Nociplastic Pain: A Critical Paradigm for Multidisciplinary Recognition and Management
Abstract
:1. Introduction
2. Understanding Nociplastic Pain
3. Central Sensitization: Pathophysiology and Imaging Findings
3.1. Early Studies on Pain Response
3.2. Changes in Brain Connectivity: Resting-State and Induced
3.2.1. Resting-State Connectivity
3.2.2. Induced Connectivity
3.3. Role of Key Brain Regions and Networks
3.3.1. Default Mode Network (DMN)
3.3.2. Insula and Salience Network
3.3.3. Amygdala
4. Controversies and Emerging Topics: Small Fiber Neuropathy and Autonomic Dysfunction
4.1. Small Fiber Neuropathy (SFN)
4.1.1. The Debate
4.1.2. Controversy
4.2. Autonomic Dysfunction
4.2.1. The Role in Nociplastic Pain
4.2.2. Current Understanding and Controversy
5. Practical Importance of Recognizing Nociplastic Pain across Medical Disciplines
5.1. Primary Care
5.1.1. Early Identification and Holistic Management
5.1.2. Referral and Coordination of Care
5.2. Orthopedics
5.2.1. Surgical Decision-Making
5.2.2. Postoperative Pain Management
5.3. Neurology
5.3.1. Differentiating Pain Syndromes
5.3.2. Addressing Central Sensitization
5.4. Psychiatry
5.4.1. Management of Comorbid Mental Health Conditions
5.4.2. Psychological Interventions
5.5. Rheumatology
5.5.1. Comprehensive Pain Management
5.5.2. Guideline Development and Leadership
6. Implications for Clinical Practice
6.1. Diagnostic Challenges
6.1.1. Subjective Nature of Nociplastic Pain
6.1.2. Multidimensional Diagnostic Tools
6.2. Treatment Approaches
6.2.1. Non-Pharmacological Interventions
- −
- −
- As mentioned above, cognitive-behavioral therapy (CBT)—CBT is highly effective in helping patients manage the psychological aspects of nociplastic pain, such as pain-related fear, anxiety, and catastrophizing. By reframing negative thought patterns, CBT can reduce the perceived intensity of pain and improve coping strategies [66,67];
- −
- Sleep hygiene and management—Sleep disturbances are a common issue among patients with nociplastic pain, often exacerbating pain perception and worsening overall health outcomes. While sleep hygiene—such as maintaining a consistent sleep schedule, reducing caffeine intake, and optimizing the sleep environment—can be helpful, it is generally insufficient as a standalone treatment for the chronic sleep problems experienced by these patients. Instead, cognitive-behavioral therapy for insomnia (CBTi) has emerged as the gold standard for addressing sleep problems in individuals with nociplastic pain [68].
6.2.2. Pharmacological Treatments
6.2.3. Avoidance of Ineffective Treatments
6.3. Emerging Therapies
Personalized Medicine Approaches
7. Future Directions
7.1. Research Needs
7.1.1. Biomarkers and Diagnostic Tools
7.1.2. Leveraging Large Databases
7.1.3. Mechanistic Studies
7.1.4. Clinical Trials for Emerging Therapies
7.2. Clinical Practice Improvements
7.2.1. Integrating Multidisciplinary Care
7.2.2. Education and Training
7.2.3. Patient Education and Self-Management
7.3. Interdisciplinary Collaboration and Policy Advocacy
7.3.1. Fostering Collaboration
7.3.2. Policy Advocacy
7.3.3. Global Perspectives
8. Conclusions
Funding
Conflicts of Interest
References
- Clauw, D.J. From fibrositis to fibromyalgia to nociplastic pain: How rheumatology helped get us here and where do we go from here? Ann. Rheum. Dis. 2024. [Google Scholar] [CrossRef] [PubMed]
- Watkins, L.; Maier, S. The pain of being sick: Implications of immune-to-brain communication for understanding pain. Annu. Rev. Psychol. 2000, 51, 29–57. [Google Scholar] [CrossRef] [PubMed]
- Watkins, L.R.; Maier, S.F. Implications of immune-to-brain communication for sickness and pain. Proc. Natl. Acad. Sci. USA 1999, 96, 7710–7713. [Google Scholar] [CrossRef] [PubMed]
- Milligan, E.D.; Maier, S.F.; Watkins, L.R. Neuronal-glial interactions in central sensitization. In Seminars in Pain Medicine; Elsevier: Amsterdam, The Netherlands, 2003; pp. 171–183. [Google Scholar]
- Desmeules, J.A.; Cedraschi, C.; Rapiti, E.; Baumgartner, E.; Finckh, A.; Cohen, P.; Dayer, P.; Vischer, T. Neurophysiologic evidence for a central sensitization in patients with fibromyalgia. Arthritis Rheum. 2003, 48, 1420–1429. [Google Scholar] [CrossRef] [PubMed]
- Lluch, E.; Torres, R.; Nijs, J.; Van Oosterwijck, J. Evidence for central sensitization in patients with osteoarthritis pain: A systematic literature review. Eur. J. Pain 2014, 18, 1367–1375. [Google Scholar] [CrossRef]
- Aoyagi, K.; He, J.; Nicol, A.L.; Clauw, D.J.; Kluding, P.M.; Jernigan, S.; Sharma, N.K. A subgroup of chronic low back pain patients with central sensitization. Clin. J. Pain 2019, 35, 869–879. [Google Scholar] [CrossRef]
- Nijs, J.; Leysen, L.; Adriaenssens, N.; Aguilar Ferrándiz, M.E.; Devoogdt, N.; Tassenoy, A.; Ickmans, K.; Goubert, D.; van Wilgen, C.P.; Wijma, A.J. Pain following cancer treatment: Guidelines for the clinical classification of predominant neuropathic, nociceptive and central sensitization pain. Acta Oncol. 2016, 55, 659–663. [Google Scholar] [CrossRef]
- Woolf, C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 2011, 152, S2–S15. [Google Scholar] [CrossRef]
- Ji, R.-R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology 2018, 129, 343–366. [Google Scholar] [CrossRef]
- Kosek, E.; Clauw, D.; Nijs, J.; Baron, R.; Gilron, I.; Harris, R.E.; Mico, J.-A.; Rice, A.S.; Sterling, M. Chronic nociplastic pain affecting the musculoskeletal system: Clinical criteria and grading system. Pain 2021, 162, 2629–2634. [Google Scholar] [CrossRef]
- Kosek, E.; Cohen, M.; Baron, R.; Gebhart, G.F.; Mico, J.-A.; Rice, A.S.; Rief, W.; Sluka, A.K. Do we need a third mechanistic descriptor for chronic pain states? Pain 2016, 157, 1382–1386. [Google Scholar] [CrossRef] [PubMed]
- Fitzcharles, M.-A.; Cohen, S.P.; Clauw, D.J.; Littlejohn, G.; Usui, C.; Häuser, W. Nociplastic pain: Towards an understanding of prevalent pain conditions. Lancet 2021, 397, 2098–2110. [Google Scholar] [CrossRef] [PubMed]
- Nijs, J.; Malfliet, A.; Nishigami, T. Nociplastic pain and central sensitization in patients with chronic pain conditions: A terminology update for clinicians. Braz. J. Phys. Ther. 2023, 27, 100518. [Google Scholar] [CrossRef]
- Woolf, C.J. Evidence for a central component of post-injury pain hypersensitivity. Nature 1983, 306, 686–688. [Google Scholar] [CrossRef]
- Woolf, C.J.; Thompson, S.W. The induction and maintenance of central sensitization is dependent onN-methyl-d-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain 1991, 44, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Butler, D.S.; Moseley, G.L. Explain Pain, 2nd ed.; Noigroup Publications: Adelaide, Australia, 2013. [Google Scholar]
- Moseley, G.L.; Butler, D.S. Fifteen years of explaining pain: The past, present, and future. J. Pain 2015, 16, 807–813. [Google Scholar] [CrossRef]
- Staud, R.; Vierck, C.J.; Cannon, R.L.; Mauderli, A.P.; Price, D.D. Abnormal sensitization and temporal summation of second pain (wind-up) in patients with fibromyalgia syndrome. Pain 2001, 91, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Gracely, R.H.; Petzke, F.; Wolf, J.M.; Clauw, D.J. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 2002, 46, 1333–1343. [Google Scholar] [CrossRef]
- Ichesco, E.; Puiu, T.; Hampson, J.; Kairys, A.; Clauw, D.; Harte, S.; Peltier, S.; Harris, R.; Schmidt-Wilcke, T. Altered fMRI resting-state connectivity in individuals with fibromyalgia on acute pain stimulation. Eur. J. Pain 2016, 20, 1079–1089. [Google Scholar] [CrossRef]
- Ichesco, E.; Schmidt-Wilcke, T.; Bhavsar, R.; Clauw, D.J.; Peltier, S.J.; Kim, J.; Napadow, V.; Hampson, J.P.; Kairys, A.E.; Williams, D.A. Altered resting state connectivity of the insular cortex in individuals with fibromyalgia. J. Pain 2014, 15, 815–826.e811. [Google Scholar] [CrossRef]
- Schmidt-Wilcke, T.; Ichesco, E.; Hampson, J.; Kairys, A.; Peltier, S.; Harte, S.; Clauw, D.; Harris, R. Resting state connectivity correlates with drug and placebo response in fibromyalgia patients. NeuroImage Clin. 2014, 6, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Argaman, Y.; Granovsky, Y.; Sprecher, E.; Sinai, A.; Yarnitsky, D.; Weissman-Fogel, I. Resting-state functional connectivity predicts motor cortex stimulation-dependent pain relief in fibromyalgia syndrome patients. Sci. Rep. 2022, 12, 17135. [Google Scholar] [CrossRef] [PubMed]
- Medina, S.; O’Daly, O.G.; Howard, M.A.; Feliu-Soler, A.; Luciano, J.V. Does Practice Make Perfect? Functional Connectivity of the Salience Network and Somatosensory Network Predicts Response to Mind-Body Treatments for Fibromyalgia. Front. Pain Res. 2024, 5, 1245235. [Google Scholar] [CrossRef]
- Pinto, A.M.; Geenen, R.; Wager, T.D.; Lumley, M.A.; Häuser, W.; Kosek, E.; Ablin, J.N.; Amris, K.; Branco, J.; Buskila, D. Emotion regulation and the salience network: A hypothetical integrative model of fibromyalgia. Nat. Rev. Rheumatol. 2023, 19, 44–60. [Google Scholar] [CrossRef]
- Napadow, V.; LaCount, L.; Park, K.; As-Sanie, S.; Clauw, D.J.; Harris, R.E. Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum. 2010, 62, 2545–2555. [Google Scholar] [CrossRef]
- Ichesco, E.; Schmidt-Wilcke, T.; Clauw, D.; Peltier, S.; Williams, D.; Harris, R. Altered resting connectivity between the insula and cingulate cortex is related to chronic fibromyalgia pain. J. Pain 2012, 13, S29. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Chou, K.-H.; Lee, P.-L.; Wang, Y.-F.; Chen, S.-P.; Lai, K.-L.; Lin, C.-P.; Wang, S.-J.; Chen, W.-T. Right anterior insula is associated with pain generalization in patients with fibromyalgia. Pain 2022, 163, e572–e579. [Google Scholar] [CrossRef]
- Schmidt-Wilcke, T.; Kairys, A.; Ichesco, E.; Fernandez-Sanchez, M.L.; Barjola, P.; Heitzeg, M.; Harris, R.E.; Clauw, D.J.; Glass, J.; Williams, D.A. Changes in clinical pain in fibromyalgia patients correlate with changes in brain activation in the cingulate cortex in a response inhibition task. Pain Med. 2014, 15, 1346–1358. [Google Scholar] [CrossRef]
- Hsiao, F.-J.; Wang, S.-J.; Lin, Y.-Y.; Fuh, J.-L.; Ko, Y.-C.; Wang, P.-N.; Chen, W.-T. Altered insula–default mode network connectivity in fibromyalgia: A resting-state magnetoencephalographic study. J. Headache Pain 2017, 18, 89. [Google Scholar] [CrossRef]
- Cifre, I.; Sitges, C.; Fraiman, D.; Muñoz, M.Á.; Balenzuela, P.; González-Roldán, A.; Martínez-Jauand, M.; Birbaumer, N.; Chialvo, D.R.; Montoya, P. Disrupted functional connectivity of the pain network in fibromyalgia. Psychosom. Med. 2012, 74, 55–62. [Google Scholar] [CrossRef]
- Goldway, N.; Jalon, I.; Keynan, J.N.; Hellrung, L.; Horstmann, A.; Paret, C.; Hendler, T. Feasibility and utility of amygdala neurofeedback. Neurosci. Biobehav. Rev. 2022, 138, 104694. [Google Scholar] [CrossRef]
- Oaklander, A.L.; Herzog, Z.D.; Downs, H.M.; Klein, M.M. Objective evidence that small-fiber polyneuropathy underlies some illnesses currently labeled as fibromyalgia. Pain 2013, 154, 2310–2316. [Google Scholar] [CrossRef]
- Clauw, D.J. What is the meaning of “small fiber neuropathy” in fibromyalgia? Pain 2015, 156, 2115–2116. [Google Scholar] [CrossRef]
- Martínez-Lavín, M. Fibromyalgia and small fiber neuropathy: The plot thickens! Clin. Rheumatol. 2018, 37, 3167–3171. [Google Scholar] [CrossRef]
- Bailly, F. The challenge of differentiating fibromyalgia from small-fiber neuropathy in clinical practice. Jt. Bone Spine 2021, 88, 105232. [Google Scholar] [CrossRef]
- Martínez-Lavín, M. Autonomic Nervous System Dysfunction in Fibromyalgia. In Fibromyalgia Syndrome; Springer: Cham, Switzerland, 2021; pp. 193–203. [Google Scholar]
- Contreras-Merino, A.M.; Davydov, D.M.; Galvez-Sánchez, C.M.; Del Paso, G.A.R. Blunted short-term autonomic cardiovascular reactivity to orthostatic and clinostatic challenges in fibromyalgia as an indicator of the severity of chronic pain. Int. J. Psychophysiol. 2022, 175, 61–70. [Google Scholar] [CrossRef]
- Staud, R. Autonomic dysfunction in fibromyalgia syndrome: Postural orthostatic tachycardia. Curr. Rheumatol. Rep. 2008, 10, 463–466. [Google Scholar] [CrossRef]
- Sochodolak, R.C.; Schamne, J.C.; Ressetti, J.C.; Costa, B.M.; Antunes, E.L.; Okuno, N.M. A comparative study of heart rate variability and physical fitness in women with moderate and severe fibromyalgia. J. Exerc. Rehabil. 2022, 18, 133. [Google Scholar] [CrossRef]
- Schamne, J.C.; Ressetti, J.C.; Lima-Silva, A.E.; Okuno, N.M. Impaired cardiac autonomic control in women with fibromyalgia is independent of their physical fitness. JCR J. Clin. Rheumatol. 2021, 27, S278–S283. [Google Scholar] [CrossRef]
- Saracoglu, I.; Isintas, M.; Turk, A.; Leysen, L.; Nijs, J. Phenotyping of chronic pain in breast cancer survivors: An original study using the cancer pain phenotyping (CANPPHE) Network multidisciplinary international guidelines. Support. Care Cancer 2024, 32, 383. [Google Scholar] [CrossRef]
- Nijs, J.; Kosek, E.; Chiarotto, A.; Cook, C.; Danneels, L.A.; Fernández-de-Las-Peñas, C.; Hodges, P.W.; Koes, B.; Louw, A.; Ostelo, R. Nociceptive, neuropathic, or nociplastic low back pain? The low back pain phenotyping (BACPAP) consortium’s international and multidisciplinary consensus recommendations. Lancet Rheumatol. 2024, 6, e178–e188. [Google Scholar] [CrossRef]
- Miyamoto, S.; Iida, S.; Miyashita, T.; Katou, K.; Kawarai, Y.; Nakamura, J.; Orita, S.; Ohtori, S. Mechanism of chronic pain of symptomatic hip osteoarthritis by association of its distribution, nociceptive, neuropathic, nociplastic, or mixed-pain screening, and the prevalence of lumbar spinal stenosis: A cross-sectional study. Clin. J. Pain 2022, 38, 77–87. [Google Scholar] [CrossRef]
- D’Onghia, M.; Ciaffi, J.; McVeigh, J.G.; Di Martino, A.; Faldini, C.; Ablin, J.N.; Meliconi, R.; Ursini, F. Fibromyalgia syndrome–a risk factor for poor outcomes following orthopaedic surgery: A systematic review. In Seminars in Arthritis and Rheumatism; Elsevier: Amsterdam, The Netherlands, 2021; pp. 793–803. [Google Scholar]
- Schrepf, A.; Moser, S.; Harte, S.E.; Basu, N.; Kaplan, C.; Kolarik, E.; Tsodikov, A.; Brummett, C.M.; Clauw, D.J. Top down or bottom up? An observational investigation of improvement in fibromyalgia symptoms following hip and knee replacement. Rheumatology 2020, 59, 594–602. [Google Scholar] [CrossRef]
- Ablin, J.N.; Berman, M.; Aloush, V.; Regev, G.; Salame, K.; Buskila, D.; Lidar, Z. Effect of Fibromyalgia Symptoms on Outcome of Spinal Surgery. Pain Med. 2017, 18, 773–780. [Google Scholar] [CrossRef]
- Aroke, E.N.; McMullan, S.P.; Woodfin, K.O.; Richey, R.; Doss, J.; Wilbanks, B.A. A practical approach to acute postoperative pain management in chronic pain patients. J. PeriAnesthesia Nurs. 2020, 35, 564–573. [Google Scholar] [CrossRef]
- Yuan, H.; Chuang, T.-Y. Update of neuromodulation in chronic migraine. Curr. Pain Headache Rep. 2021, 25, 71. [Google Scholar] [CrossRef]
- Reffat, N.; Pusec, C.; Price, S.; Gupta, M.; Mavrocordatos, P.; Abd-Elsayed, A. Neuromodulation Techniques for Headache Management. Life 2024, 14, 173. [Google Scholar] [CrossRef]
- Wattiez, A.-S.; Sowers, L.P.; Russo, A.F. Calcitonin gene-related peptide (CGRP): Role in migraine pathophysiology and therapeutic targeting. Expert Opin. Ther. Targets 2020, 24, 91–100. [Google Scholar] [CrossRef]
- Feliu-Soler, A.; Montesinos, F.; Gutiérrez-Martínez, O.; Scott, W.; McCracken, L.M.; Luciano, J.V. Current status of acceptance and commitment therapy for chronic pain: A narrative review. J. Pain Res. 2018, 11, 2145–2159. [Google Scholar] [CrossRef]
- Knoerl, R.; Lavoie Smith, E.M.; Weisberg, J. Chronic pain and cognitive behavioral therapy: An integrative review. West. J. Nurs. Res. 2016, 38, 596–628. [Google Scholar] [CrossRef]
- Gilliam, W.P.; Schumann, M.E.; Cunningham, J.L.; Evans, M.M.; Luedtke, C.A.; Morrison, E.J.; Sperry, J.A.; Vowles, K.E. Pain catastrophizing as a treatment process variable in cognitive behavioural therapy for adults with chronic pain. Eur. J. Pain 2021, 25, 339–347. [Google Scholar] [CrossRef]
- Ashar, Y.K.; Gordon, A.; Schubiner, H.; Uipi, C.; Knight, K.; Anderson, Z.; Carlisle, J.; Polisky, L.; Geuter, S.; Flood, T.F. Effect of pain reprocessing therapy vs placebo and usual care for patients with chronic back pain: A randomized clinical trial. JAMA Psychiatry 2022, 79, 13–23. [Google Scholar] [CrossRef]
- Golenbiewski, J.T.; Pisetsky, D.S. A holistic approach to pain management in the rheumatic diseases. Curr. Treat. Options Rheumatol. 2019, 5, 1–10. [Google Scholar] [CrossRef]
- Borenstein, D.G.; Hassett, A.L.; Pisetsky, D. Pain management in rheumatology research, training, and practice. Clin. Exp. Rheumatol. 2017, 35 (Suppl. 107), S2–S7. [Google Scholar]
- Clauw, D.J. Why don’t we use a body map in every chronic pain patient yet? Pain 2024, 165, 1660–1661. [Google Scholar] [CrossRef]
- Maquet, D.; Croisier, J.-L.; Demoulin, C.; Crielaard, J.-M. Pressure pain thresholds of tender point sites in patients with fibromyalgia and in healthy controls. Eur. J. Pain 2004, 8, 111–117. [Google Scholar] [CrossRef]
- Imamura, M.; Chen, J.; Matsubayashi, S.R.; Targino, R.A.; Alfieri, F.M.; Bueno, D.K.; Hsing, W.T. Changes in pressure pain threshold in patients with chronic nonspecific low back pain. Spine 2013, 38, 2098–2107. [Google Scholar] [CrossRef]
- Gilam, G.; Cramer, E.M.; Webber, K.A.; Ziadni, M.S.; Kao, M.-C.; Mackey, S.C. Classifying chronic pain using multidimensional pain-agnostic symptom assessments and clustering analysis. Sci. Adv. 2021, 7, eabj0320. [Google Scholar] [CrossRef]
- Salaffi, F.; Sarzi-Puttini, P.; Atzeni, F. How to measure chronic pain: New concepts. Best Pract. Res. Clin. Rheumatol. 2015, 29, 164–186. [Google Scholar] [CrossRef]
- Häuser, W.; Klose, P.; Langhorst, J.; Moradi, B.; Steinbach, M.; Schiltenwolf, M.; Busch, A. Efficacy of different types of aerobic exercise in fibromyalgia syndrome: A systematic review and meta-analysis of randomised controlled trials. Arthritis Res. Ther. 2010, 12, R79. [Google Scholar] [CrossRef]
- Ferro Moura Franco, K.; Lenoir, D.; dos Santos Franco, Y.R.; Jandre Reis, F.J.; Nunes Cabral, C.M.; Meeus, M. Prescription of exercises for the treatment of chronic pain along the continuum of nociplastic pain: A systematic review with meta-analysis. Eur. J. Pain 2021, 25, 51–70. [Google Scholar] [CrossRef] [PubMed]
- Bernardy, K.; Klose, P.; Busch, A.J.; Choy, E.H.; Häuser, W. Cognitive behavioural therapies for fibromyalgia. Cochrane Database Syst. Rev. 2013, 2013, CD009796. [Google Scholar] [CrossRef]
- Bułdyś, K.; Górnicki, T.; Kałka, D.; Szuster, E.; Biernikiewicz, M.; Markuszewski, L.; Sobieszczańska, M. What Do We Know about Nociplastic Pain? Healthcare 2023, 11, 1794. [Google Scholar] [CrossRef] [PubMed]
- Selvanathan, J.; Pham, C.; Nagappa, M.; Peng, P.W.; Englesakis, M.; Espie, C.A.; Morin, C.M.; Chung, F. Cognitive behavioral therapy for insomnia in patients with chronic pain–a systematic review and meta-analysis of randomized controlled trials. Sleep Med. Rev. 2021, 60, 101460. [Google Scholar] [CrossRef] [PubMed]
- Trauer, J.M.; Qian, M.Y.; Doyle, J.S.; Rajaratnam, S.M.; Cunnington, D. Cognitive behavioral therapy for chronic insomnia: A systematic review and meta-analysis. Ann. Intern. Med. 2015, 163, 191–204. [Google Scholar] [CrossRef]
- Climent-Sanz, C.; Valenzuela-Pascual, F.; Martinez-Navarro, O.; Blanco-Blanco, J.; Rubi-Carnacea, F.; Garcia-Martinez, E.; Soler-Gonzalez, J.; Barallat-Gimeno, E.; Gea-Sanchez, M. Cognitive behavioral therapy for insomnia (CBT-i) in patients with fibromyalgia: A systematic review and meta-analysis. Disabil. Rehabil. 2022, 44, 5770–5783. [Google Scholar] [CrossRef]
- Lazaridou, A.; Kim, J.; Cahalan, C.M.; Loggia, M.L.; Franceschelli, O.; Berna, C.; Schur, P.; Napadow, V.; Edwards, R.R. Effects of cognitive-behavioral therapy (CBT) on brain connectivity supporting catastrophizing in fibromyalgia. Clin. J. Pain 2017, 33, 215–221. [Google Scholar] [CrossRef]
- Robinson, C.; Dalal, S.; Chitneni, A.; Patil, A.; Berger, A.A.; Mahmood, S.; Orhurhu, V.; Kaye, A.D.; Hasoon, J. A look at commonly utilized serotonin noradrenaline reuptake inhibitors (SNRIs) in chronic pain. Health Psychol. Res. 2022, 10, 32309. [Google Scholar] [CrossRef]
- Arnold, L.M.; Rosen, A.; Pritchett, Y.L.; D’Souza, D.N.; Goldstein, D.J.; Iyengar, S.; Wernicke, J.F. A randomized, double-blind, placebo-controlled trial of duloxetine in the treatment of women with fibromyalgia with or without major depressive disorder. Pain 2005, 119, 5–15. [Google Scholar] [CrossRef]
- Gendreau, R.M.; Thorn, M.D.; Gendreau, J.F.; Kranzler, J.D.; Ribeiro, S.; Gracely, R.H.; Williams, D.A.; Mease, P.J.; McLean, S.A.; Clauw, D.J. Efficacy of milnacipran in patients with fibromyalgia. J. Rheumatol. 2005, 32, 1975–1985. [Google Scholar]
- Godfrey, R.G. A guide to the understanding and use of tricyclic antidepressants in the overall management of fibromyalgia and other chronic pain syndromes. Arch. Intern. Med. 1996, 156, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Chiechio, S.; Zammataro, M.; Caraci, F.; Rampello, L.; Copani, A.; Sabato, A.; Nicoletti, F. Pregabalin in the treatment of chronic pain: An overview. Clin. Drug Investig. 2009, 29, 203–213. [Google Scholar] [CrossRef]
- Hamid, P.; Malik, B.H.; Hussain, M.L. Noninvasive transcranial magnetic stimulation (TMS) in chronic refractory pain: A systematic review. Cureus 2019, 11, e6019. [Google Scholar] [CrossRef]
- Efrati, S.; Golan, H.; Bechor, Y.; Faran, Y.; Daphna-Tekoah, S.; Sekler, G.; Fishlev, G.; Ablin, J.N.; Bergan, J.; Volkov, O. Hyperbaric oxygen therapy can diminish fibromyalgia syndrome–prospective clinical trial. PLoS ONE 2015, 10, e0127012. [Google Scholar] [CrossRef] [PubMed]
- Pejic, W.; Frey, N. Hyperbaric Oxygen Therapy for the Treatment of Chronic Pain: A Review of Clinical Effectiveness and Cost-Effectiveness; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, USA, 2019. [Google Scholar]
- Romero-Sandoval, E.A.; Kolano, A.L.; Alvarado-Vázquez, P.A. Cannabis and cannabinoids for chronic pain. Curr. Rheumatol. Rep. 2017, 19, 67. [Google Scholar] [CrossRef] [PubMed]
- Fitzcharles, M.-A.; Petzke, F.; Tölle, T.R.; Häuser, W. Cannabis-based medicines and medical cannabis in the treatment of nociplastic pain. Drugs 2021, 81, 2103–2116. [Google Scholar] [CrossRef]
- Fillingim, M.; Tanguay-Sabourin, C.; Parisien, M.; Zare, A.; Guglietti, G.V.; Norman, J.; Petre, B.; Bortsov, A.; Ware, M.; Perez, J. A Biomarker-Based Framework for the Prediction of Future Chronic Pain. medRxiv 2024. [Google Scholar] [CrossRef]
- Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018, 562, 203–209. [Google Scholar] [CrossRef]
- Levine, Z.; Kalka, I.; Kolobkov, D.; Rossman, H.; Godneva, A.; Shilo, S.; Keshet, A.; Weissglas-Volkov, D.; Shor, T.; Diament, A. Genome-wide association studies and polygenic risk score phenome-wide association studies across complex phenotypes in the human phenotype project. Med 2024, 5, 90–101.e104. [Google Scholar] [CrossRef]
- Vergne-Salle, P.; Bertin, P. Chronic pain and neuroinflammation. Jt. Bone Spine 2021, 88, 105222. [Google Scholar] [CrossRef]
- Hiraga, S.-i.; Itokazu, T.; Nishibe, M.; Yamashita, T. Neuroplasticity related to chronic pain and its modulation by microglia. Inflamm. Regen. 2022, 42, 15. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ablin, J.N. Nociplastic Pain: A Critical Paradigm for Multidisciplinary Recognition and Management. J. Clin. Med. 2024, 13, 5741. https://doi.org/10.3390/jcm13195741
Ablin JN. Nociplastic Pain: A Critical Paradigm for Multidisciplinary Recognition and Management. Journal of Clinical Medicine. 2024; 13(19):5741. https://doi.org/10.3390/jcm13195741
Chicago/Turabian StyleAblin, Jacob N. 2024. "Nociplastic Pain: A Critical Paradigm for Multidisciplinary Recognition and Management" Journal of Clinical Medicine 13, no. 19: 5741. https://doi.org/10.3390/jcm13195741
APA StyleAblin, J. N. (2024). Nociplastic Pain: A Critical Paradigm for Multidisciplinary Recognition and Management. Journal of Clinical Medicine, 13(19), 5741. https://doi.org/10.3390/jcm13195741