Intracranial Aneurysms and Cerebral Small Vessel Disease: Is There an Association between Large- and Small-Artery Diseases?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
- MRI imaging of the neurocranium performed in the context of clinical diagnostics with T2-weighted sequences or T2 fluid-attenuated inversion recovery (FLAIR) and T2* sequences or susceptibility-weighted imaging (SWI);
- Sufficient quality of MRI data for scoring of lesions related to CSVD;
- Information on clinical parameters.
2.2. MRI Acquisition
2.3. MRI Analysis
2.4. Statistical Analysis
3. Results
3.1. TBSVD
3.2. WMH Pattern
3.3. Investigation of IA Patients
3.3.1. Aneurysm Multiplicity
3.3.2. Aneurysm Rupture
3.3.3. Clinical Outcome of Aneurysm Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Southerland, A.M.; Meschia, J.F.; Worrall, B.B. Shared Associations of Nonatherosclerotic, Large-Vessel, Cerebrovascular Arteriopathies: Considering Intracranial Aneurysms, Cervical Artery Dissection, Moyamoya Disease and Fibromuscular Dysplasia. Curr. Opin. Neurol. 2013, 26, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Vlak, M.H.; Algra, A.; Brandenburg, R.; Rinkel, G.J. Prevalence of Unruptured Intracranial Aneurysms, with Emphasis on Sex, Age, Comorbidity, Country, and Time Period: A Systematic Review and Meta-Analysis. Lancet Neurol. 2011, 10, 626–636. [Google Scholar] [CrossRef]
- Molyneux, A.; Kerr, R.; Stratton, I.; Sandercock, P.; Clarke, M.; Shrimpton, J.; Holman, R.; International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group. International Subarachnoid Aneurysm Trial (ISAT) of Neurosurgical Clipping versus Endovascular Coiling in 2143 Patients with Ruptured Intracranial Aneurysms: A Randomised Trial. Lancet 2002, 360, 1267–1274. [Google Scholar] [CrossRef]
- Wiebers, D.O.; Whisnant, J.P.; Huston, J.; Meissner, I.; Brown, R.D.; Piepgras, D.G.; Forbes, G.S.; Thielen, K.; Nichols, D.; O’Fallon, W.M.; et al. Unruptured Intracranial Aneurysms: Natural History, Clinical Outcome, and Risks of Surgical and Endovascular Treatment. Lancet 2003, 362, 103–110. [Google Scholar] [CrossRef]
- Etminan, N.; Rinkel, G.J. Unruptured Intracranial Aneurysms: Development, Rupture and Preventive Management. Nat. Rev. Neurol. 2016, 12, 699–713. [Google Scholar] [CrossRef] [PubMed]
- Vernooij, M.W.; Ikram, M.A.; Tanghe, H.L.; Vincent, A.J.P.E.; Hofman, A.; Krestin, G.P.; Niessen, W.J.; Breteler, M.M.B.; van der Lugt, A. Incidental Findings on Brain MRI in the General Population. N. Engl. J. Med. 2007, 357, 1821–1828. [Google Scholar] [CrossRef] [PubMed]
- Etminan, N.; Dreier, R.; Buchholz, B.A.; Beseoglu, K.; Bruckner, P.; Matzenauer, C.; Torner, J.C.; Brown, R.D.; Steiger, H.-J.; Hänggi, D.; et al. Age of Collagen in Intracranial Saccular Aneurysms. Stroke 2014, 45, 1757–1763. [Google Scholar] [CrossRef]
- Etminan, N.; Dreier, R.; Buchholz, B.A.; Bruckner, P.; Steiger, H.-J.; Hänggi, D.; Macdonald, R.L. Exploring the Age of Intracranial Aneurysms Using Carbon Birth Dating: Preliminary Results. Stroke 2013, 44, 799–802. [Google Scholar] [CrossRef]
- Hughes, J.D.; Bond, K.M.; Mekary, R.A.; Dewan, M.C.; Rattani, A.; Baticulon, R.; Kato, Y.; Azevedo-Filho, H.; Morcos, J.J.; Park, K.B. Estimating the Global Incidence of Aneurysmal Subarachnoid Hemorrhage: A Systematic Review for Central Nervous System Vascular Lesions and Meta-Analysis of Ruptured Aneurysms. World Neurosurg. 2018, 115, 430–447.e7. [Google Scholar] [CrossRef]
- Ihara, M.; Yamamoto, Y. Emerging Evidence for Pathogenesis of Sporadic Cerebral Small Vessel Disease. Stroke 2016, 47, 554–560. [Google Scholar] [CrossRef]
- Wardlaw, J.M.; Smith, E.E.; Biessels, G.J.; Cordonnier, C.; Fazekas, F.; Frayne, R.; Lindley, R.I.; O’Brien, J.T.; Barkhof, F.; Benavente, O.R.; et al. Neuroimaging Standards for Research into Small Vessel Disease and Its Contribution to Ageing and Neurodegeneration. Lancet Neurol. 2013, 12, 822–838. [Google Scholar] [CrossRef] [PubMed]
- Hainsworth, A.H.; Markus, H.S.; Schneider, J.A. Cerebral Small Vessel Disease, Hypertension, and Vascular Contributions to Cognitive Impairment and Dementia. Hypertension 2024, 81, 75–86. [Google Scholar] [CrossRef]
- Savva, G.M.; Wharton, S.B.; Ince, P.G.; Forster, G.; Matthews, F.E.; Brayne, C. Age, Neuropathology, and Dementia. N. Engl. J. Med. 2009, 360, 2302–2309. [Google Scholar] [CrossRef]
- Neuropathology Group. Pathological Correlates of Late-Onset Dementia in a Multicentre, Community-Based Population in England and Wales. Lancet 2001, 357, 169–175. [Google Scholar] [CrossRef]
- Oveisgharan, S.; Kim, N.; Agrawal, S.; Yu, L.; Leurgans, S.; Kapasi, A.; Arfanakis, K.; Bennett, D.A.; Schneider, J.A.; Buchman, A.S. Brain and Spinal Cord Arteriolosclerosis and Its Associations with Cerebrovascular Disease Risk Factors in Community-Dwelling Older Adults. Acta Neuropathol. 2023, 145, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Gouw, A.A.; Seewann, A.; van der Flier, W.M.; Barkhof, F.; Rozemuller, A.M.; Scheltens, P.; Geurts, J.J.G. Heterogeneity of Small Vessel Disease: A Systematic Review of MRI and Histopathology Correlations. J. Neurol. Neurosurg. Psychiatry 2011, 82, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Hilal, S.; Mok, V.; Youn, Y.C.; Wong, A.; Ikram, M.K.; Chen, C.L.-H. Prevalence, Risk Factors and Consequences of Cerebral Small Vessel Diseases: Data from Three Asian Countries. J. Neurol. Neurosurg. Psychiatry 2017, 88, 669–674. [Google Scholar] [CrossRef]
- Cannistraro, R.J.; Badi, M.; Eidelman, B.H.; Dickson, D.W.; Middlebrooks, E.H.; Meschia, J.F. CNS Small Vessel Disease: A Clinical Review. Neurology 2019, 92, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.M. The Arterial Lesions Underlying Lacunes. Acta Neuropathol. 1969, 12, 1–15. [Google Scholar] [CrossRef]
- Lammie, G.A. Hypertensive Cerebral Small Vessel Disease and Stroke. Brain Pathol. 2002, 12, 358–370. [Google Scholar] [CrossRef]
- Lammie, G.A. Pathology of Small Vessel Stroke. Br. Med. Bull. 2000, 56, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Esiri, M.M.; Wilcock, G.K.; Morris, J.H. Neuropathological Assessment of the Lesions of Significance in Vascular Dementia. J. Neurol. Neurosurg. Psychiatry 1997, 63, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Ighodaro, E.T.; Abner, E.L.; Fardo, D.W.; Lin, A.-L.; Katsumata, Y.; Schmitt, F.A.; Kryscio, R.J.; Jicha, G.A.; Neltner, J.H.; Monsell, S.E.; et al. Risk Factors and Global Cognitive Status Related to Brain Arteriolosclerosis in Elderly Individuals. J. Cereb. Blood Flow Metab. 2017, 37, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Lamar, M.; Leurgans, S.; Kapasi, A.; Barnes, L.L.; Boyle, P.A.; Bennett, D.A.; Arfanakis, K.; Schneider, J.A. Complex Profiles of Cerebrovascular Disease Pathologies in the Aging Brain and Their Relationship With Cognitive Decline. Stroke 2022, 53, 218–227. [Google Scholar] [CrossRef]
- Arvanitakis, Z.; Capuano, A.W.; Lamar, M.; Shah, R.C.; Barnes, L.L.; Bennett, D.A.; Schneider, J.A. Late-Life Blood Pressure Association with Cerebrovascular and Alzheimer Disease Pathology. Neurology 2018, 91, e517–e525. [Google Scholar] [CrossRef]
- Laurent, S.; Briet, M.; Boutouyrie, P. Large and Small Artery Cross-Talk and Recent Morbidity-Mortality Trials in Hypertension. Hypertension 2009, 54, 388–392. [Google Scholar] [CrossRef]
- Chalouhi, N.; Ali, M.S.; Jabbour, P.M.; Tjoumakaris, S.I.; Gonzalez, L.F.; Rosenwasser, R.H.; Koch, W.J.; Dumont, A.S. Biology of Intracranial Aneurysms: Role of Inflammation. J. Cereb. Blood Flow Metab. 2012, 32, 1659–1676. [Google Scholar] [CrossRef]
- Heye, A.K.; Thrippleton, M.J.; Chappell, F.M.; Valdés Hernández, M. del C.; Armitage, P.A.; Makin, S.D.; Muñoz Maniega, S.; Sakka, E.; Flatman, P.W.; Dennis, M.S.; et al. Blood Pressure and Sodium: Association with MRI Markers in Cerebral Small Vessel Disease. J. Cereb. Blood Flow Metab. 2016, 36, 264–274. [Google Scholar] [CrossRef]
- Adams, H.; Avendaño, J.; Raza, S.M.; Gokaslan, Z.L.; Jallo, G.I.; Quiñones-Hinojosa, A. Prognostic Factors and Survival in Primary Malignant Astrocytomas of the Spinal Cord: A Population-Based Analysis from 1973 to 2007. Spine 2012, 37, E727–E735. [Google Scholar] [CrossRef]
- Tamura, T.; Jamous, M.A.; Kitazato, K.T.; Yagi, K.; Tada, Y.; Uno, M.; Nagahiro, S. Endothelial Damage Due to Impaired Nitric Oxide Bioavailability Triggers Cerebral Aneurysm Formation in Female Rats. J. Hypertens. 2009, 27, 1284–1292. [Google Scholar] [CrossRef]
- Wei, H.; Mao, Q.; Liu, L.; Xu, Y.; Chen, J.; Jiang, R.; Yin, L.; Fan, Y.; Chopp, M.; Dong, J.; et al. Changes and Function of Circulating Endothelial Progenitor Cells in Patients with Cerebral Aneurysm. J. Neurosci. Res. 2011, 89, 1822–1828. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ma, F.; Yan, W.; Qiao, S.; Xu, S.; Li, Y.; Luo, J.; Zhang, J.; Jin, J. Identification of the Soluble Form of Tyrosine Kinase Receptor Axl as a Potential Biomarker for Intracranial Aneurysm Rupture. BMC Neurol. 2015, 15, 23. [Google Scholar] [CrossRef]
- Brisset, M.; Boutouyrie, P.; Pico, F.; Zhu, Y.; Zureik, M.; Schilling, S.; Dufouil, C.; Mazoyer, B.; Laurent, S.; Tzourio, C.; et al. Large-Vessel Correlates of Cerebral Small-Vessel Disease. Neurology 2013, 80, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Conijn, M.M.A.; Kloppenborg, R.P.; Algra, A.; Mali, W.P.T.M.; Kappelle, L.J.; Vincken, K.L.; van der Graaf, Y.; Geerlings, M.I.; SMART Study Group. Cerebral Small Vessel Disease and Risk of Death, Ischemic Stroke, and Cardiac Complications in Patients with Atherosclerotic Disease: The Second Manifestations of ARTerial Disease-Magnetic Resonance (SMART-MR) Study. Stroke 2011, 42, 3105–3109. [Google Scholar] [CrossRef] [PubMed]
- Arba, F.; Vit, F.; Nesi, M.; Rinaldi, C.; Silvestrini, M.; Inzitari, D. Carotid Revascularization and Cognitive Impairment: The Neglected Role of Cerebral Small Vessel Disease. Neurol. Sci. 2022, 43, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Svensson, L.; Gupta, R.; Lytle, B.; Krieger, D. Chronic Ischemic Cerebral White Matter Disease Is a Risk Factor for Nonfocal Neurologic Injury after Total Aortic Arch Replacement. J. Thorac. Cardiovasc. Surg. 2007, 133, 1059–1065. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Li, Q.; Yang, Y.; Reis, C.; Tao, T.; Li, W.; Li, X.; Zhang, J.H. Cerebral Small Vessel Disease. Cell Transpl. 2018, 27, 1711–1722. [Google Scholar] [CrossRef]
- Etminan, N.; Rinkel, G.J.E. Cerebral Aneurysms: Cerebral Aneurysm Guidelines—More Guidance Needed. Nat. Rev. Neurol. 2015, 11, 490–491. [Google Scholar] [CrossRef]
- Feigin, V.L.; Rinkel, G.J.E.; Lawes, C.M.M.; Algra, A.; Bennett, D.A.; van Gijn, J.; Anderson, C.S. Risk Factors for Subarachnoid Hemorrhage: An Updated Systematic Review of Epidemiological Studies. Stroke 2005, 36, 2773–2780. [Google Scholar] [CrossRef]
- Greving, J.P.; Wermer, M.J.H.; Brown, R.D.; Morita, A.; Juvela, S.; Yonekura, M.; Ishibashi, T.; Torner, J.C.; Nakayama, T.; Rinkel, G.J.E.; et al. Development of the PHASES Score for Prediction of Risk of Rupture of Intracranial Aneurysms: A Pooled Analysis of Six Prospective Cohort Studies. Lancet Neurol. 2014, 13, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Jabbarli, R.; Dinger, T.F.; Darkwah Oppong, M.; Pierscianek, D.; Dammann, P.; Wrede, K.H.; Kaier, K.; Köhrmann, M.; Forsting, M.; Kleinschnitz, C.; et al. Risk Factors for and Clinical Consequences of Multiple Intracranial Aneurysms: A Systematic Review and Meta-Analysis. Stroke 2018, 49, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Hunt, W.E.; Hess, R.M. Surgical Risk as Related to Time of Intervention in the Repair of Intracranial Aneurysms. J. Neurosurg. 1968, 28, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Teasdale, G.; Jennett, B. Assessment of Coma and Impaired Consciousness. A Practical Scale. Lancet 1974, 2, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Report of World Federation of Neurological Surgeons Committee on a Universal Subarachnoid Hemorrhage Grading Scale. J. Neurosurg. 1988, 68, 985–986. [Google Scholar] [CrossRef]
- Petridis, A.K.; Kamp, M.A.; Cornelius, J.F.; Beez, T.; Beseoglu, K.; Turowski, B.; Steiger, H.-J. Aneurysmal Subarachnoid Hemorrhage. Dtsch. Arztebl. Int. 2017, 114, 226–236. [Google Scholar] [CrossRef]
- Farrell, B.; Godwin, J.; Richards, S.; Warlow, C. The United Kingdom Transient Ischaemic Attack (UK-TIA) Aspirin Trial: Final Results. J. Neurol. Neurosurg. Psychiatry 1991, 54, 1044–1054. [Google Scholar] [CrossRef]
- Etminan, N.; Brown, R.D.; Beseoglu, K.; Juvela, S.; Raymond, J.; Morita, A.; Torner, J.C.; Derdeyn, C.P.; Raabe, A.; Mocco, J.; et al. The Unruptured Intracranial Aneurysm Treatment Score: A Multidisciplinary Consensus. Neurology 2015, 85, 881–889. [Google Scholar] [CrossRef]
- Etminan, N.; Beseoglu, K.; Barrow, D.L.; Bederson, J.; Brown, R.D.; Connolly, E.S.; Derdeyn, C.P.; Hänggi, D.; Hasan, D.; Juvela, S.; et al. Multidisciplinary Consensus on Assessment of Unruptured Intracranial Aneurysms: Proposal of an International Research Group. Stroke 2014, 45, 1523–1530. [Google Scholar] [CrossRef]
- Debette, S.; Markus, H.S. The Clinical Importance of White Matter Hyperintensities on Brain Magnetic Resonance Imaging: Systematic Review and Meta-Analysis. BMJ 2010, 341, c3666. [Google Scholar] [CrossRef]
- Fazekas, F.; Chawluk, J.; Alavi, A.; Hurtig, H.; Zimmerman, R. MR Signal Abnormalities at 1.5 T in Alzheimer’s Dementia and Normal Aging. Am. J. Roentgenol. 1987, 149, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Charidimou, A.; Boulouis, G.; Haley, K.; Auriel, E.; van Etten, E.S.; Fotiadis, P.; Reijmer, Y.; Ayres, A.; Vashkevich, A.; Dipucchio, Z.Y.; et al. White Matter Hyperintensity Patterns in Cerebral Amyloid Angiopathy and Hypertensive Arteriopathy. Neurology 2016, 86, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Gregoire, S.M.; Chaudhary, U.J.; Brown, M.M.; Yousry, T.A.; Kallis, C.; Jäger, H.R.; Werring, D.J. The Microbleed Anatomical Rating Scale (MARS): Reliability of a Tool to Map Brain Microbleeds. Neurology 2009, 73, 1759–1766. [Google Scholar] [CrossRef]
- Greenberg, S.M.; Vernooij, M.W.; Cordonnier, C.; Viswanathan, A.; Al-Shahi Salman, R.; Warach, S.; Launer, L.J.; Van Buchem, M.A.; Breteler, M.M.; Microbleed Study Group. Cerebral Microbleeds: A Guide to Detection and Interpretation. Lancet Neurol 2009, 8, 165–174. [Google Scholar] [CrossRef]
- Tsai, H.-H.; Tsai, L.-K.; Chen, Y.-F.; Tang, S.-C.; Lee, B.-C.; Yen, R.-F.; Jeng, J.-S. Correlation of Cerebral Microbleed Distribution to Amyloid Burden in Patients with Primary Intracerebral Hemorrhage. Sci. Rep. 2017, 7, 44715. [Google Scholar] [CrossRef]
- Charidimou, A.; Schmitt, A.; Wilson, D.; Yakushiji, Y.; Gregoire, S.M.; Fox, Z.; Jäger, H.R.; Werring, D.J. The Cerebral Haemorrhage Anatomical RaTing inStrument (CHARTS): Development and Assessment of Reliability. J. Neurol. Sci. 2017, 372, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Macellari, F.; Paciaroni, M.; Agnelli, G.; Caso, V. Neuroimaging in Intracerebral Hemorrhage. Stroke 2014, 45, 903–908. [Google Scholar] [CrossRef]
- Martinez-Ramirez, S.; Pontes-Neto, O.M.; Dumas, A.P.; Auriel, E.; Halpin, A.; Quimby, M.; Gurol, M.E.; Greenberg, S.M.; Viswanathan, A. Topography of Dilated Perivascular Spaces in Subjects from a Memory Clinic Cohort. Neurology 2013, 80, 1551–1556. [Google Scholar] [CrossRef] [PubMed]
- Doubal, F.N.; MacLullich, A.M.J.; Ferguson, K.J.; Dennis, M.S.; Wardlaw, J.M. Enlarged Perivascular Spaces on MRI Are a Feature of Cerebral Small Vessel Disease. Stroke 2010, 41, 450–454. [Google Scholar] [CrossRef]
- Maclullich, A.M.J.; Wardlaw, J.M.; Ferguson, K.J.; Starr, J.M.; Seckl, J.R.; Deary, I.J. Enlarged Perivascular Spaces Are Associated with Cognitive Function in Healthy Elderly Men. J. Neurol. Neurosurg. Psychiatry 2004, 75, 1519–1523. [Google Scholar] [CrossRef]
- Charidimou, A.; Boulouis, G.; Pasi, M.; Auriel, E.; van Etten, E.S.; Haley, K.; Ayres, A.; Schwab, K.M.; Martinez-Ramirez, S.; Goldstein, J.N.; et al. MRI-Visible Perivascular Spaces in Cerebral Amyloid Angiopathy and Hypertensive Arteriopathy. Neurology 2017, 88, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Franke, C.L.; van Swieten, J.C.; van Gijn, J. Residual Lesions on Computed Tomography after Intracerebral Hemorrhage. Stroke 1991, 22, 1530–1533. [Google Scholar] [CrossRef] [PubMed]
- Staals, J.; Makin, S.D.J.; Doubal, F.N.; Dennis, M.S.; Wardlaw, J.M. Stroke Subtype, Vascular Risk Factors, and Total MRI Brain Small-Vessel Disease Burden. Neurology 2014, 83, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Klarenbeek, P.; van Oostenbrugge, R.J.; Rouhl, R.P.W.; Knottnerus, I.L.H.; Staals, J. Ambulatory Blood Pressure in Patients with Lacunar Stroke: Association with Total MRI Burden of Cerebral Small Vessel Disease. Stroke 2013, 44, 2995–2999. [Google Scholar] [CrossRef]
- Rordorf, G.; Koroshetz, W.J.; Copen, W.A.; Gonzalez, G.; Yamada, K.; Schaefer, P.W.; Schwamm, L.H.; Ogilvy, C.S.; Sorensen, A.G. Diffusion- and Perfusion-Weighted Imaging in Vasospasm after Subarachnoid Hemorrhage. Stroke 1999, 30, 599–605. [Google Scholar] [CrossRef]
- Villain, A.; Boulouis, G.; Ben Hassen, W.; Rodriguez-Regent, C.; Trystram, D.; Edjlali, M.; Nataf, F.; Sauvageon, X.; Sharshar, T.; Meder, J.F.; et al. Small Vessel Disease in Patients with Subarachnoid Hemorrhage: Prevalence and Associations with Vasospasm Occurrence, Severity and Clinical Outcomes. Neuroradiol. J. 2019, 32, 438–444. [Google Scholar] [CrossRef]
- Nelson, S.E.; Sair, H.I.; Stevens, R.D. Magnetic Resonance Imaging in Aneurysmal Subarachnoid Hemorrhage: Current Evidence and Future Directions. Neurocrit. Care 2018, 29, 241–252. [Google Scholar] [CrossRef]
- Etminan, N.; Buchholz, B.A.; Dreier, R.; Bruckner, P.; Torner, J.C.; Steiger, H.-J.; Hänggi, D.; Macdonald, R.L. Cerebral Aneurysms: Formation, Progression, and Developmental Chronology. Transl. Stroke Res. 2014, 5, 167–173. [Google Scholar] [CrossRef]
- Karhunen, V.; Bakker, M.K.; Ruigrok, Y.M.; Gill, D.; Larsson, S.C. Modifiable Risk Factors for Intracranial Aneurysm and Aneurysmal Subarachnoid Hemorrhage: A Mendelian Randomization Study. J. Am. Heart Assoc. 2021, 10, e022277. [Google Scholar] [CrossRef]
- Sundström, J.; Söderholm, M.; Söderberg, S.; Alfredsson, L.; Andersson, M.; Bellocco, R.; Björck, M.; Broberg, P.; Eriksson, M.; Eriksson, M.; et al. Risk Factors for Subarachnoid Haemorrhage: A Nationwide Cohort of 950 000 Adults. Int. J. Epidemiol. 2019, 48, 2018–2025. [Google Scholar] [CrossRef]
- Larsson, S.C.; Mason, A.M.; Bäck, M.; Klarin, D.; Damrauer, S.M.; Million Veteran Program; Michaëlsson, K.; Burgess, S. Genetic Predisposition to Smoking in Relation to 14 Cardiovascular Diseases. Eur. Heart J. 2020, 41, 3304–3310. [Google Scholar] [CrossRef]
- Larsson, S.C.; Wallin, A.; Wolk, A.; Markus, H.S. Differing Association of Alcohol Consumption with Different Stroke Types: A Systematic Review and Meta-Analysis. BMC Med. 2016, 14, 178. [Google Scholar] [CrossRef]
- Larsson, S.C.; Burgess, S.; Mason, A.M.; Michaëlsson, K. Alcohol Consumption and Cardiovascular Disease: A Mendelian Randomization Study. Circ. Genom. Precis Med. 2020, 13, e002814. [Google Scholar] [CrossRef]
- Zaremba, S.; Albus, L.; Schuss, P.; Vatter, H.; Klockgether, T.; Güresir, E. Increased Risk for Subarachnoid Hemorrhage in Patients with Sleep Apnea. J. Neurol. 2019, 266, 1351–1357. [Google Scholar] [CrossRef]
- Armstrong, M.E.G.; Green, J.; Reeves, G.K.; Beral, V.; Cairns, B.J. Million Women Study Collaborators Frequent Physical Activity May Not Reduce Vascular Disease Risk as Much as Moderate Activity: Large Prospective Study of Women in the United Kingdom. Circulation 2015, 131, 721–729. [Google Scholar] [CrossRef]
- Abbott, R.D.; Rodriguez, B.L.; Burchfiel, C.M.; Curb, J.D. Physical Activity in Older Middle-Aged Men and Reduced Risk of Stroke: The Honolulu Heart Program. Am. J. Epidemiol. 1994, 139, 881–893. [Google Scholar] [CrossRef]
- Lindbohm, J.V.; Rautalin, I.; Jousilahti, P.; Salomaa, V.; Kaprio, J.; Korja, M. Physical Activity Associates with Subarachnoid Hemorrhage Risk- a Population-Based Long-Term Cohort Study. Sci. Rep. 2019, 9, 9219. [Google Scholar] [CrossRef]
- Kroll, M.E.; Green, J.; Beral, V.; Sudlow, C.L.M.; Brown, A.; Kirichek, O.; Price, A.; Yang, T.O.; Reeves, G.K.; Million Women Study Collaborators. Adiposity and Ischemic and Hemorrhagic Stroke: Prospective Study in Women and Meta-Analysis. Neurology 2016, 87, 1473–1481. [Google Scholar] [CrossRef]
- Can, A.; Castro, V.M.; Dligach, D.; Finan, S.; Yu, S.; Gainer, V.; Shadick, N.A.; Savova, G.; Murphy, S.; Cai, T.; et al. Lipid-Lowering Agents and High HDL (High-Density Lipoprotein) Are Inversely Associated With Intracranial Aneurysm Rupture. Stroke 2018, 49, 1148–1154. [Google Scholar] [CrossRef] [PubMed]
- Poels, M.M.F.; Vernooij, M.W.; Ikram, M.A.; Hofman, A.; Krestin, G.P.; van der Lugt, A.; Breteler, M.M.B. Prevalence and Risk Factors of Cerebral Microbleeds: An Update of the Rotterdam Scan Study. Stroke 2010, 41, S103–S106. [Google Scholar] [CrossRef] [PubMed]
- de Leeuw, F.E.; de Groot, J.C.; Achten, E.; Oudkerk, M.; Ramos, L.M.; Heijboer, R.; Hofman, A.; Jolles, J.; van Gijn, J.; Breteler, M.M. Prevalence of Cerebral White Matter Lesions in Elderly People: A Population Based Magnetic Resonance Imaging Study. The Rotterdam Scan Study. J. Neurol. Neurosurg. Psychiatry 2001, 70, 9–14. [Google Scholar] [CrossRef]
- Khan, U.; Porteous, L.; Hassan, A.; Markus, H.S. Risk Factor Profile of Cerebral Small Vessel Disease and Its Subtypes. J. Neurol. Neurosurg. Psychiatry 2007, 78, 702–706. [Google Scholar] [CrossRef]
- Kim, H.; Yun, C.-H.; Thomas, R.J.; Lee, S.H.; Seo, H.S.; Cho, E.R.; Lee, S.K.; Yoon, D.W.; Suh, S.; Shin, C. Obstructive Sleep Apnea as a Risk Factor for Cerebral White Matter Change in a Middle-Aged and Older General Population. Sleep 2013, 36, 709B–715B. [Google Scholar] [CrossRef]
- Liu, B.; Lau, K.K.; Li, L.; Lovelock, C.; Liu, M.; Kuker, W.; Rothwell, P.M. Age-Specific Associations of Renal Impairment With Magnetic Resonance Imaging Markers of Cerebral Small Vessel Disease in Transient Ischemic Attack and Stroke. Stroke 2018, 49, 899–904. [Google Scholar] [CrossRef]
- Caplan, L.R. Lacunar Infarction and Small Vessel Disease: Pathology and Pathophysiology. J. Stroke 2015, 17, 2–6. [Google Scholar] [CrossRef]
- Zhang, C.E.; Wong, S.M.; van de Haar, H.J.; Staals, J.; Jansen, J.F.A.; Jeukens, C.R.L.P.N.; Hofman, P.A.M.; van Oostenbrugge, R.J.; Backes, W.H. Blood-Brain Barrier Leakage Is More Widespread in Patients with Cerebral Small Vessel Disease. Neurology 2017, 88, 426–432. [Google Scholar] [CrossRef]
Parameter Category | Parameters/Definitions | Included Cohort |
---|---|---|
Epidemiological data | Age (defined as age at diagnosis) | 1–4 |
Gender (defined as biological gender) | 1–4 | |
Medical history | Hypertension (defined as documented diagnosis or intake of antihypertensive medication) | 1–4 |
Diabetes mellitus (defined as documented diagnosis or type 1 or 2 diabetes or intake of oral antidiabetics or insulin) | 1–4 | |
Hyperlipidemia (defined as documented diagnosis or intake of medication lowering the lipid or cholesterol levels) | 1–4 | |
Peripheral arterial disease (defined as documented diagnosis or imaging finding) | 1–4 | |
Heart disease (defined as documented diagnosis of myocardial infarction, coronary artery, disease, cardiac arrhythmia, or other heart diseases) | 1–4 | |
Ischemic stroke (defined as documented diagnosis or imaging finding at admission) | 1–4 | |
Thrombosis (defined as documented diagnosis) | 1–4 | |
Benign or malignant tumor disease (defined as documented diagnosis regardless of affected organ) | 1–4 | |
Autoimmune disease (defined as documented diagnosis with need of immunosuppressive therapy) | 1–4 | |
Obesity (defined as documented body mass index of >30 kg/m2) | 1–4 | |
Nicotine abuse (defined as ex-nicotine abuse or continued nicotine abuse) | 1–4 | |
Alcohol abuse (defined as consumption of >50 g of alcohol per week) | 1–4 | |
Contraceptive use (at time of diagnosis, extracted from the medical records or medication plan) | 1–4 | |
CT-imaging parameters | Type of bleeding, shifting of the midline, intraventricular hemorrhage, hydrocephalus and isch emia (in the first CT scan after SAH) | 1 |
Aneurysm-related parameters | Rupture status (defined by assessment of intraoperative findings, imaging findings, and bleeding patterns in CT) | 1 + 2 |
Multiplicity (defined as ≥2 intracranial aneurysms) and number of aneurysms | 1 + 2 | |
Aneurysm localization (defined by angiography results) | 1 + 2 | |
Size of the aneurysm (defined by measuring the maximum diameter in 2D angiography) | 1 + 2 | |
Clinical scores | Glasgow coma scale at admission and discharge (defined by neurological examination at admission and discharge) | 1 + 2 |
Modified Rankin scale and outcome at discharge (defined by neurological examination at discharge) | 1 + 2 | |
Hunt and Hess grade, WFNS score, and Fisher grade at admission (defined by neurological examination at admission and imaging) | 1 | |
PHASES score (defined by use of clinical data and examination of neuroradiological findings) | 1 + 2 | |
Treatment-related parameters | Previous and current treatment and treatment modality (extracted from medical records) | 1 + 2 |
Complication-related parameters | Presence of hydrocephalus, placement of external ventricular drainage, or ventriculoperitoneal shunt (extracted from medical records) | 1 + 2 |
Presence of vasospasm, method of vasospasm-detection, and treatment via endovascular spasmolysis (extracted from medical records) | 1 + 2 | |
Follow-up data | Time of follow-up, perfusion of the aneurysm, and modified Rankin scale and outcome at follow-up (extracted from medical records) | 1 + 2 |
Cohort 1 (SAH Group) n = 192 | Cohort 2 (UIA Group) n = 136 | Cohort 3 (CSVD Group) n = 147 | Cohort 4 (Control Group) n = 50 | Total Cohort n = 525 | General Statistics | |
---|---|---|---|---|---|---|
Gender distribution (n) | p < 0.001 ** | |||||
Male | 53 (27.6%) | 38 (27.9%) | 76 (51.7%) | 14 (28%) | 181 (35%) | |
Female | 139 (72.4%) | 98 (72.1%) | 71 (48.3%) | 36 (72%) | 344 (65%) | |
Mean age (years) | 50.03 | 59.38 | 71.21 | 57.28 | 59.07 | p < 0.001 * |
Medical history (n) | ||||||
Hypertension | 126 (66%) | 100 (74%) | 130 (88%) | 29 (58%) | 385 (73%) | p < 0.001 ** |
Diabetes | 25 (13%) | 22 (16%) | 34 (23%) | 6 (12%) | 87 (17%) | p < 0.001 ** |
Hyperlipidemia | 41 (21%) | 52 (38%) | 94 (64%) | 9 (18%) | 196 (37%) | p < 0.001 ** |
Peripheral arterial disease | 5 (3%) | 3 (2%) | 6 (4%) | 0 (0%) | 14 (3%) | p = 0.408 ** |
Heart disease | 23 (12%) | 42 (31%) | 68 (46%) | 13 (26%) | 146 (28%) | p < 0.001 *** |
Ischemic stroke | 7 (4%) | 28 (21%) | 64 (44%) | 1 (2%) | 100 (19%) | p < 0.001 ** |
Thrombosis | 9 (5%) | 8 (6%) | 6 (4%) | 4 (8%) | 27 (5%) | p = 0.743 ** |
Tumor disease | 16 (8%) | 32 (24%) | 39 (27%) | 12 (24%) | 99 (19%) | p < 0.001 ** |
Autoimmune disease | 9 (5%) | 11 (8%) | 13 (9%) | 2 (4%) | 35 (7%) | p = 0.298 ** |
Lifestyle and Medication (n) | ||||||
Nicotine abuse | 95 (49%) | 63 (46%) | 41 (28%) | 15 (28%) | 214 (41%) | p < 0.001 ** |
Alcohol abuse | 26 (14%) | 19 (14%) | 29 (20%) | 4 (8%) | 78 (15%) | p < 0.001 ** |
Obesity | 52 (27%) | 43 (32%) | 37 (25%) | 15 (30%) | 147 (28%) | p = 0.910 ** |
Contraceptive use | 6 (3%) | 5 (4%) | 0 (0%) | 0 (0%) | 11 (2%) | p = 0.031 *** |
Mean aneurysm size (mm) | 7 | 9 | p < 0.001 **** | |||
Aneurysm multiplicity | 64 (33%) | 36 (26%) | p = 0.183 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swiatek, V.M.; Schreiber, S.; Amini, A.; Hasan, D.; Rashidi, A.; Stein, K.-P.; Neyazi, B.; Sandalcioglu, I.E. Intracranial Aneurysms and Cerebral Small Vessel Disease: Is There an Association between Large- and Small-Artery Diseases? J. Clin. Med. 2024, 13, 5864. https://doi.org/10.3390/jcm13195864
Swiatek VM, Schreiber S, Amini A, Hasan D, Rashidi A, Stein K-P, Neyazi B, Sandalcioglu IE. Intracranial Aneurysms and Cerebral Small Vessel Disease: Is There an Association between Large- and Small-Artery Diseases? Journal of Clinical Medicine. 2024; 13(19):5864. https://doi.org/10.3390/jcm13195864
Chicago/Turabian StyleSwiatek, Vanessa M., Stefanie Schreiber, Amir Amini, David Hasan, Ali Rashidi, Klaus-Peter Stein, Belal Neyazi, and I. Erol Sandalcioglu. 2024. "Intracranial Aneurysms and Cerebral Small Vessel Disease: Is There an Association between Large- and Small-Artery Diseases?" Journal of Clinical Medicine 13, no. 19: 5864. https://doi.org/10.3390/jcm13195864
APA StyleSwiatek, V. M., Schreiber, S., Amini, A., Hasan, D., Rashidi, A., Stein, K.-P., Neyazi, B., & Sandalcioglu, I. E. (2024). Intracranial Aneurysms and Cerebral Small Vessel Disease: Is There an Association between Large- and Small-Artery Diseases? Journal of Clinical Medicine, 13(19), 5864. https://doi.org/10.3390/jcm13195864