
- Gonsalves, W.I.; Gertz, M.A.; Lacy, M.Q.; Dispenzieri, A.; Hayman, S.R.; Buadi, F.K.; Dingli, D.; Hogan, W.J.; Kumar, S.K. Second auto-SCT for treatment of relapsed multiple myeloma. Bone Marrow Transplant. 2013, 48, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.K.; Barlogie, B.; van Rhee, F.; Zangari, M.; Walker, B.A.; Rosenthal, A.; Schinke, C.; Thanendrarajan, S.; Davies, F.E.; Hoering, A.; et al. Long-term outcomes after autologous stem cell transplantation for multiple myeloma. Blood Adv. 2020, 4, 422–431. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moreau, P.; Touzeau, C. Optimizing outcomes for patients with newly diagnosed multiple myeloma eligible for transplantation. Leuk. Suppl. 2013, 2 (Suppl. 1), S15–S20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Richardson, P.G.; Jacobus, S.J.; Weller, E.A.; Hassoun, H.; Lonial, S.; Raje, N.S.; Medvedova, E.; McCarthy, P.L.; Libby, E.N.; Voorhees, P.M.; et al. Triplet Therapy, Transplantation, and Maintenance until Progression in Myeloma. N. Engl. J. Med. 2022, 387, 132–147. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rajkumar, S.V. Multiple myeloma: 2022 update on diagnosis, risk stratification, and management. Am. J. Hematol. 2022, 97, 1086–1107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haseltine, K.N.; Chukir, T.; Smith, P.J.; Jacob, J.T.; Bilezikian, J.P.; Farooki, A. Bone Mineral Density: Clinical Relevance and Quantitative Assessment. J. Nucl. Med. 2021, 62, 446–454. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tipples, K.; Robinson, A. Optimal management of cancer treatment-induced bone loss: Considerations for elderly patients. Drugs Aging 2011, 28, 867–883. [Google Scholar] [CrossRef] [PubMed]
- Laroche, M.; Lemaire, O.; Bourin, P.; Corre, J.; Gadelorge, M.; Roussel, M.; Attal, M. Dual-energy X-ray absorptiometry and biochemical markers of bone turnover after autologous stem cell transplantation in myeloma. Eur. J. Haematol. 2012, 88, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Body, J.J.; Terpos, E.; Tombal, B.; Hadji, P.; Arif, A.; Young, A.; Aapro, M.; Coleman, R. Bone health in the elderly cancer patient: A SIOG position paper. Cancer Treat. Rev. 2016, 51, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Raje, N.; Roodman, G.D. Advances in the biology and treatment of bone disease in multiple myeloma. Clin. Cancer Res. 2011, 17, 1278–1286. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Kim, M.J.; Chun, S.; Kim, D.; Lee, C.; Ahn, K.S.; Jung, E.; Kim, D.; Lee, B.C.; Hwang, D.; et al. Elucidation of molecular basis of osteolytic bone lesions in advanced multiple myeloma. Haematologica 2024, 109, 2207–2218. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roodman, G.D. Osteoblast function in myeloma. Bone 2011, 48, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Dimopoulos, M.A.; Moulopoulos, L.A. The Role of Imaging in the Treatment of Patients with Multiple Myeloma in 2016. Am. Soc. Clin. Oncol. Educ. Book 2016, 35, e407–e417. [Google Scholar] [CrossRef] [PubMed]
- Gaudio, A.; Xourafa, A.; Rapisarda, R.; Zanoli, L.; Signorelli, S.S.; Castellino, P. Hematological Diseases and Osteoporosis. Int. J. Mol. Sci. 2020, 21, 3538. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nador, G.; Ramasamy, K.; Panitsas, F.; Pratt, G.; Sadler, R.; Javaid, M.K. Testing and management for monoclonal gammopathy of uncertain significance and myeloma patients presenting with osteoporosis and fragility fractures. Rheumatology 2019, 58, 1142–1153. [Google Scholar] [CrossRef] [PubMed]
- PRISMA Guidelines [PRISMA]. PRISMA Statement. 2024. Available online: https://www.prisma-statement.org/ (accessed on 2 August 2024).
- Minetto, M.A.; Busso, C.; Lalli, P.; Gamerro, G.; Massazza, G. DXA-Derived Adiposity and Lean Indices for Management of Cardiometabolic and Musculoskeletal Frailty: Data Interpretation Tricks and Reporting Tips. Front. Rehabil. Sci. 2021, 2, 712977. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schweighofer, N.; Colantonio, C.; Haudum, C.W.; Hutz, B.; Kolesnik, E.; Mursic, I.; Pilz, S.; Schmidt, A.; Stadlbauer, V.; Zirlik, A.; et al. DXA-Derived Indices in the Characterisation of Sarcopenia. Nutrients 2021, 14, 186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mohammad, A.; Ziyab, A.H.; Mohammad, T. Anthropometric and DXA-derived measures of body composition in relation to pre-diabetes among adults. BMJ Open Diabetes Res. Care 2023, 11, e003412. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pencina, M.J.; D’agostino, R.B. Overall C as a measure of discrimination in survival analysis: Model specific population value and confidence interval estimation. Stat. Med. 2004, 23, 2109–2123. [Google Scholar] [CrossRef] [PubMed]
- Therneau, T.M. A Package for Survival Analysis in R. R Package Version 3.5-5. 2023. Available online: https://CRAN.R-project.org/package=survival (accessed on 2 October 2024).
- Bhardwaj, P.; Au, C.C.; Benito-Martin, A.; Ladumor, H.; Oshchepkova, S.; Moges, R.; Brown, K.A. Estrogens and breast cancer: Mechanisms involved in obesity-related development, growth and progression. J. Steroid Biochem. Mol. Biol. 2019, 189, 161–170. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chaves, L.G.C.M.; Gonçalves, T.J.M.; Bitencourt, A.G.V.; Rstom, R.A.; Pereira, T.R.; Velludo, S.F. Assessment of body composition by whole-body densitometry: What radiologists should know. Radiol. Bras. 2022, 55, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Ohori, K.; Yano, T.; Katano, S.; Kouzu, H.; Honma, S.; Shimomura, K.; Inoue, T.; Takamura, Y.; Nagaoka, R.; Koyama, M.; et al. High percent body fat mass predicts lower risk of cardiac events in patients with heart failure: An explanation of the obesity paradox. BMC Geriatr. 2021, 21, 16. [Google Scholar] [CrossRef]
- Srikanthan, P.; Horwich, T.B.; Calfon Press, M.; Gornbein, J.; Watson, K.E. Sex Differences in the Association of Body Composition and Cardiovascular Mortality. J. Am. Heart Assoc. 2021, 10, e017511. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- In Women, Higher Body Fat May Protect against Heart Disease Death, Study Shows. States News Service, NA, 16 March 2021. Available online: https://link.gale.com/apps/doc/A655209932/AONE?u=anon~86e4c8e4&sid=sitemap&xid=91076ea0 (accessed on 22 September 2024).
- Tonorezos, E.S.; Jones, L.W. Energy balance and metabolism after cancer treatment. Semin. Oncol. 2013, 40, 745–756. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mazza, E.; Troiano, E.; Ferro, Y.; Lisso, F.; Tosi, M.; Turco, E.; Pujia, R.; Montalcini, T. Obesity, Dietary Patterns, and Hormonal Balance Modulation: Gender-Specific Impacts. Nutrients 2024, 16, 1629. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Okuno, S. Significance of Adipose Tissue Maintenance in Patients Undergoing Hemodialysis. Nutrients 2021, 13, 1895. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, M.J. Hormonal Regulation of Adipogenesis. Compr. Physiol. 2017, 7, 1151–1195. [Google Scholar] [CrossRef] [PubMed]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. 2017, 13, 851–863. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, L.N.; Lin, Y.C.; Miaskowski, C.; Chen, S.C.; Chen, M.L. Association between changes in body fat and disease progression after breast cancer surgery is moderated by menopausal status. BMC Cancer 2017, 17, 863. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iyengar, N.M.; Arthur, R.; Manson, J.E.; Chlebowski, R.T.; Kroenke, C.H.; Peterson, L.; Cheng, T.D.; Feliciano, E.C.; Lane, D.; Luo, J.; et al. Association of Body Fat and Risk of Breast Cancer in Postmenopausal Women With Normal Body Mass Index: A Secondary Analysis of a Randomized Clinical Trial and Observational Study. JAMA Oncol. 2019, 5, 155–163. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Petrelli, F.; Cortellini, A.; Indini, A.; Tomasello, G.; Ghidini, M.; Nigro, O.; Salati, M.; Dottorini, L.; Iaculli, A.; Varricchio, A.; et al. Association of Obesity With Survival Outcomes in Patients With Cancer: A Systematic Review and Meta-analysis. JAMA Netw. Open 2021, 4, e213520. [Google Scholar] [CrossRef] [PubMed]
- Pati, S.; Irfan, W.; Jameel, A.; Ahmed, S.; Shahid, R.K. Obesity and Cancer: A Current Overview of Epidemiology, Pathogenesis, Outcomes, and Management. Cancers 2023, 15, 485. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheung, O.K.; Cheng, A.S. Gender Differences in Adipocyte Metabolism and Liver Cancer Progression. Front. Genet. 2016, 7, 168. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tardif, N.; Grip, J.; Rooyackers, O. Muscle metabolism. Curr. Opin. Crit. Care 2017, 23, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Abaza, H.; Taqash, A.; Shattal, M.A.; Abuhijla, F.; Abdel-Khaleq, H.; Awadallah, O.; Al-Jafari, K.; Al-Jafari, Z.; Al-Omari, A. Association between muscle mass and overall survival among colorectal cancer patients at tertiary cancer center in the Middle East. Sci. Rep. 2024, 14, 20836. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wiegert, E.V.M.; de Oliveira, L.C.; Calixto-Lima, L.; Borges, N.A.; Rodrigues, J.; da Mota ESilva Lopes, M.S.; Peres, W.A.F. Association between low muscle mass and survival in incurable cancer patients: A systematic review. Nutrition 2020, 72, 110695. [Google Scholar] [CrossRef] [PubMed]
- Srikanthan, P.; Horwich, T.B.; Tseng, C.H. Relation of Muscle Mass and Fat Mass to Cardiovascular Disease Mortality. Am. J. Cardiol. 2016, 117, 1355–1360. [Google Scholar] [CrossRef] [PubMed]
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.I.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol. Rev. 2019, 99, 427–511. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, J.; Wan, C.S.; Ktoris, K.; Reijnierse, E.M.; Maier, A.B. Sarcopenia Is Associated with Mortality in Adults: A Systematic Review and Meta-Analysis. Gerontology 2022, 68, 361–376. [Google Scholar] [CrossRef] [PubMed]
- Buckinx, F.; Aubertin-Leheudre, M. Sarcopenia in Menopausal Women: Current Perspectives. Int. J. Womens Health 2022, 14, 805–819. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Surov, A.; Wienke, A. Sarcopenia predicts overall survival in patients with malignant hematological diseases: A meta-analysis. Clin. Nutr. 2021, 40, 1155–1160. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, H.M.; Llaniguez, J.T.; Telemi, E.; Chuang, M.; Abouelleil, M.; Wilkinson, B.; Chandra, A.; Boyce-Fappiano, D.; Elibe, E.; Schultz, L.; et al. Sarcopenia Predicts Overall Survival in Patients with Lung, Breast, Prostate, or Myeloma Spine Metastases Undergoing Stereotactic Body Radiation Therapy (SBRT), Independent of Histology. Neurosurgery 2020, 86, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Kim, J.H. Impact of Skeletal Muscle Mass on Metabolic Health. Endocrinol. Metab. 2020, 35, 1–6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rogeri, P.S.; Gasparini, S.O.; Martins, G.L.; Costa, L.K.F.; Araujo, C.C.; Lugaresi, R.; Kopfler, M.; Lancha, A.H., Jr. Crosstalk Between Skeletal Muscle and Immune System: Which Roles Do IL-6 and Glutamine Play? Front. Physiol. 2020, 11, 582258. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weyh, C.; Krüger, K.; Strasser, B. Physical Activity and Diet Shape the Immune System during Aging. Nutrients 2020, 12, 622. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chapple, L.S.; Parry, S.M.; Schaller, S.J. Attenuating Muscle Mass Loss in Critical Illness: The Role of Nutrition and Exercise. Curr. Osteoporos. Rep. 2022, 20, 290–308. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, S.; Guo, Y.; Chen, L.; Wang, Y.; Chen, X. Clinical muscle mass-related biomarkers that predict mortality in older patients with community-acquired pneumonia. BMC Geriatr. 2022, 22, 880. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramírez-Vélez, R.; Legarra-Gorgoñon, G.; Oscoz-Ochandorena, S.; García-Alonso, Y.; García-Alonso, N.; Oteiza, J.; Ernaga Lorea, A.; Correa-Rodríguez, M.; Izquierdo, M. Reduced muscle strength in patients with long-COVID-19 syndrome is mediated by limb muscle mass. J. Appl. Physiol. 2023, 134, 50–58. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lloyd, A.R.; Hales, J.P.; Gandevia, S.C. Muscle strength, endurance and recovery in the post-infection fatigue syndrome. J. Neurol. Neurosurg. Psychiatry 1988, 51, 1316–1322. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sari, C.I.; Eikelis, N.; Head, G.A.; Schlaich, M.; Meikle, P.; Lambert, G.; Lambert, E. Android Fat Deposition and Its Association With Cardiovascular Risk Factors in Overweight Young Males. Front. Physiol. 2019, 10, 1162. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sandsdal, R.M.; Juhl, C.R.; Jensen, S.B.K.; Lundgren, J.R.; Janus, C.; Blond, M.B.; Rosenkilde, M.; Bogh, A.F.; Gliemann, L.; Jensen, J.B.; et al. Combination of exercise and GLP-1 receptor agonist treatment reduces severity of metabolic syndrome, abdominal obesity, and inflammation: A randomized controlled trial. Cardiovasc. Diabetol. 2023, 22, 41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guerreiro, V.A.; Carvalho, D.; Freitas, P. Obesity, Adipose Tissue, and Inflammation Answered in Questions. J. Obes. 2022, 2022, 2252516. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Manigrasso, M.R.; Ferroni, P.; Santilli, F.; Taraborelli, T.; Guagnano, M.T.; Michetti, N.; Davì, G. Association between circulating adiponectin and interleukin-10 levels in android obesity: Effects of weight loss. J. Clin. Endocrinol. Metab. 2005, 90, 5876–5879. [Google Scholar] [CrossRef] [PubMed]
- Rutten, E.P.; Breyer, M.K.; Spruit, M.A.; Hofstra, T.; van Melick, P.P.; Schols, A.M.; Wouters, E.F. Abdominal fat mass contributes to the systemic inflammation in chronic obstructive pulmonary disease. Clin. Nutr. 2010, 29, 756–760. [Google Scholar] [CrossRef] [PubMed]
- de Heredia, F.P.; Gómez-Martínez, S.; Marcos, A. Obesity, inflammation and the immune system. Proc. Nutr. Soc. 2012, 71, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, P.; Weiskirchen, R. The signaling pathways in obesity-related complications. J. Cell Commun. Signal 2024, 18, e12039. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jung, U.J.; Choi, M.S. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int. J. Mol. Sci. 2014, 15, 6184–6223. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yemini, R.; Rahamimov, R.; Nesher, E.; Anteby, R.; Ghinea, R.; Hod, T.; Mor, E. The Impact of Obesity and Associated Comorbidities on the Outcomes after Renal Transplantation with a Living Donor vs. Deceased Donor Grafts. J. Clin. Med. 2022, 11, 3069. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khanna, D.; Khanna, S.; Khanna, P.; Kahar, P.; Patel, B.M. Obesity: A Chronic Low-Grade Inflammation and Its Markers. Cureus 2022, 14, e22711. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Savulescu-Fiedler, I.; Mihalcea, R.; Dragosloveanu, S.; Scheau, C.; Baz, R.O.; Caruntu, A.; Scheau, A.E.; Caruntu, C.; Benea, S.N. The Interplay between Obesity and Inflammation. Life 2024, 14, 856. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mann, V.; Sundaresan, A.; Shishodia, S. Overnutrition and Lipotoxicity: Impaired Efferocytosis and Chronic Inflammation as Precursors to Multifaceted Disease Pathogenesis. Biology 2024, 13, 241. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hung, Y.C.; Bauer, J.; Horsley, P.; Waterhouse, M.; Bashford, J.; Isenring, E. Changes in nutritional status, body composition, quality of life, and physical activity levels of cancer patients undergoing autologous peripheral blood stem cell transplantation. Support. Care Cancer 2013, 21, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Au Yeung, S.L.; Kwok, M.K.; Leung, J.Y.Y.; Hui, L.L.; Leung, G.M.; Schooling, C.M. The effect of liver enzymes on body composition: A Mendelian randomization study. PLoS ONE 2020, 15, e0228737. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, G.; Wu, Y.; Chen, J.; Xiang, D.; Li, D. The relationship between muscle mass and fat content in body composition and non-alcoholic fatty liver disease in the Chinese general population: A cross-sectional study. Front. Med. 2024, 11, 1384366. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kunutsor, S.K.; Seddoh, D. Alanine aminotransferase and risk of the metabolic syndrome: A linear dose-response relationship. PLoS ONE 2014, 9, e96068. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goessling, W.; Massaro, J.M.; Vasan, R.S.; D’Agostino, R.B.; Ellison, R.C.; Fox, C.S. Aminotransferase Levels and 20-Year Risk of Metabolic Syndrome, Diabetes, and Cardiovascular Disease. Gastroenterology 2008, 135, 1935–1944.e1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, X.; Yang, Y.; Zhang, B.; Lin, X.; Fu, X.; An, Y.; Zou, Y.; Wang, J.X.; Wang, Z.; Yu, T. Lactate metabolism in human health and disease. Signal Transduct. Target. Ther. 2022, 7, 305. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schirinzi, E.; Ricci, G.; Torri, F.; Mancuso, M.; Siciliano, G. Biomolecules of Muscle Fatigue in Metabolic Myopathies. Biomolecules 2023, 14, 50. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faber, D.R.; van der Graaf, Y.; Westerink, J.; Visseren, F.L. Increased visceral adipose tissue mass is associated with increased C-reactive protein in patients with manifest vascular diseases. Atherosclerosis 2010, 212, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.N.; Neeland, I.J. Adipose Tissue Inflammation and Cardiovascular Disease: An Update. Curr. Diab. Rep. 2022, 22, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Srikanth, S.; Deedwania, P. Management of Dyslipidemia in Patients with Hypertension, Diabetes, and Metabolic Syndrome. Curr. Hypertens. Rep. 2016, 18, 76. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Number (%) |
---|---|
Total number of pts | 127 (100) |
Me age (years) | 64 |
Gender | |
Male | 52 (41) |
Female | 75 (59) |
Type of MM | |
IgG | 76 (60) |
IgA | 22 (17) |
IgD | 3 (2) |
Light chain | 26 (21) |
ISS | |
I | 26 (20) |
II | 30 (24) |
III | 41 (32) |
Unk | 30 (24) |
D-S | |
I (a or b) | 5 (4) |
II (a or b) | 11 (9) |
III (a or b) | 63 (49) |
Unk | 48 (38) |
Number of previous therapy lines | |
1 | 94 (74) |
2 | 26 (20) |
3 or more | 7 (6) |
Number of autoHSCTs | |
1 | 108 (85) |
2 | 19 (15) |
Status for response before autoHSCT | |
CR | 43 (34) |
VGPR | 47 (37) |
PR | 35 (27) |
PD | 2 (2) |
Variable | Males | Females—Predictors | Females—Interactions Predictor Time | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HR | CI Lower | CI Upper | p Value | C-Index | HR | CI Lower | CI Upper | p Value | C-Index | HR | CI Lower | CI Upper | p Value | C-Index | |
Overall survival | |||||||||||||||
Total Body %Fat | 1.05 | 0.92 | 1.19 | 0.4538 | 0.58 | 0.99 | 0.86 | 1.15 | 0.9116 | 0.46 | |||||
Fat Mass/Height2 | 0.98 | 0.85 | 1.13 | 0.7925 | 0.48 | 0.90 | 0.69 | 1.19 | 0.4699 | 0.56 | |||||
Android/Gynoid Ratio | 2.40 | 0.03 | 181.99 | 0.691 | 0.52 | 0.10 | 0.00 | 18.86 | 0.3917 | 0.58 | |||||
%Fat Trunk/%Fat Legs | 1.44 | 0.01 | 220.08 | 0.8867 | 0.49 | 0.04 | 0.00 | 66.78 | 0.4035 | 0.53 | |||||
Trunk/Limb Fat Mass Ratio | 2.45 | 0.15 | 40.54 | 0.5304 | 0.54 | 0.04 | 0.00 | 5.11 | 0.1945 | 0.63 | |||||
Est. VAT Mass | 1.00 | 1.00 | 1.00 | 0.2113 | 0.61 | 1.00 | 1.00 | 1.00 | 0.5466 | 0.58 | |||||
Lean Mass/Height2 | 0.90 | 0.71 | 1.15 | 0.4105 | 0.56 | 0.61 | 0.37 | 1.02 | 0.0583 | 0.71 | |||||
Appen. Lean Height2 | 0.75 | 0.43 | 1.31 | 0.3123 | 0.57 | 0.40 | 0.14 | 1.09 | 0.0736 | 0.72 | |||||
Progression-free survival | |||||||||||||||
Total Body %Fat | 1.16 | 0.99 | 1.37 | 0.0736 | 0.72 | 0.07 | 0.01 | 0.60 | 0.0157 | 1.51 | 1.07 | 2.12 | 0.019 | 0.73 | |
Fat Mass/Height2 | 1.02 | 0.91 | 1.14 | 0.7546 | 0.68 | 0.98 | 0.59 | 1.64 | 0.942 | 0.99 | 0.95 | 1.03 | 0.681 | 0.70 | |
Android/Gynoid Ratio | 33.34 | 0.29 | 3830.91 | 0.1474 | 0.69 | 0.83 | 0.01 | 85.56 | 0.937 | 0.99 | 0.97 | 1.01 | 0.345 | 0.69 | |
%Fat Trunk/%Fat Legs | 103.49 | 0.38 | 28,197.19 | 0.1049 | 0.67 | 1.17 | 0.01 | 212.40 | 0.953 | 0.44 | |||||
Trunk/Limb Fat Mass Ratio | 9.05 | 0.25 | 327.93 | 0.2293 | 0.62 | 1.18 | 0.04 | 34.41 | 0.922 | 0.99 | 0.97 | 1.01 | 0.245 | 0.70 | |
Est. VAT Mass | 1.00 | 1.00 | 1.01 | 0.1069 | 0.65 | 1.00 | 1.00 | 1.01 | 0.776 | 0.99 | 0.96 | 1.01 | 0.306 | 0.69 | |
Lean Mass/Height2 | 1.10 | 0.82 | 1.46 | 0.5229 | 0.56 | 1.03 | 0.73 | 1.46 | 0.847 | 0.99 | 0.97 | 1.01 | 0.253 | 0.69 | |
Appen. Lean Height2 | 1.31 | 0.72 | 2.39 | 0.3726 | 0.60 | 1.10 | 0.50 | 2.42 | 0.817 | 0.99 | 0.97 | 1.01 | 0.24 | 0.69 |
Males | Females | |||
---|---|---|---|---|
Variable | Z | p Corrected | Z | p Corrected |
Infections | ||||
Total Body %Fat | 0.01 | 0.9921 | 1.71 | 0.0873 |
Fat Mass/Height2 | 0.80 | 0.4220 | 1.83 | 0.0674 |
Android/Gynoid Ratio | 1.71 | 0.0880 | 0.34 | 0.7332 |
%Fat Trunk/%Fat Legs | −0.47 | 0.6410 | −0.31 | 0.7546 |
Trunk/Limb Fat Mass Ratio | −1.46 | 0.1449 | −1.04 | 0.2958 |
Est. VAT Mass | 0.35 | 0.7286 | 1.39 | 0.1658 |
Lean Mass/Height2 | 1.98 | 0.0473 | 1.22 | 0.2219 |
Appen. Lean Height2 | 2.32 | 0.0204 | 1.52 | 0.1294 |
Non-infection toxicity | ||||
Total Body %Fat | −1.05 | 0.2943 | 0.78 | 0.4325 |
Fat Mass/Height2 | −1.98 | 0.0476 | 0.77 | 0.4424 |
Android/Gynoid Ratio | −0.36 | 0.7218 | 0.93 | 0.3524 |
%Fat Trunk/%Fat Legs | −0.60 | 0.5506 | 0.35 | 0.7298 |
Trunk/Limb Fat Mass Ratio | 0.54 | 0.5901 | 0.86 | 0.3880 |
Est. VAT Mass | −1.36 | 0.1751 | 0.31 | 0.7553 |
Lean Mass/Height2 | −1.69 | 0.0904 | 0.91 | 0.3641 |
Appen. Lean Height2 | −1.41 | 0.1574 | 0.25 | 0.8022 |
Males | Females | |||
---|---|---|---|---|
Variable | Z | p Corrected | Z | p Corrected |
Total Body %Fat | 0.77 | 0.4405 | −0.88 | 0.3770 |
Fat Mass/Height2 | 0.40 | 0.6878 | −0.63 | 0.5297 |
Android/Gynoid Ratio | −0.71 | 0.4800 | −0.77 | 0.4387 |
%Fat Trunk/%Fat Legs | −0.07 | 0.9480 | −1.64 | 0.1009 |
Trunk/Limb Fat Mass Ratio | 0.20 | 0.8450 | −1.00 | 0.3162 |
Est. VAT Mass | 0.86 | 0.3909 | −0.42 | 0.6753 |
Lean Mass/Height2 | −0.76 | 0.4470 | 0.20 | 0.8412 |
Appen. Lean Height2 | −0.74 | 0.4602 | −0.50 | 0.6164 |
Variable | Total Body %Fat | Fat Mass/Height2 | Android/Gynoid Ratio | %Fat Trunk/%Fat Legs | Trunk/Limb Fat Mass Ratio | Est. VAT Mass | Lean Mass/Height2 | Appen. Lean Height2 |
---|---|---|---|---|---|---|---|---|
Hb | 0.060.6631 | 0.110.4506 | 0.190.1862 | 0.300.0303 | 0.160.2629 | 0.040.7613 | 0.150.2800 | 0.220.1234 |
WBCs | 0.180.2050 | 0.180.2077 | 0.080.5634 | −0.230.0960 | −0.220.1143 | 0.140.3075 | 0.160.2686 | 0.090.5175 |
Neut | 0.180.1921 | 0.200.1526 | 0.120.3879 | −0.140.3144 | −0.210.1445 | 0.220.1238 | 0.170.2228 | 0.140.3054 |
Limf | 0.090.5192 | 0.020.8798 | −0.070.6102 | −0.060.6633 | 0.080.5721 | −0.140.3228 | −0.080.5738 | −0.160.2482 |
Neut/Limf ratio | 0.120.4083 | 0.150.3003 | 0.050.7108 | −0.100.4903 | −0.200.1462 | 0.260.0609 | 0.120.3907 | 0.140.3187 |
PLT | 0.250.0688 | 0.220.1216 | 0.090.5280 | 0.260.0585 | 0.230.1058 | 0.240.0913 | 0.090.5334 | 0.080.5867 |
Total protein | −0.020.8938 | 0.020.8906 | 0.170.3107 | 0.250.1205 | 0.260.1031 | −0.080.6355 | 0.100.5516 | 0.070.6759 |
CRP | 0.190.1776 | 0.130.3613 | 0.000.9808 | −0.050.7469 | 0.120.4059 | 0.170.2307 | −0.020.8792 | −0.060.6610 |
IgM | 0.050.7654 | 0.130.4214 | 0.340.0367 | 0.110.4944 | −0.060.7365 | −0.020.9247 | 0.190.2527 | 0.250.1222 |
IgG | −0.160.2584 | −0.180.2175 | 0.010.9679 | 0.080.6065 | 0.020.8857 | −0.300.0377 | −0.120.4028 | −0.100.5042 |
IgA | −0.020.8998 | 0.000.9990 | 0.230.1581 | 0.340.0341 | 0.330.0449 | 0.100.5434 | 0.140.4031 | 0.040.8097 |
Alb | −0.020.8827 | 0.010.9544 | 0.260.0685 | 0.020.9085 | −0.020.8854 | −0.010.9607 | 0.090.5393 | 0.100.4951 |
Total chol | −0.090.5734 | −0.090.5782 | 0.160.2948 | 0.180.2545 | 0.050.7362 | 0.200.2062 | −0.040.8135 | 0.040.8216 |
AST | 0.040.7663 | 0.150.2809 | 0.110.4477 | 0.270.0503 | 0.250.0689 | 0.060.6475 | 0.270.0534 | 0.260.0616 |
ALT | 0.220.1202 | 0.330.0187 | 0.130.3403 | 0.060.6888 | −0.010.9381 | 0.170.2191 | 0.400.0036 | 0.440.0011 |
Creatinine | −0.110.4510 | −0.080.5829 | 0.170.2151 | 0.020.8715 | −0.120.3906 | −0.150.2862 | −0.020.8758 | 0.040.7956 |
LDH | 0.200.1467 | 0.290.0379 | 0.200.1512 | 0.020.8776 | 0.090.5393 | 0.230.0989 | 0.280.0431 | 0.270.0505 |
Triglycerides | −0.010.9606 | 0.140.3689 | 0.100.5378 | 0.090.5644 | −0.120.4497 | 0.200.2003 | 0.260.0926 | 0.300.0531 |
Total calcium | −0.040.7696 | 0.030.8338 | 0.050.7415 | 0.040.7799 | 0.010.9294 | −0.070.6285 | 0.160.2481 | 0.230.1039 |
Variable | Total Body %Fat | Fat Mass/Height2 | Android/Gynoid Ratio | %Fat Trunk/%Fat Legs | Trunk/Limb Fat Mass Ratio | Est. VAT Mass | Lean Mass/Height2 | Appen. Lean Height2 |
---|---|---|---|---|---|---|---|---|
Hb | −0.130.2561 | −0.140.2348 | −0.020.8504 | −0.110.3455 | −0.050.6787 | −0.120.2992 | −0.020.8778 | −0.010.9088 |
WBCs | 0.010.9350 | 0.020.8938 | −0.040.7448 | 0.070.5733 | 0.060.6111 | 0.010.9248 | −0.040.7537 | −0.030.7893 |
Neut | 0.030.7752 | 0.020.8502 | −0.070.5455 | 0.020.8517 | 0.040.7235 | −0.030.8008 | −0.060.6344 | −0.060.6156 |
Limf | −0.060.6295 | −0.020.8400 | 0.100.4036 | 0.160.1662 | 0.070.5592 | 0.120.3095 | 0.030.7682 | 0.120.3204 |
Neut/Limf ratio | 0.110.3641 | 0.100.4162 | −0.080.4786 | −0.060.5933 | −0.010.9514 | −0.080.5045 | 0.000.9828 | −0.070.5557 |
PLT | 0.020.8854 | 0.060.5881 | 0.170.1461 | 0.260.0255 | 0.260.0236 | 0.200.0789 | 0.100.3865 | 0.110.3444 |
Total protein | 0.130.3346 | 0.160.2324 | 0.120.4011 | 0.130.3480 | 0.020.8955 | 0.090.5275 | 0.180.1996 | 0.250.0669 |
CRP | 0.330.0043 | 0.290.0109 | 0.100.3735 | 0.230.0453 | 0.170.1403 | 0.250.0312 | 0.120.3162 | 0.090.4385 |
IgM | 0.080.5963 | 0.130.4010 | 0.010.9602 | −0.070.6526 | −0.110.4666 | −0.030.8304 | 0.180.2445 | 0.240.1109 |
IgG | 0.180.1342 | 0.210.0761 | 0.010.9088 | −0.040.7287 | −0.130.2882 | 0.140.2258 | 0.250.0313 | 0.290.0121 |
IgA | −0.160.2985 | 0.010.9579 | −0.020.8972 | 0.030.8632 | 0.000.9992 | −0.040.8148 | 0.270.0721 | 0.210.1681 |
Alb | 0.220.0607 | 0.130.2643 | 0.130.2659 | 0.100.3898 | 0.030.8274 | 0.050.7007 | −0.070.5413 | −0.040.7044 |
Total chol | −0.010.9161 | −0.060.6884 | −0.070.6020 | −0.070.5969 | −0.120.3878 | −0.110.4306 | −0.090.5106 | 0.100.4915 |
AST | 0.130.2826 | 0.110.3479 | −0.030.8102 | −0.030.7766 | −0.040.7423 | −0.070.5602 | 0.070.5468 | 0.060.6212 |
ALT | 0.130.2699 | 0.190.0958 | 0.070.5277 | 0.050.6401 | 0.140.2150 | 0.040.7513 | 0.210.0747 | 0.100.4039 |
Creatinine | 0.110.3683 | −0.020.8513 | −0.110.3269 | −0.060.6241 | −0.120.2983 | −0.140.2445 | −0.180.1286 | −0.150.2023 |
LDH | 0.260.0219 | 0.250.0328 | 0.060.5964 | 0.200.0912 | 0.060.6280 | 0.110.3649 | 0.110.3347 | 0.220.0624 |
Triglycerides | 0.330.0132 | 0.330.0153 | 0.260.0556 | 0.320.0181 | 0.210.1154 | 0.320.0180 | 0.160.2433 | 0.120.3866 |
Total calcium | 0.000.9695 | 0.010.9559 | −0.010.9624 | 0.080.5206 | 0.040.7512 | −0.100.3904 | 0.040.7655 | 0.090.4358 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabłonowska-Babij, P.; Jędrzejuk, D.; Majcherek, M.; Szeremet, A.; Karasek, M.; Kuszczak, B.; Kujawa, K.; Sitkiewicz, M.; Landwójtowicz, M.; Wróbel, T.; et al. Pre-Transplant Dual-Energy X-ray Absorptiometry (DXA)-Derived Body Composition Measures as Predictors of Treatment Outcomes and Early Post-Transplant Complications in Patients with Multiple Myeloma (MM) Treated with Autologous Hematopoietic Stem Cell Transplantation (AutoHSCT). J. Clin. Med. 2024, 13, 5987. https://doi.org/10.3390/jcm13195987
Jabłonowska-Babij P, Jędrzejuk D, Majcherek M, Szeremet A, Karasek M, Kuszczak B, Kujawa K, Sitkiewicz M, Landwójtowicz M, Wróbel T, et al. Pre-Transplant Dual-Energy X-ray Absorptiometry (DXA)-Derived Body Composition Measures as Predictors of Treatment Outcomes and Early Post-Transplant Complications in Patients with Multiple Myeloma (MM) Treated with Autologous Hematopoietic Stem Cell Transplantation (AutoHSCT). Journal of Clinical Medicine. 2024; 13(19):5987. https://doi.org/10.3390/jcm13195987
Chicago/Turabian StyleJabłonowska-Babij, Paula, Diana Jędrzejuk, Maciej Majcherek, Agnieszka Szeremet, Magdalena Karasek, Bartłomiej Kuszczak, Krzysztof Kujawa, Milena Sitkiewicz, Marcin Landwójtowicz, Tomasz Wróbel, and et al. 2024. "Pre-Transplant Dual-Energy X-ray Absorptiometry (DXA)-Derived Body Composition Measures as Predictors of Treatment Outcomes and Early Post-Transplant Complications in Patients with Multiple Myeloma (MM) Treated with Autologous Hematopoietic Stem Cell Transplantation (AutoHSCT)" Journal of Clinical Medicine 13, no. 19: 5987. https://doi.org/10.3390/jcm13195987
APA StyleJabłonowska-Babij, P., Jędrzejuk, D., Majcherek, M., Szeremet, A., Karasek, M., Kuszczak, B., Kujawa, K., Sitkiewicz, M., Landwójtowicz, M., Wróbel, T., Tomasiewicz, M., & Czyż, A. (2024). Pre-Transplant Dual-Energy X-ray Absorptiometry (DXA)-Derived Body Composition Measures as Predictors of Treatment Outcomes and Early Post-Transplant Complications in Patients with Multiple Myeloma (MM) Treated with Autologous Hematopoietic Stem Cell Transplantation (AutoHSCT). Journal of Clinical Medicine, 13(19), 5987. https://doi.org/10.3390/jcm13195987