A Comparative Analysis of the SARC-F Questionnaire and the Malnutrition–Inflammation Score for Sarcopenia Risk Assessment and Negative Outcome Probability in Chronic Hemodialysis Patients
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fouque, D.; Kalantar-Zadeh, K.; Kopple, J.; Cano, N.; Chauveau, P.; Cuppari, L.; Franch, H.; Guarnieri, G.; Ikizler, T.A.; Kaysen, G.; et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008, 73, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Morley, J.E.; Schols, A.; Ferrucci, L.; Cruz-Jentoft, A.J.; Dent, E.; Baracos, V.E.; Crawford, J.A.; Doehner, W.; Heymsfield, S.B.; et al. Sarcopenia: A time for action. An, S.C.;WD position paper. J. Cachexia Sarcopenia Muscle 2019, 10, 956–961. [Google Scholar] [CrossRef]
- Anker, S.D.; Coats, A.J.; Morley, J.E.; Rosano, G.; Bernabei, R.; von Haehling, S.; Kalantar-Zadeh, K. Muscle wasting disease: A proposal for a new disease classification. J. Cachexia Sarcopenia Muscle 2014, 5, 1–3. [Google Scholar] [CrossRef]
- Muscaritoli, M.; Lucia, S.; Molfino, A.; Cederholm, T.; Rossi Fanelli, F. Muscle atrophy in aging and chronic diseases: Is it sarcopenia or cachexia? Intern. Emerg. Med. 2013, 8, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Leikis, M.J.; McKenna, M.J.; Petersen, A.C.; Kent, A.B.; Murphy, K.T.; Leppik, J.A.; Gong, X.; McMahon, L.P. Exercise performance falls over time in patients with chronic kidney disease despite maintenance of hemoglobin concentration. Clin. J. Am. Soc. Nephrol. 2006, 1, 488–495. [Google Scholar] [CrossRef]
- McIntyre, C.W.; Selby, N.M.; Sigrist, M.; Pearce, L.E.; Mercer, T.H.; Naish, P.F. Patients receiving maintenance dialysis have more severe functionally significant skeletal muscle wasting than patients with dialysis-independent chronic kidney disease. Nephrol. Dial. Transplant. 2006, 21, 2210–2216. [Google Scholar] [CrossRef]
- Carrero, J.J.; Chmielewski, M.; Axelsson, J.; Snaedal, S.; Heimbürger, O.; Bárány, P.; Suliman, M.E.; Lindholm, B.; Stenvinkel, P.; Qureshi, A.R. Muscle atrophy, inflammation and clinical outcome in incident and prevalent dialysis patients. Clin. Nutr. 2008, 27, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Workeneh, B.T.; Kalantar-Zadeh, K.; Moore, L.W. Progress in the Identification and Management of Protein-Energy Wasting and Sarcopenia in Chronic Kidney Disease. J. Ren. Nutr. 2021, 31, 335–339. [Google Scholar] [CrossRef]
- Riella, M.C. Nutritional evaluation of patients receiving dialysis for the management of protein-energy wasting: What is old and what is new? J. Ren. Nutr. 2013, 23, 195–198. [Google Scholar] [CrossRef]
- Cooper, B.A.; Bartlett, L.H.; Aslani, A.; Allen, B.J.; Ibels, L.S.; Pollock, C.A. Validity of subjective global assessment as a nutritional marker in end-stage renal disease. Am. J. Kidney Dis. 2002, 40, 126–132. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Kopple, J.D.; Block, G.; Humphreys, M.H. A malnutrition-inflammation score is correlated with morbidity and mortality in maintenance hemodialysis patients. Am. J. Kidney Dis. 2001, 38, 1251–1263. [Google Scholar] [CrossRef] [PubMed]
- Malmstrom, T.K.; Morley, J.E. SARC-F: A simple questionnaire to rapidly diagnose sarcopenia. J. Am. Med. Dir. Assoc. 2013, 14, 531–532. [Google Scholar] [CrossRef] [PubMed]
- Carrero, J.J.; Thomas, F.; Nagy, K.; Arogundade, F.; Avesani, C.M.; Chan, M.; Chmielewski, M.; Cordeiro, A.C.; Espinosa-Cuevas, A.; Fiaccadori, E.; et al. Global prevalence of protein-energy wasting in kidney disease: A meta-analysis of contemporary observational studies from the international society of renal nutrition and metabolism. J. Ren. Nutr. 2018, 28, 380–392. [Google Scholar] [CrossRef]
- Macedo, C.; Amaral, T.F.; Rodrigues, J.; Santin, F.; Avesani, C.M. Malnutrition and Sarcopenia Combined Increases the Risk for Mortality in Older Adults on Hemodialysis. Front. Nutr. 2021, 8, 721941. [Google Scholar] [CrossRef]
- Yamamoto, A.; Matsuzawa, R.; Harada, M.; Watanabe, T.; Shimoda, T.; Suzuki, Y.; Kamiya, K.; Osada, S.; Yoshida, A.; Matsunaga, A. SARC-F Questionnaire: Rapid and Easy Tool for Identifying Physical Limitations in Hemodialysis Patients. J. Cachexia Sarcopenia Muscle Clin. Rep. 2019, 4, 1–12. [Google Scholar] [CrossRef]
- Amparo, F.C.; Cordeiro, A.C.; Carrero, J.J.; Cuppari, L.; Lindholm, B.; Amodeo, C.; Kamimura, M.A. Malnutrition-inflammation score is associated with handgrip strength in nondialysis-dependent chronic kidney disease patients. J. Ren. Nutr. 2013, 23, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Imamura, K.; Yamamoto, S.; Suzuki, Y.; Matsuzawa, R.; Harada, M.; Yoshikoshi, S.; Yoshida, A.; Matsunaga, A. Limitations of SARC-F as a Screening Tool for Sarcopenia in Patients on Hemodialysis. Nephron 2022, 146, 32–39. [Google Scholar] [CrossRef]
- Su, C.T.; Yabes, J.; Pike, F.; Weiner, D.E.; Beddhu, S.; Burrowes, J.D.; Rocco, M.V.; Unruh, M.L. Changes in anthropometry and mortality in maintenance hemodialysis patients in the HEMO study. Am. J. Kidney Dis. 2013, 62, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- den Hoedt, C.H.; Bots, M.L.; Grooteman, M.P.; van der Weerd, N.C.; Penne, E.L.; Mazairac, A.H.; Levesque, R.; Blankestijn, P.J.; Nube, M.J.; ter Wee, P.M.; et al. Clinical predictors of decline in nutritional parameters over time in ESRD. Clin. J. Am. Soc. Nephrol. 2014, 9, 318–325. [Google Scholar] [CrossRef]
- Rattanasompattikul, M.; Molnar, M.Z.; Zaritsky, J.J.; Hatamizadeh, P.; Jing, J.; Norris, K.C.; Kovesdy, C.P.; Kalantar-Zadeh, K. Association of malnutrition-inflammation complex and responsiveness to erythropoiesis-stimulating agents in long-term hemodialysis patients. Nephrol. Dial. Transplant. 2013, 28, 1936–1945. [Google Scholar] [CrossRef]
- Fouque, D.; Guebre-Egziabher, F. An update on nutrition in chronic kidney disease. Int. Urol. Nephrol. 2007, 39, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Beberashvili, I.; Azar, A.; Sinuani, I.; Kadoshi, H.; Shapiro, G.; Feldman, L.; Averbukh, Z.; Weissgarten, J. Comparison Analysis of Nutritional Scores for Serial Monitoring of Nutritional Status in Hemodialysis Patients. CJASN 2013, 8, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.; Leung, J.; Morley, J.E. Validating the SARC-F: A suitable community screening tool for sarcopenia? J. Am. Med. Dir. Assoc. 2014, 15, 630–634. [Google Scholar] [CrossRef]
- Malmstrom, T.K.; Miller, D.K.; Simonsick, E.M.; Ferrucci, L.; Morley, J.E. SARC-F: A symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J. Cachexia Sarcopenia Muscle 2016, 7, 28–36. [Google Scholar] [CrossRef]
- Jiang, K.; Slee, A.; Davenport, A. Screening Tests for Sarcopenia in Patients with Chronic Kidney Disease. NCP 2020, 36, 1049–1052. [Google Scholar] [CrossRef]
- Marini, A.C.B.; Perez, D.R.S.; Fleuri, J.A.; Duarte Pimentel, G. SARC-F is Better Correlated with Muscle Function Indicators than Muscle Mass in Older Hemodialysis Patients. J. Nutr. Health Aging 2020, 24, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.L.; Hou, J.S.; Lai, Y.H.; Wang, C.H.; Kuo, C.H.; Liou, H.H.; Hsu, B.G. Association of SARC-F Questionnaire and Mortality in Prevalent Hemodialysis Patients. Diagnostics 2020, 10, 890. [Google Scholar] [CrossRef]
- Young Do, J.; Hyuk Seo, J.; Hui Kang, S. Validation of the SARC-F for Assessing Sarcopenia in Patients on Peritoneal Dialysis. J. Ren. Nutr. 2022, 32, 341–346. [Google Scholar] [CrossRef]
- Duarte, M.P.; Ribeiro, H.S.; Almeida, L.S.; Baião, V.M.; Inda-Filho, A.; Avesani, C.M.; Ferreira, A.P.; Lima, R.M. SARC-F and SARC-CalF are associated with sarcopenia traits in hemodialysis patients. NCP 2022, 37, 1356–1365. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Kopple, J.D.; Humphreys, M.H.; Block, G. Comparing outcome predictability of markers of malnutrition-inflammation complex syndrome in haemodialysis patients. Nephrol. Dial. Transplant. 2004, 19, 1507–1519. [Google Scholar] [CrossRef]
- Rambod, M.; Bross, R.; Zitterkoph, J.; Benner, D.; Pithia, J.; Colman, S.; Kovesdy, C.P.; Kopple, J.D.; Kalantar-Zadeh, K. Association of Malnutrition-Inflammation Score with quality of life and mortality in hemodialysis patients: A 5-year prospective cohort study. Am. J. Kidney Dis. 2009, 53, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Block, G.; McAllister, C.J.; Humphreys, M.H.; Kopple, J.D. Appetite and inflammation, nutrition, anemia, and clinical outcome in hemodialysis patients. Am. J. Clin. Nutr. 2004, 80, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Bonanni, A.; Mannuci, I.; Verzola, D.; Sofia, A.; Saffioti, S.; Gianetta, E.; Gabibotto, G. Protein-Energy wasting and mortality in chronic kidney disease. Int. J. Environ. Res. Public Health 2011, 8, 1631–1654. [Google Scholar] [CrossRef]
- Kovesdy, C.P.; Kalantar-Zadeh, K. Why is protein-energy wasting associated with mortality in chronic kidney disease? Semin. Nephrol. 2009, 29, 3–14. [Google Scholar] [CrossRef]
- Ho, L.C.; Wang, H.H.; Peng, Y.S.; Chiang, C.K.; Huang, J.W.; Hung, K.Y.; Hu, F.-C.; Wu, K.-D. Clinical Utility of Malnutrition-Inflammation Score in Maintenance Hemodialysis Patients: Focus on Identifying the Best Cut-Off Point. Am. J. Nephrol. 2008, 28, 840–846. [Google Scholar] [CrossRef]
- Latos, D.L. Chronic dialysis in patients over age 65. J. Am. Soc. Nephrol. 1996, 7, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Oreopoulos, A.; Kalantar-Zadeh, K.; Sharma, A.M.; Fonarow, G.C. The obesity paradox in the elderly: Potential mechanisms and clinical implications. Clin. Geriatr. Med. 2009, 25, 643–659. [Google Scholar] [CrossRef]
- Miller, S.L.; Wolfe, R.R. The danger of weight loss in the elderly. J. Nutr. Health Aging 2008, 12, 487–489. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Abbott, K.C.; Kronenberg, F.; Anker, S.D.; Horwich, T.B.; Fonarow, G.C. Epidemiology of dialysis patients and heart failure patients. Semin. Nephrol. 2006, 26, 118–133. [Google Scholar] [CrossRef]
- Locatelli, F.; Manzoni, C.; Del Vecchio, L.; Di Filippo, S. Changes in the clinical condition of haemodialisys patients. J. Nephrol. 1999, 12, S82–S91. [Google Scholar]
- Swamy, S.; Noor, S.M.; Mathew, R.O. Cardiovascular Disease in Diabetes and Chronic Kidney Disease. J. Clin. Med. 2023, 12, 6984. [Google Scholar] [CrossRef] [PubMed]
- Matheus, A.S.; Tannus, L.R.; Cobas, R.A.; Palma, C.C.; Negrato, C.A.; Gomes, M.B. Impact of diabetes on cardiovascular disease: An update. Int. J. Hypertens 2013, 2013, 653789. [Google Scholar] [CrossRef] [PubMed]
- London, G.M. Cardiovascular disease in chronic renal failure: Pathophysiologic aspects. Semin. Dial. 2003, 16, 85–94. [Google Scholar] [CrossRef]
- Cozzolino, M.; Mangano, M.; Stucchi, A.; Ciceri, P.; Conte, F.; Galassi, A. Cardiovascular disease in dialysis patients. Nephrol. Dial. Transplant. 2018, 33 (Suppl. S3), iii28–iii34. [Google Scholar] [CrossRef]
- Chertow, G.M.; Johansen, K.L.; Lew, N.; Lazarus, J.M.; Lowrie, E.G. Vintage, nutritional status, and survival in hemodialysis patients. Kidney Int. 2000, 57, 1176–1181. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Kilpatrick, R.D.; Kuwae, N. Revisiting mortality predictability of serum albumin in the dialysis population: Time dependency, longitudinal changes and population-attributable fraction. Nephrol. Dial. Transplant. 2005, 20, 1880–1888. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Wingard, R.L.; Harvell, J.; Shyr, Y.; Hakim, R. Association of morbidity with markers of nutrition and inflammation in chronic hemodialysis patients: A prospective study. Kidney Int. 1999, 55, 1945–1951. [Google Scholar] [CrossRef]
- Menon, V.; Wang, X.; Greene, T.; Beck, G.J.; Kusek, J.W.; Marcovina, S.M.; Levey, A.S.; Sarnak, M.J. Relationship between C-reactive protein, albumin, and cardiovascular disease in patients with chronic kidney disease. Am. J. Kidney Dis. 2003, 42, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Furuya, R.; Takita, T.; Maruyama, Y.; Yamaguchi, Y.; Ohkawa, S.; Kumagai, H. Simplified nutritional screening tools for patients on maintenance hemodialysis. Am. J. Clin. Nutr. 2008, 87, 106–113. [Google Scholar] [CrossRef]
- Du, W.; Gao, C.; Wang, X.; Ma, X.; Xie, J.; Yu, H.; Yang, Z.; Chen, Z.; Chen, X. Validity of the SARC-F questionnaire in assessing sarcopenia in patients with chronic kidney disease: A cross-sectional study. Front. Med. 2023, 10, 1188971. [Google Scholar] [CrossRef]
- Voelker, S.N.; Michalopoulos, N.; Maier, A.B.; Reijnierse, E.M. Reliability and Concurrent Validity of the SARC-F and Its Modified Versions: A Systematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2021, 22, 1864–1876.e16. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Koh, J.; Ogami, S.; Aoki, Y.; Hori, K.; Emori, S.; Matsumoto, T.; Taruya, J.; Yorozu, S.; Sakata, M.; et al. Prevalence, Impact, and Screening Methods of Sarcopenia in Japanese Patients With Parkinson’s Disease: A Prospective Cross-Sectional Study. Cureus 2024, 16, e65316. [Google Scholar] [CrossRef] [PubMed]
- Bahat, G.; Erdoğan, T.; İlhan, B. SARC-F and other screening tests for sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 37–42. [Google Scholar] [CrossRef]
- Ushiro, K.; Nishikawa, H.; Matsui, M.; Ogura, T.; Takeuchi, T.; Goto, M.; Nakamura, S.; Kakimoto, K.; Miyazaki, T.; Fukunishi, S.; et al. Comparison of SARC-F Score among Gastrointestinal Diseases. J. Clin. Med. 2021, 10, 4099. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All Patients (n = 109) |
---|---|
Demographic | |
Gender M:F (%) | 61.5:38.5% |
Age (median; years) | 61 (27–85) |
HD vintage (median; months) | 50 (6–168) |
Primary kidney disease (%) | |
Diabetic nephropathy | 28.4% |
Glomerulonephritis | 27.5% |
Hypertensive kidney disease | 16.5% |
Other | 27.6% |
Screening for sarcopenia and PEW | |
MIS (median) | 7 (5–21) |
SARC-F (median) | 1 (0–10) |
ISRNM PEW criteria (%) | |
Normal status | 21.1% |
Mild PEW | 29.4% |
Moderate PEW | 23.9% |
Severe PEW | 5.5% |
Comorbidities (%) | |
Diabetes | 26.9% |
CVD | 39% |
AH | 77% |
Median (Interquartile Range) | R (95% CI) | p * | ||
---|---|---|---|---|
Non-DM (n = 79) | DM (n = 30) | |||
Age (years) | 59 (46–72) | 69 (64.8–74.8) | 10 (4 to 16) | 0.001 |
HD vintage (months) | 46 (24–81) | 31 (14.3–47.8) | −16 (−30 to −5) | 0.004 |
BMI (kg/m2) | 24.26 (21.15–29.35) | 28.5 (24.9–32.0) | 3.26 (1.04 to 5.51) | 0.006 |
SARC-F | 0 (0–2) | 3.5 (0–6) | 1 (0 to 3) | 0.008 |
MIS | 7 (5–9) | 9 (6–11) | 2 (0 to 4) | 0.01 |
Prealbumin (g/L) | 0.31 (0.26–0.36) | 0.27 (0.2–0.3) | −0.04 (−0.08 to −0.01) | 0.01 |
Albumin (g/L) | 40.4 (37.3–43) | 36.5 (34.3–40.8) | −3.4 (−5.2 to −1.6) | 0.001 |
Total protein (g/L) | 67 (64–70) | 64.5 (59.8–69) | −2 (−5 to 0) | 0.12 |
Calcium (mmol/L) | 2.15 (2.09–2.28) | 2.1 (2–2.2) | −0.08 (−0.14 to −0.01) | 0.02 |
Phosphorus (mmol/L) | 1.8 (1.44–2.16) | 1.7 (1.4–2) | −0.11 (−0.34 to 0.10) | 0.26 |
TIBC (µmol/L) | 40 (36–46) | 37 (34–42) | −4 (−6 to 0) | 0.02 |
Cholesterol (mmol/L) | 3.4 (2.8–4.2) | 3.5 (2.7–4.3) | 0 (−0.5 to 0.4) | 0.87 |
Triglycerides (mmol/L) | 1.3 (1–2.2) | 1.8 (1–2.8) | 0.22 (−0.19 to 0.68) | 0.29 |
Hemoglobin (g/L) | 109 (98–116) | 105 (100–114.3) | −2 (−7 to 4) | 0.51 |
Glucose (mmol/L) | 5.3 (4.7–6.6) | 6.7 (5.6–9.9) | 1.1 (0.5 to 2.1) | 0.002 |
CRP (mg/L) | 2.7 (1–7) | 5.2 (2.7–14.2) | 1.8 (0.3 to 3.6) | 0.02 |
Potassium (mmol/L) | 5.2 (4.8–5.7) | 5.3 (4.8–5.9) | 0.1 (−0.2 to 0.5) | 0.52 |
SARC-F (%) | p * | |||
---|---|---|---|---|
0–3 (n = 80) | ≥4 (n = 29) | All Patients (n = 109) | ||
Sex | ||||
Male | 52 (65) | 15 (51.7) | 67 (61.5) | 0.21 |
Female | 28 (35) | 14 (48.3) | 42 (38.5) | |
Diabetes | ||||
No | 65 (81.3) | 14 (48.3) | 79 (72.5) | 0.001 |
Yes | 15 (18.8) | 15 (51.7) | 30 (27.5) | |
MIS | ||||
0–5 | 29 (36.3) | 1 (3.4) | 30 (27.5) | 0.001 |
≥6 | 51 (63.8) | 28 (96.6) | 79 (72.5) | |
CVD | 28 (35) | 14 (48) | 42 (38) | 0.21 |
AH | 65 (81) | 19 (65) | 84 (77) | 0.08 |
Weight reduction | 16 (20) | 14 (48.3) | 30 (27.5) | 0.003 |
Poor appetite | 7 (8.8) | 9 (31) | 16 (14.7) | 0.01 † |
ISRNM criteria | ||||
Normal status | 23 (28.8) | 0 | 23 (21.1) | <0.001 † |
Mild PEW | 30 (37.5) | 2 (6.9) | 32 (29.4) | |
Moderate PEW | 15 (18.8) | 11 (37.9) | 26 (23.9) | |
Severe PEW | 1 (1.3) | 5 (17.2) | 6 (5.5) | |
* Sarcopenic obesity | 11 (13.8) | 11 (37.9) | 22 (20.2) | |
Outcome | ||||
Negative (death) | 4 (5) | 3 (10.3) | 7 (6.4) | 0.38 † |
Positive | 76 (95) | 26 (89.7) | 102 (93.6) |
Median (Interquartile Range) SARC-F | R (95% CI) | p * | ||
---|---|---|---|---|
0–3 | ≥4 | |||
Age (years) | 60 (47–69.75) | 71 (65–79.5) | 13 (7 to 19) | <0.001 |
HD vintage (months) | 40 (21–61.5) | 37 (18.5–74) | 0 (−13 to 14) | >0.99 |
BMI (kg/m2) | 24.2 (21.15–29.35) | 27.5 (24.6–31.5) | 3.18 (0.77 to 5.32) | 0.01 |
MIS | 6 (4.25–8) | 10 (7–11) | 3 (2 to 5) | <0.001 |
Prealbumin (g/L) | 0.32 (0.26–0.36) | 0.3 (0.2–0.3) | −0.05 (−0.09 to −0.02) | 0.002 |
Albumin (g/L) | 40.55 (37.23–43) | 36.5 (34.2–40.5) | −3.3 (−5.1 to −1.5) | <0.001 |
Total protein (g/L) | 67 (63.25–71) | 65 (61.5–69) | −2 (−4 to 1) | 0.18 |
Calcium (mmol/L) | 2.16 (2.09–2.26) | 2.1 (2–2.2) | −0.07 (−0.14 to −0.01) | 0.03 |
Phosphorus (mmol/L) | 1.79 (1.46–2.16) | 1.6 (1.3–2.1) | −0.16 (−0.39 to 0.07) | 0.17 |
TIBC (µmol/L) | 40 (35.25–45) | 39 (34–42.5) | −2 (−5 to 1) | 0.27 |
Cholesterol (mmol/L) | 3.5 (2.9–4.18) | 3.4 (2.7–4.6) | −0.2 (−0.6 to 0.3) | 0.37 |
Triglycerides (mmol/L) | 1.4 (1–2.5) | 1.6 (0.9–2.3) | −0.05 (−0.39 to 0.36) | 0.86 |
Hemoglobin (g/L) | 109 (101–116.8) | 102 (94.5–111) | −7 (−12 to −1) | 0.02 |
Glucose (mmol/L) | 5.6 (4.8–7) | 5.7 (5–7.8) | 0.3 (−0.3 to 1) | 0.37 |
CRP (mg/L) | 2.8 (1–6.9) | 4.6 (2.3–8.3) | 1.2 (−0.1 to 2.3) | 0.10 |
Potassium (mmol/L) | 5.3 (4.9–5.9) | 5 (4.7–5.7) | −0.2 (−0.6 to 0.1) | 0.13 |
MIS (%) | p * | |||
---|---|---|---|---|
0–5 (n = 47) | ≥6 (n = 62) | All Patients (n = 109) | ||
Sex | ||||
Male | 29 (61.7) | 38 (61.3) | 67 (61.5) | 0.97 |
Female | 18 (38.3) | 24 (38.7) | 42 (38.5) | |
Diabetes | ||||
No | 39 (83) | 40 (64.5) | 79 (72.5) | 0.03 |
Yes | 8 (17) | 22 (35.5) | 30 (27.5) | |
SARC-F | ||||
0–3 | 43 (91.5) | 37 (59.7) | 80 (73.4) | <0.001 |
≥4 | 4 (8.5) | 25 (40.3) | 29 (26.6) | |
CVD | 12 (25) | 30 (48) | 42 (38) | 0.02 |
AH | 37 (78) | 47 (76) | 84 (77) | 0.72 |
Weight reduction | 6 (12.8) | 24 (38.7) | 30 (27.5) | 0.003 |
Poor appetite | 0 | 16 (25.8) | 16 (14.7) | <0.001 |
ISRNM criteria | ||||
Normal status | 22 (46.8) | 1 (1.6) | 23 (21.1) | <0.001 † |
Mild PEW | 13 (27.7) | 19 (30.6) | 32 (29.4) | |
Moderate PEW | 3 (6.4) | 23 (37.1) | 26 (23.9) | |
Severe PEW | 0 | 6 (9.7) | 6 (5.5) | |
* Sarcopenic obesity | 9 (19.1) | 13 (21) | 22 (20.2) | |
Outcome | ||||
Negative (death) | 0 | 7 (11.3) | 7 (6.4) | 0.02 † |
Positive | 47 (100) | 55 (88.7) | 102 (93.6) |
Median (Interquartile Range) MIS | R (95% CI) | p * | ||
---|---|---|---|---|
0–5 | ≥6 | |||
Age (years) | 57 (35–65.75) | 65 (56–75) | 11 (5 to 18) | 0.001 |
HD vintage (months) | 39 (20.5–57.25) | 41 (20–67) | 4 (−8 to 17) | 0.47 |
BMI (kg/m2) | 26.05 (21.22–30.57) | 25.1 (22.3–29.4) | −0.98 (−3.32 to 1.57) | 0.47 |
SARC-F | 0 (0–1) | 1 (0–6) | 1 (0 to 2) | <0.001 |
Prealbumin (g/L) | 0.36 (0.31–0.44) | 0.3 (0.2–0.3) | −0.08 (−0.12 to −0.04) | <0.001 |
Albumin (g/L) | 42.75 (41–44.15) | 38 (35–41) | −4.7 (−6.2 to −3.2) | <0.001 |
Total protein (g/L) | 69 (65.75–73) | 65 (62–69) | −4 (−6 to −1) | 0.003 |
Calcium (mmol/L) | 2.16 (2.1–2.24) | 2.1 (2–2.3) | −0.03 (−0.09 to 0.03) | 0.42 |
Phosphorus (mmol/L) | 1.88 (1.54–2.21) | 1.7 (1.4–2) | −0.2 (−0.4 to 0.03) | 0.08 |
TIBC (µmol/L) | 41 (38.5–45.25) | 39 (34–43) | −3 (−6 to 0) | 0.02 |
Cholesterol (mmol/L) | 3.5 (2.88–4.1) | 3.4 (2.7–4.2) | −0.1 (−0.5 to 0.3) | 0.74 |
Triglycerides (mmol/L) | 1.3 (1.1–2.2) | 1.6 (0.9–2.5) | −0.04 (−0.36 to 0.37) | 0.86 |
Hemoglobin (g/L) | 115 (109–119.3) | 105 (97–112) | −9 (−14 to −5) | <0.001 |
Glucose (mmol/L) | 5.3 (4.9–6.2) | 5.9 (4.9–7.4) | 0.4 (−0.1 to 1.1) | 0.15 |
CRP (mg/L) | 1.9 (1–6.1) | 3.3 (1.6–7.3) | 0.85 (0 to 2) | 0.09 |
Potassium (mmol/L) | 5.4 (4.9–6) | 5.1 (4.7–5.7) | −0.3 (−0.6 to 0.1) | 0.11 |
Bivariate Analysis | ß | OR | 95% CI | p |
---|---|---|---|---|
Gender | 0.19 | 1.21 | 0.26–5.70 | 0.81 |
Age | 0.04 | 1.04 | 0.98–1.11 | 0.19 |
HD vintage | −0.001 | 0.99 | 0.97–1.02 | 0.94 |
Diabetes | 0.73 | 2.08 | 0.44–9.92 | 0.36 |
CVD | −0.48 | 0.62 | 0.12–3.35 | 0.58 |
AH | 0.61 | 1.85 | 0.21–16.1 | 0.57 |
SARC-F | 0.19 | 1.21 | 0.96–1.53 | 0.11 |
SARC-F (≥4) | 0.79 | 2.19 | 0.46–10.5 | 0.33 |
BMI | −0.05 | 0.95 | 0.82–1.11 | 0.53 |
MIS | 0.25 | 1.28 | 1.02–1.60 | 0.03 |
MIS (≥6) | 18.9 | - | - | >0.99 |
ISRNM criteria | ||||
Normal status | ||||
Mild PEW | 0 | 1 | - | >0.99 |
Moderate PEW | 18.2 | - | - | >0.99 |
Severe PEW | 20.8 | - | - | >0.99 |
Sarcopenic obesity | 18.9 | - | - | >0.99 |
Albumin | −0.16 | 0.86 | 0.71–1.03 | 0.09 |
Total protein | −0.05 | 0.95 | 0.86–1.06 | 0.36 |
Calcium | −2.20 | 0.11 | 0.001–24.2 | 0.43 |
Phosphorus | 1.29 | 3.63 | 0.74–17.9 | 0.11 |
Cholesterol | −0.37 | 0.69 | 0.27–1.76 | 0.44 |
Triglycerides | −0.11 | 0.90 | 0.41–1.99 | 0.80 |
Hemoglobin | −0.02 | 0.98 | 0.92–1.04 | 0.48 |
Glucose | 0.01 | 1.01 | 0.69–1.48 | 0.95 |
CRP | 0.06 | 1.06 | 1.01–1.12 | 0.03 |
Potassium | −0.08 | 0.93 | 0.31–2.76 | 0.89 |
Weight loss | 1.46 | 4.32 | 0.68–27.4 | 0.12 |
Reduced appetite | −18.4 | - | - | >0.99 |
ß | OR * | 95% CI | p | |
---|---|---|---|---|
MIS | 0.467 | 1.59 | 1.11–2.29 | 0.01 |
Constant | −16.64 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katalinic, L.; Juric, I.; Furic Cunko, V.; Premuzic, V.; Jelakovic, B.; Basic-Jukic, N. A Comparative Analysis of the SARC-F Questionnaire and the Malnutrition–Inflammation Score for Sarcopenia Risk Assessment and Negative Outcome Probability in Chronic Hemodialysis Patients. J. Clin. Med. 2024, 13, 5554. https://doi.org/10.3390/jcm13185554
Katalinic L, Juric I, Furic Cunko V, Premuzic V, Jelakovic B, Basic-Jukic N. A Comparative Analysis of the SARC-F Questionnaire and the Malnutrition–Inflammation Score for Sarcopenia Risk Assessment and Negative Outcome Probability in Chronic Hemodialysis Patients. Journal of Clinical Medicine. 2024; 13(18):5554. https://doi.org/10.3390/jcm13185554
Chicago/Turabian StyleKatalinic, Lea, Ivana Juric, Vesna Furic Cunko, Vedran Premuzic, Bojan Jelakovic, and Nikolina Basic-Jukic. 2024. "A Comparative Analysis of the SARC-F Questionnaire and the Malnutrition–Inflammation Score for Sarcopenia Risk Assessment and Negative Outcome Probability in Chronic Hemodialysis Patients" Journal of Clinical Medicine 13, no. 18: 5554. https://doi.org/10.3390/jcm13185554
APA StyleKatalinic, L., Juric, I., Furic Cunko, V., Premuzic, V., Jelakovic, B., & Basic-Jukic, N. (2024). A Comparative Analysis of the SARC-F Questionnaire and the Malnutrition–Inflammation Score for Sarcopenia Risk Assessment and Negative Outcome Probability in Chronic Hemodialysis Patients. Journal of Clinical Medicine, 13(18), 5554. https://doi.org/10.3390/jcm13185554