Immunologic and Targeted Molecular Therapies for Chordomas: A Narrative Review
Abstract
:1. Introduction
2. Current Systemic Treatment Strategies for Chordomas
3. Immunotherapy for Chordomas
4. Targeted Therapies against Chordomas
5. Future Treatment Directions
6. Conclusions
PubMed ID | Title | Type of Therapy | Target | Study Type | Enrollment | Outcome |
---|---|---|---|---|---|---|
35934010 | Durvalumab plus tremelimumab in advanced or metastatic soft-tissue and bone sarcomas: a single-centre phase-2 trial (2022) [30] | Immunotherapy | Anti-CTLA-4 (tremelimumab), Anti-PD-L1 (durvalumab) | Clinical trial (Phase 2) | 57 in total Median age: 48 years old Males: 31 Females: 26 | Progression-free survival at 12 weeks was 49% (95% CI: 36–61). |
37429302 | Pembrolizumab in patients with rare and ultra-rare sarcomas (AcSé pembrolizumab): analysis of a subgroup from a non-randomised, open-label, phase-2 basket trial (2023) [31] | Immunotherapy | Anti-PD-1 | Clinical trial (Phase 2) | 97 in total Median age: 51 years old Males: 53 Females: 44 | At week 12, objective response rate was 6·2% (95% CI: 2·3–13·0), with no complete responses and six partial responses in the 97 patients. |
34479925 | Phase-1 open-label trial of intravenous administration of MVA-BN–brachyury–TRICOM vaccine in patients with advanced cancer (2021) [32] | Immunotherapy | Brachyury | Clinical trial (Phase 1) | 13 in total Mean age: 60 years old Males: 9 Females: 4 | Efficacy analysis of objective response rate per RECIST 1.1 at the end of the study showed one patient with a partial response, four with stable disease, and eight with progressive disease. Three patients with stable disease experienced clinical benefit in the form of improvement in pain. |
33594772 | Randomized, double-blind, placebo-controlled phase-II study of yeast–brachyury vaccine (GI-6301) in combination with standard-of-care radiotherapy in locally advanced, unresectable chordoma (2021) [34] | Immunotherapy | Brachyury | Clinical trial (Phase 2) | 24 in total Median age: 61 years old Males: 16 Females: 8 | No difference in the overall response rate was observed, leading to early discontinuation of this trial because of low conditional power to detect a statistical difference at the planned end of the accrual. |
32888455 | Apatinib in patients with advanced chordoma: a single-arm, single-centre, phase-2 study (2020) [40] | Targeted therapy | Vascular endothelial growth factor receptor-2 inhibitor | Clinical trial (Phase 2) | 30 in total Median age: 56 years old Males: 19 Females: 11 | Median progression-free survival was 18 months (95% CI: 3–34) according to RECIST and 18 months (3–33) according to Choi criteria. |
22331945 | Phase-II study of imatinib in advanced chordoma (2012) [42] | Targeted therapy | Platelet-derived growth factor β | Clinical trial (Phase 2) | 56 in total Median age: 60 years old Males: 35 Females: 21 | A total of 35 patients with stable disease (SD, 70%) and a 64% clinical benefit rate (i.e., RECIST complete response + PR + SD ≥ 6 months) |
30216418 | Imatinib and everolimus in patients with progressing advanced chordoma: a phase-2 clinical study (2018) [43] | Targeted therapy | Platelet-derived growth factor β | Clinical trial (Phase 2) | 43 in total Median age: 64 years old Males: 28 Females: 15 | Imatinib plus everolimus showed limited activity in progressing advanced chordoma. Interestingly, the number of tumor cells activated for mammalian target of rapamycin effectors correlated with the response. Toxicity was not negligible. |
37285716 | Regorafenib in patients with relapsed advanced or metastatic chordoma: results of a non-comparative, randomised, double-blind, placebo-controlled, multicentre phase-II study (2023) [49] | Targeted therapy | small-molecule multi-kinase inhibitor | Randomized controlled trial | 23 in total Median age: 66 years old Males: 16 Females: 7 | According to the study design’s criteria for success, 10 out of 16 progression-free patients at 6 months in the regorafenib arm, according to RECIST 1.1, would have been necessary to consider this study as successful, whereas only 6/14 (40%) patients remained free of disease progression at the 6-month timepoint in the trial. |
30477937 | Efficacy and safety of regorafenib in adult patients with metastatic osteosarcoma: a non-comparative, randomised, double-blind, placebo-controlled phase-2 study (2018) [50] | Targeted therapy | Small-molecule multi-kinase inhibitor | Clinical trial (Phase 2) | 38 in total Median age: 33 years old Males: 24 Females: 14 | A total of 17 of 26 patients (65%; one-sided 95% CI: 47%) in the regorafenib group were non-progressive at 8 weeks compared with no patients in the placebo group. Ten patients in the placebo group crossed over to receive open-label regorafenib after centrally confirmed disease progression. |
31488216 | Phase-I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors (2019) | Targeted therapy | IL-8 monoclonal antibody | Clinical trial (Phase 1) | 15 in total Mean age: 59 years old Males: 9 Females: 6 | HuMax-IL8 is safe and well-tolerated. Ongoing studies are evaluating the combination of the IL-8 blockade and other immunotherapies. |
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Das, P.; Soni, P.; Jones, J.; Habboub, G.; Barnholtz-Sloan, J.S.; Recinos, P.F.; Kshettry, V.R. Descriptive epidemiology of chordomas in the United States. J. Neurooncol. 2020, 148, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Karele, E.N.; Paze, A.N. Chordoma: To know means to recognize. Biochim. Biophys. Acta Rev. Cancer 2022, 1877, 188796. [Google Scholar] [CrossRef] [PubMed]
- Tenny, S.; Varacallo, M. Chordoma. In StatPearls; StatPearls Publishing LLC.: St. Petersburg, FL, USA, 2024. [Google Scholar]
- McMaster, M.L.; Goldstein, A.M.; Bromley, C.M.; Ishibe, N.; Parry, D.M. Chordoma: Incidence and survival patterns in the United States, 1973–1995. Cancer Causes Control 2001, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Stacchiotti, S.; Gronchi, A.; Fossati, P.; Akiyama, T.; Alapetite, C.; Baumann, M.; Blay, J.Y.; Bolle, S.; Boriani, S.; Bruzzi, P.; et al. Best practices for the management of local-regional recurrent chordoma: A position paper by the Chordoma Global Consensus Group. Ann. Oncol. 2017, 28, 1230–1242. [Google Scholar] [CrossRef] [PubMed]
- Karpathiou, G.; Dumollard, J.M.; Dridi, M.; Dal Col, P.; Barral, F.G.; Boutonnat, J.; Peoc’h, M. Chordomas: A review with emphasis on their pathophysiology, pathology, molecular biology, and genetics. Pathol. Res. Pract. 2020, 216, 153089. [Google Scholar] [CrossRef]
- Vanderheijden, C.; Vaessen, T.; Yakkioui, Y.; Temel, Y.; Hoogland, G.; Hovinga, K. Genes Predicting Survival of Chordoma Patients. World Neurosurg. 2021, 156, 125–132. [Google Scholar] [CrossRef]
- Walcott, B.P.; Nahed, B.V.; Mohyeldin, A.; Coumans, J.V.; Kahle, K.T.; Ferreira, M.J. Chordoma: Current concepts, management, and future directions. Lancet Oncol. 2012, 13, e69–e76. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Z.; Li, B.; Fan, J.; Xu, W.; Xiao, J. Immunotherapy as a Promising Option for the Treatment of Advanced Chordoma: A Systemic Review. Cancers 2022, 15, 264. [Google Scholar] [CrossRef]
- Heery, C.R. Chordoma: The Quest for Better Treatment Options. Oncol. Ther. 2016, 4, 35–51. [Google Scholar] [CrossRef]
- Xu, J.; Shi, Q.; Wang, B.; Ji, T.; Guo, W.; Ren, T.; Tang, X. The role of tumor immune microenvironment in chordoma: Promising immunotherapy strategies. Front. Immunol. 2023, 14, 1257254. [Google Scholar] [CrossRef]
- Azzarelli, A.; Quagliuolo, V.; Cerasoli, S.; Zucali, R.; Bignami, P.; Mazzaferro, V.; Dossena, G.; Gennari, L. Chordoma: Natural history and treatment results in 33 cases. J. Surg. Oncol. 1988, 37, 185–191. [Google Scholar] [CrossRef] [PubMed]
- York, J.E.; Kaczaraj, A.; Abi-Said, D.; Fuller, G.N.; Skibber, J.M.; Janjan, N.A.; Gokaslan, Z.L. Sacral chordoma: 40-year experience at a major cancer center. Neurosurgery 1999, 44, 74–79; discussion 79–80. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, T.; Rezvani, K. Adoptive cell therapy: Living drugs against cancer. J. Exp. Med. 2020, 217, e20200377. [Google Scholar] [CrossRef] [PubMed]
- Ozair, M.Z.; Shah, P.P.; Mathios, D.; Lim, M.; Moss, N.S. New Prospects for Molecular Targets for Chordomas. Neurosurg. Clin. N. Am. 2020, 31, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Henderson, S.R.; Guiliano, D.; Presneau, N.; McLean, S.; Frow, R.; Vujovic, S.; Anderson, J.; Sebire, N.; Whelan, J.; Athanasou, N.; et al. A molecular map of mesenchymal tumors. Genome Biol. 2005, 6, R76. [Google Scholar] [CrossRef]
- Tarpey, P.S.; Behjati, S.; Young, M.D.; Martincorena, I.; Alexandrov, L.B.; Farndon, S.J.; Guzzo, C.; Hardy, C.; Latimer, C.; Butler, A.P.; et al. The driver landscape of sporadic chordoma. Nat. Commun. 2017, 8, 890. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Imada, H.; Iida, S.; Szuhai, K. Notochordal Tumors: An Update on Molecular Pathology with Therapeutic Implications. Surg. Pathol. Clin. 2017, 10, 637–656. [Google Scholar] [CrossRef]
- Memon, H.; Patel, B.M. Immune checkpoint inhibitors in non-small cell lung cancer: A bird’s eye view. Life Sci. 2019, 233, 116713. [Google Scholar] [CrossRef]
- Thanindratarn, P.; Dean, D.C.; Feng, W.; Wei, R.; Nelson, S.D.; Hornicek, F.J.; Duan, Z. Cyclin-dependent kinase 12 (CDK12) in chordoma: Prognostic and therapeutic value. Eur. Spine J. 2020, 29, 3214–3228. [Google Scholar] [CrossRef]
- Lui, G.Y.L.; Grandori, C.; Kemp, C.J. CDK12: An emerging therapeutic target for cancer. J. Clin. Pathol. 2018, 71, 957–962. [Google Scholar] [CrossRef]
- Stacchiotti, S.; Sommer, J. Building a global consensus approach to chordoma: A position paper from the medical and patient community. Lancet Oncol. 2015, 16, e71–e83. [Google Scholar] [CrossRef] [PubMed]
- Deskoulidi, P.; Stavrianos, S.D.; Mastorakos, D.; Kontogeorgakos, V.A.; Savvidou, O.; Chrysikos, D.; Samolis, A.; Pappas, N.; Troupis, T.; Papagelopoulos, P.J. Anatomical Considerations and Plastic Surgery Reconstruction Options of Sacral Chordoma Resection. Cureus 2023, 15, e37965. [Google Scholar] [CrossRef] [PubMed]
- Bongers, M.E.R.; Dea, N.; Ames, C.P.; Schwab, J.H. Surgical Strategies for Chordoma. Neurosurg. Clin. N. Am. 2020, 31, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Alsharif, T.H.; Gronfula, A.G.; Alghdali, L.H.; Hejazi, M.; Alanazi, A.; Wali, S.M.; Alyousef, M. Outcomes of Endoscopic Resection in Pediatric Skull Base Chordoma: A Systematic Review. Cureus 2023, 15, e41487. [Google Scholar] [CrossRef] [PubMed]
- Passer, J.Z.; Alvarez-Breckenridge, C.; Rhines, L.; DeMonte, F.; Tatsui, C.; Raza, S.M. Surgical Management of Skull Base and Spine Chordomas. Curr. Treat. Options Oncol. 2021, 22, 40. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, B.; Wang, X.; Jing, Z. Comparison of the Effectiveness of Radiotherapy with Photons and Particles for Chordoma After Surgery: A Meta-Analysis. World Neurosurg. 2018, 117, 46–53. [Google Scholar] [CrossRef]
- Pahwa, B.; Medani, K.; Lu, V.M.; Elarjani, T. Proton beam therapy for skull base chordomas: A systematic review of tumor control rates and survival rates. Neurosurg. Rev. 2022, 45, 3551–3563. [Google Scholar] [CrossRef]
- Houdek, M.T.; Rose, P.S.; Hevesi, M.; Schwab, J.H.; Griffin, A.M.; Healey, J.H.; Petersen, I.A.; DeLaney, T.F.; Chung, P.W.; Yaszemski, M.J.; et al. Low dose radiotherapy is associated with local complications but not disease control in sacral chordoma. J. Surg. Oncol. 2019, 119, 856–863. [Google Scholar] [CrossRef]
- Somaiah, N.; Conley, A.P.; Parra, E.R.; Lin, H.; Amini, B.; Solis Soto, L.; Salazar, R.; Barreto, C.; Chen, H.; Gite, S.; et al. Durvalumab plus tremelimumab in advanced or metastatic soft tissue and bone sarcomas: A single-centre phase 2 trial. Lancet Oncol. 2022, 23, 1156–1166. [Google Scholar] [CrossRef]
- Blay, J.Y.; Chevret, S.; Le Cesne, A.; Brahmi, M.; Penel, N.; Cousin, S.; Bertucci, F.; Bompas, E.; Ryckewaert, T.; Soibinet, P.; et al. Pembrolizumab in patients with rare and ultra-rare sarcomas (AcSé Pembrolizumab): Analysis of a subgroup from a non-randomised, open-label, phase 2, basket trial. Lancet Oncol. 2023, 24, 892–902. [Google Scholar] [CrossRef]
- DeMaria, P.J.; Lee-Wisdom, K.; Donahue, R.N.; Madan, R.A.; Karzai, F.; Schwab, A.; Palena, C.; Jochems, C.; Floudas, C.; Strauss, J.; et al. Phase 1 open-label trial of intravenous administration of MVA-BN-brachyury-TRICOM vaccine in patients with advanced cancer. J. Immunother. Cancer 2021, 9, e003238. [Google Scholar] [CrossRef] [PubMed]
- Dridi, M.; Boutonnat, J.; Dumollard, J.M.; Peoc’h, M.; Karpathiou, G. Patterns of brachyury expression in chordomas. Ann. Diagn. Pathol. 2021, 53, 151760. [Google Scholar] [CrossRef] [PubMed]
- DeMaria, P.J.; Bilusic, M.; Park, D.M.; Heery, C.R.; Donahue, R.N.; Madan, R.A.; Bagheri, M.H.; Strauss, J.; Shen, V.; Marté, J.L.; et al. Randomized, Double-Blind, Placebo-Controlled Phase II Study of Yeast-Brachyury Vaccine (GI-6301) in Combination with Standard-of-Care Radiotherapy in Locally Advanced, Unresectable Chordoma. Oncologist 2021, 26, e847–e858. [Google Scholar] [CrossRef] [PubMed]
- Kesari, S.; Williams, J.; Burbano, E.; Stirn, M.; Caroen, S.; Oronsky, B.; Reid, T.; Larson, C. Case Report of AdAPT-001-Mediated Sensitization to a Previously Failed Checkpoint Inhibitor in a Metastatic Chordoma Patient. Case Rep. Oncol. 2023, 16, 172–176. [Google Scholar] [CrossRef]
- Guan, L.Y.; Lu, Y. New developments in molecular targeted therapy of ovarian cancer. Discov. Med. 2018, 26, 219–229. [Google Scholar]
- Petroni, G.; Buqué, A.; Coussens, L.M.; Galluzzi, L. Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment. Nat. Rev. Drug Discov. 2022, 21, 440–462. [Google Scholar] [CrossRef]
- Bedard, P.L.; Hyman, D.M.; Davids, M.S.; Siu, L.L. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet 2020, 395, 1078–1088. [Google Scholar] [CrossRef]
- Akinduro, O.O.; Suarez-Meade, P.; Garcia, D.; Brown, D.A.; Sarabia-Estrada, R.; Attia, S.; Gokaslan, Z.L.; Quiñones-Hinojosa, A. Targeted Therapy for Chordoma: Key Molecular Signaling Pathways and the Role of Multimodal Therapy. Target. Oncol. 2021, 16, 325–337. [Google Scholar] [CrossRef]
- Liu, C.; Jia, Q.; Wei, H.; Yang, X.; Liu, T.; Zhao, J.; Ling, Y.; Wang, C.; Yu, H.; Li, Z.; et al. Apatinib in patients with advanced chordoma: A single-arm, single-centre, phase 2 study. Lancet Oncol. 2020, 21, 1244–1252. [Google Scholar] [CrossRef]
- Bompas, E.; Le Cesne, A.; Tresch-Bruneel, E.; Lebellec, L.; Laurence, V.; Collard, O.; Saada-Bouzid, E.; Isambert, N.; Blay, J.Y.; Amela, E.Y.; et al. Sorafenib in patients with locally advanced and metastatic chordomas: A phase II trial of the French Sarcoma Group (GSF/GETO). Ann. Oncol. 2015, 26, 2168–2173. [Google Scholar] [CrossRef]
- Stacchiotti, S.; Longhi, A.; Ferraresi, V.; Grignani, G.; Comandone, A.; Stupp, R.; Bertuzzi, A.; Tamborini, E.; Pilotti, S.; Messina, A.; et al. Phase II study of imatinib in advanced chordoma. J. Clin. Oncol. 2012, 30, 914–920. [Google Scholar] [CrossRef]
- Stacchiotti, S.; Morosi, C.; Lo Vullo, S.; Casale, A.; Palassini, E.; Frezza, A.M.; Dinoi, G.; Messina, A.; Gronchi, A.; Cavalleri, A.; et al. Imatinib and everolimus in patients with progressing advanced chordoma: A phase 2 clinical study. Cancer 2018, 124, 4056–4063. [Google Scholar] [CrossRef]
- Mitra, A.; Ray, M.K.; Chatterjee, G.C. Role of iron in the enhancement by Agrobacterium tumefaciens infection in mice. Folia Microbiol 1988, 33, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Stacchiotti, S.; Tamborini, E.; Lo Vullo, S.; Bozzi, F.; Messina, A.; Morosi, C.; Casale, A.; Crippa, F.; Conca, E.; Negri, T.; et al. Phase II study on lapatinib in advanced EGFR-positive chordoma. Ann. Oncol. 2013, 24, 1931–1936. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Sun, J.; Yong, L.; Liang, C.; Liu, T.; Xu, Y.; Yang, J.; Liu, X. Deficiency of PTEN and CDKN2A Tumor-Suppressor Genes in Conventional and Chondroid Chordomas: Molecular Characteristics and Clinical Relevance. Onco Targets Ther. 2020, 13, 4649–4663. [Google Scholar] [CrossRef] [PubMed]
- Le, L.P.; Nielsen, G.P.; Rosenberg, A.E.; Thomas, D.; Batten, J.M.; Deshpande, V.; Schwab, J.; Duan, Z.; Xavier, R.J.; Hornicek, F.J.; et al. Recurrent chromosomal copy number alterations in sporadic chordomas. PLoS ONE 2011, 6, e18846. [Google Scholar] [CrossRef] [PubMed]
- Seeling, C.; Mosca, E.; Mantel, E.; Möller, P.; Barth, T.F.E.; Mellert, K. Prognostic Relevance and In Vitro Targeting of Concomitant PTEN and p16 Deficiency in Chordomas. Cancers 2023, 15, 1977. [Google Scholar] [CrossRef]
- Le Cesne, A.; Chevreau, C.; Perrin, C.; Italiano, A.; Hervieu, A.; Blay, J.Y.; Piperno-Neumann, S.; Saada-Bouzid, E.; Bertucci, F.; Firmin, N.; et al. Regorafenib in patients with relapsed advanced or metastatic chordoma: Results of a non-comparative, randomised, double-blind, placebo-controlled, multicentre phase II study. ESMO Open 2023, 8, 101569. [Google Scholar] [CrossRef]
- Duffaud, F.; Mir, O.; Boudou-Rouquette, P.; Piperno-Neumann, S.; Penel, N.; Bompas, E.; Delcambre, C.; Kalbacher, E.; Italiano, A.; Collard, O.; et al. Efficacy and safety of regorafenib in adult patients with metastatic osteosarcoma: A non-comparative, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol. 2019, 20, 120–133. [Google Scholar] [CrossRef]
- Ghaith, A.K.; Akinduro, O.O.; Perez-Vega, C.; Bon Nieves, A.; Abode-Iyamah, K.; Patel, N.; Kalani, M.; Clarke, M.J.; Rose, P.; Bydon, M. Association between immunohistochemical markers and tumor progression following resection of spinal chordomas: A multicenter study. J. Neurosurg. Spine 2023, 39, 652–660. [Google Scholar] [CrossRef]
- A Phase II Trial of Cetuximab for Patients with Advanced or Metastatic Chordoma. Available online: https://clinicaltrials.gov/study/NCT05041127 (accessed on 20 April 2024).
- Lipplaa, A.; Strauss, S.J.; Stacchiotti, S.; Kayani, I.; Efthymiadis, K.; Frezza, A.M.; Kranenbarg, E.M.K.; Sommer, J.; Flanagan, A.; Gelderblom, H. A phase 2, single arm, European multi-center trial evaluating the efficacy of afatinib as first line or later line treatment in advanced chordoma. J. Clin. Oncol. 2024, 42 (Suppl. 16), 11517. [Google Scholar] [CrossRef]
- Cote, G.M.; DeLaney, T.F.; Miao, R.; Schwab, J.H.; Raskin, K.; Calderón, S.L.; Mullen, J.T.; Haynes, A.B.; Hornicek, F.J.; Chen, Y.-L.; et al. Updated 5-year local control (LC), metastasis-free survival (MFS), and overall survival (OS) data from a phase I study of nilotinib plus radiation (RT) in high-risk chordoma. J. Clin. Oncol. 2020, 38 (Suppl. 15), e23505. [Google Scholar] [CrossRef]
- Burkenroad, A.; Singh, A.S.; Chmielowski, B.; Brackert, S.; Federman, N.; Hagopian, A.; Glaspy, J.A.; Kendal, J.; Wessel, L.E.; Hornicek, F.J.; et al. A signal-finding study of nivolumab and relatlimab in patients with advanced chordoma. J. Clin. Oncol. 2024, 42 (Suppl. 16), 11578. [Google Scholar] [CrossRef]
- Phase I Safety Study of Stereotactic Radiosurgery with Concurrent and Adjuvant PD-1 Antibody Nivolumab in Subjects with Recurrent or Advanced Chordoma. Available online: https://clinicaltrials.gov/study/NCT02989636 (accessed on 20 April 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golding, R.; Abuqubo, R.; Pansa, C.J.; Bhatta, M.; Shankar, V.; Mani, K.; Kleinbart, E.; Gelfand, Y.; Murthy, S.; De la Garza Ramos, R.; et al. Immunologic and Targeted Molecular Therapies for Chordomas: A Narrative Review. J. Clin. Med. 2024, 13, 5679. https://doi.org/10.3390/jcm13195679
Golding R, Abuqubo R, Pansa CJ, Bhatta M, Shankar V, Mani K, Kleinbart E, Gelfand Y, Murthy S, De la Garza Ramos R, et al. Immunologic and Targeted Molecular Therapies for Chordomas: A Narrative Review. Journal of Clinical Medicine. 2024; 13(19):5679. https://doi.org/10.3390/jcm13195679
Chicago/Turabian StyleGolding, Regina, Rami Abuqubo, Christopher J. Pansa, Manish Bhatta, Vishal Shankar, Kyle Mani, Emily Kleinbart, Yaroslav Gelfand, Saikiran Murthy, Rafael De la Garza Ramos, and et al. 2024. "Immunologic and Targeted Molecular Therapies for Chordomas: A Narrative Review" Journal of Clinical Medicine 13, no. 19: 5679. https://doi.org/10.3390/jcm13195679
APA StyleGolding, R., Abuqubo, R., Pansa, C. J., Bhatta, M., Shankar, V., Mani, K., Kleinbart, E., Gelfand, Y., Murthy, S., De la Garza Ramos, R., Krystal, J., Eleswarapu, A., Yassari, R., Mostafa, E., Fourman, M. S., & Schlumprecht, A. (2024). Immunologic and Targeted Molecular Therapies for Chordomas: A Narrative Review. Journal of Clinical Medicine, 13(19), 5679. https://doi.org/10.3390/jcm13195679