Trends in the Use of Weightbearing Computed Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources and Search
2.4. Data Charting and Items
2.5. Critical Appraisal of Included Studies
2.6. Synthesis of Results
3. Results
3.1. Elective Conditions
3.2. Traumatic Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tuominen, E.K.J.; Kankare, J.; Koskinen, S.K.; Mattila, K.T. Weight-Bearing CT Imaging of the Lower Extremity. AJR Am. J. Roentgenol. 2013, 200, 146–148. [Google Scholar] [CrossRef]
- Doan, M.K.; Long, J.R.; Verhey, E.; Wyse, A.; Patel, K.; Flug, J.A. Cone-Beam CT of the Extremities in Clinical Practice. Radiographics 2024, 44, e230143. [Google Scholar] [CrossRef]
- Jin, J.Y.; Ren, L.; Liu, Q.; Kim, J.; Wen, N.; Guan, H.; Movsas, B.; Chetty, I.J. Combining Scatter Reduction and Correction to Improve Image Quality in Cone-Beam Computed Tomography (CBCT). Med. Phys. 2010, 37, 5634–5644. [Google Scholar] [CrossRef]
- Men, K.; Dai, J.; Chen, X.; Li, M.; Zhang, K.; Huang, P. Dual-Energy Imaging Method to Improve the Image Quality and the Accuracy of Dose Calculation for Cone-Beam Computed Tomography. Phys. Medica 2017, 36, 110–118. [Google Scholar] [CrossRef]
- Kong, V.C.; Marshall, A.; Chan, H.B. Cone Beam Computed Tomography: The Challenges and Strategies in Its Application for Dose Accumulation. J. Med. Imaging Radiat. Sci. 2016, 47, 92–97. [Google Scholar] [CrossRef]
- Lechuga, L.; Weidlich, G.A. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities. Cureus 2016, 8, e778. [Google Scholar] [CrossRef]
- Willauer, P.; Sangeorzan, B.J.; Whittaker, E.C.; Shofer, J.B.; Ledoux, W.R. The Sensitivity of Standard Radiographic Foot Measures to Misalignment. Foot Ankle Int. 2014, 35, 1334–1340. [Google Scholar] [CrossRef]
- Barg, A.; Amendola, R.L.; Henninger, H.B.; Kapron, A.L.; Saltzman, C.L.; Anderson, A.E. Influence of Ankle Position and Radiographic Projection Angle on Measurement of Supramalleolar Alignment on the Anteroposterior and Hindfoot Alignment Views. Foot Ankle Int. 2015, 36, 1352–1361. [Google Scholar] [CrossRef]
- Lenz, A.L.; Krähenbühl, N.; Howell, K.; Lisonbee, R.; Hintermann, B.; Saltzman, C.L.; Barg, A. Influence of the Ankle Position and X-Ray Beam Angulation on the Projection of the Posterior Facet of the Subtalar Joint. Skelet. Radiol. 2019, 48, 1581–1589. [Google Scholar] [CrossRef] [PubMed]
- Mozzo, P.; Procacci, C.; Tacconi, A.; Martini, P.T.; Andreis, I.A. A New Volumetric CT Machine for Dental Imaging Based on the Cone-Beam Technique: Preliminary Results. Eur. Radiol. 1998, 8, 1558–1564. [Google Scholar] [CrossRef] [PubMed]
- Al-Okshi, A.; Lindh, C.; Salé, H.; Gunnarsson, M.; Rohlin, M. Effective Dose of Cone Beam CT (CBCT) of the Facial Skeleton: A Systematic Review. Br. J. Radiol. 2015, 88, 20140658. [Google Scholar] [CrossRef]
- Ludlow, J.B.; Ivanovic, M. Comparative Dosimetry of Dental CBCT Devices and 64-Slice CT for Oral and Maxillofacial Radiology. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2008, 106, 106–114. [Google Scholar] [CrossRef]
- Ludlow, J.B.; Timothy, R.; Walker, C.; Hunter, R.; Benavides, E.; Samuelson, D.B.; Scheske, M.J. Ffective Dose of Dental CBCT—A Meta Analysis of Published Data and Additional Data for Nine CBCT Units. Dentomaxillofacial Radiol. 2015, 44, 20140197. [Google Scholar] [CrossRef]
- Morant, J.J.; Salvadó, M.; Herńandez-Giŕon, I.; Casanovas, R.; Ortega, R.; Calzado, A. Dosimetry of a Cone Beam CT Device for Oral and Maxillofacial Radiology Using Monte Carlo Techniques and ICRP Adult Reference Computational Phantoms. Dentomaxillofacial Radiol. 2013, 42, 92555893. [Google Scholar] [CrossRef]
- Orhan, K.; Pauwels, R.; Chen, Y.; Song, D.; Jacobs, R. Estimation of the Radiation Dose for Dental Spectral Cone-Beam CT. Dentomaxillofacial Radiol. 2021, 50, 20200372. [Google Scholar] [CrossRef]
- Houfrar, J.; Ludwig, B.; Bister, D.; Nienkemper, M.; Abkai, C.; Venugopal, A. The Effects of Additional Filtration on Image Quality and Radiation Dose in Cone Beam CT: An in Vivo Preliminary Investigation. Biomed. Res. Int. 2022, 2022, 7031269. [Google Scholar] [CrossRef]
- Roberts, J.A.; Drage, N.A.; Davies, J.; Thomas, D.W. Effective Dose from Cone Beam CT Examinations in Dentistry. Br. J. Radiol. 2009, 82, 35–40. [Google Scholar] [CrossRef]
- Mah, E.; Ritenour, E.R.; Yao, H. A Review of Dental Cone-Beam CT Dose Conversion Coefficients. Dentomaxillofac Radiol. 2021, 50, 20200225. [Google Scholar] [CrossRef]
- Intarasuksanti, C.; Prapayasatok, S.; Kampan, N.; Sirabanchongkran, S.; Mahakkanukrauh, P.; Sastraruji, T.; Khongkhunthian, P.; Kuharattanachai, K.; Tripuwabhrut, K. Effects of the Cone-Beam Computed Tomography Protocol on the Accuracy and Image Quality of Root Surface Area Measurements: An in Vitro Study. Imaging Sci. Dent. 2023, 53, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Muthu, M.S.; Kailasam, V.; Rao, U.; Krithika, C.; Kirthiga, M.; Jagadeesan, A.; Warrier, A. Three-Dimensional Evaluation of Interproximal Contacts of Permanent Dentition: A Cone Beam Computed Tomography Study. Eur. Arch. Paediatr. Dent. 2024, 25, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, R.; Salmon, B.; Codari, M.; Hassan, B.; Bornstein, M.M. Cone Beam Computed Tomography in Implant Dentistry: Recommendations for Clinical Use. BMC Oral Health 2018, 18, 88. [Google Scholar] [CrossRef] [PubMed]
- Kaasalainen, T.; Ekholm, M.; Siiskonen, T.; Kortesniemi, M. Dental Cone Beam CT: An Updated Review. Phys. Medica 2021, 88, 193–217. [Google Scholar] [CrossRef] [PubMed]
- Horner, K.; Jacobs, R.; Schulze, R. Dental Cbct Equipment and Performance Issues. Radiat. Prot. Dosim. 2013, 153, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Reh, D.D.; Carey, J.P.; Mahesh, M.; Siewerdsen, J.H. Technical Assessment of a Cone-Beam CT Scanner for Otolaryngology Imaging: Image Quality, Dose, and Technique Protocols. Med. Phys. 2012, 39, 4932–4942. [Google Scholar] [CrossRef]
- White, S.C. Cone-Beam Imaging in Dentistry. Health Phys. 2008, 95, 628–637. [Google Scholar] [CrossRef]
- Kiljunen, T.; Kaasalainen, T.; Suomalainen, A.; Kortesniemi, M. Dental Cone Beam CT: A Review. Phys. Med. 2015, 31, 844–860. [Google Scholar] [CrossRef]
- Barg, A.; Bailey, T.; Richter, M.; de Cesar Netto, C.; Lintz, F.; Burssens, A.; Phisitkul, P.; Hanrahan, C.J.; Saltzman, C.L. Weightbearing Computed Tomography of the Foot and Ankle: Emerging Technology Topical Review. Foot Ankle Int. 2018, 39, 376–386. [Google Scholar] [CrossRef]
- Richter, M.; Zech, S.; Naef, I.; Duerr, F.; Schilke, R. Automatic Software-Based 3D-Angular Measurement for Weight-Bearing CT (WBCT) Is Valid. Foot Ankle Surg. 2024, 30, 417–422. [Google Scholar] [CrossRef]
- Leardini, A.; Durante, S.; Belvedere, C.; Caravaggi, P.; Carrara, C.; Berti, L.; Lullini, G.; Giacomozzi, C.; Durastanti, G.; Ortolani, M.; et al. Weight-Bearing CT Technology in Musculoskeletal Pathologies of the Lower Limbs: Techniques, Initial Applications, and Preliminary Combinations with Gait-Analysis Measurements at the Istituto Ortopedico Rizzoli. Semin. Musculoskelet. Radiol. 2019, 23, 643–655. [Google Scholar] [CrossRef]
- Kim, J.; Ellis, S.; Carrino, J.A. Weight-Bearing Computed Tomography of the Foot and Ankle-What to Measure? Foot Ankle Clin. 2023, 28, 619–640. [Google Scholar] [CrossRef]
- Demehri, S.; Baffour, F.I.; Klein, J.G.; Ghotbi, E.; Ibad, H.A.; Moradi, K.; Taguchi, K.; Fritz, J.; Carrino, J.A.; Guermazi, A.; et al. Musculoskeletal CT Imaging: State-of-the-Art Advancements and Future Directions. Radiology 2023, 308, e230344. [Google Scholar] [CrossRef]
- Brinch, S.; Wellenberg, R.H.H.; Boesen, M.P.; Maas, M.; Johannsen, F.E.; Nybing, J.U.; Turmezei, T.; Streekstra, G.J.; Hansen, P. Weight-Bearing Cone-Beam CT: The Need for Standardised Acquisition Protocols and Measurements to Fulfill High Expectations-a Review of the Literature. Skelet. Radiol. 2023, 52, 1073–1088. [Google Scholar] [CrossRef] [PubMed]
- Labban, W.; Stadnyk, M.; Sommerfeldt, M.; Nathanail, S.; Dennett, L.; Westover, L.; Manaseer, T.; Beaupre, L. Kinetic Measurement System Use in Individuals Following Anterior Cruciate Ligament Reconstruction: A Scoping Review of Methodological Approaches. J. Exp. Orthop. 2021, 8, 81. [Google Scholar] [CrossRef] [PubMed]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological Index for Non-Randomized Studies (Minors): Development and Validation of a New Instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Ekhtiari, S.; Horner, N.S.; Bedi, A.; Ayeni, O.R.; Khan, M. The Learning Curve for the Latarjet Procedure: A Systematic Review. Orthop. J. Sports Med. 2018, 6, 2325967118786930. [Google Scholar] [CrossRef]
- Lawlor, M.C.; Kluczynski, M.A.; Marzo, J.M. Weight-Bearing Cone-Beam CT Scan Assessment of Stability of Supination External Rotation Ankle Fractures in a Cadaver Model. Foot Ankle Int. 2018, 39, 850–857. [Google Scholar] [CrossRef]
- Marzo, J.M.; Kluczynski, M.A.; Notino, A.; Bisson, L.J. Measurement of Tibial Tuberosity-Trochlear Groove Offset Distance by Weightbearing Cone-Beam Computed Tomography Scan. Orthop. J. Sports Med. 2017, 5, 2325967117734158. [Google Scholar] [CrossRef]
- Lintz, F.; Bernasconi, A.; Baschet, L.; Fernando, C.; Mehdi, N.; de Cesar Netto, C. Relationship Between Chronic Lateral Ankle Instability and Hindfoot Varus Using Weight-Bearing Cone Beam Computed Tomography. Foot Ankle Int. 2019, 40, 1175–1181. [Google Scholar] [CrossRef]
- Thompson, M.J.; Consul, D.; Umbel, B.D.; Berlet, G.C. Accuracy of Weightbearing CT Scans for Patient-Specific Instrumentation in Total Ankle Arthroplasty. Foot Ankle Orthop. 2021, 6, 24730114211061493. [Google Scholar] [CrossRef]
- VandeLune, C.; Barbachan Mansur, N.S.; Iehl, C.; Tazegul, T.; Ahrenholz, S.J.; Mendes de Carvalho, K.A.; de Cesar Netto, C. Deformity Correction in Ankle Osteoarthritis Using a Lateral Trans-Fibular Total Ankle Replacement: A Weight-Bearing CT Assessment. Iowa Orthop. J. 2022, 42, 36–46. [Google Scholar]
- Tazegul, T.E.; Anderson, D.D.; Barbachan Mansur, N.S.; Kajimura Chinelati, R.M.; Iehl, C.; VandeLune, C.; Ahrenholz, S.; Lalevee, M.; de Cesar Netto, C. An Objective Computational Method to Quantify Ankle Osteoarthritis From Low-Dose Weightbearing Computed Tomography. Foot Ankle Orthop. 2022, 7, 24730114221116805. [Google Scholar] [CrossRef] [PubMed]
- Efrima, B.; Barbero, A.; Ovadia, J.E.; Indino, C.; Maccario, C.; Usuelli, F.G. Reliability of Cone Beam Weightbearing Computed Tomography Analysis of Total Ankle Arthroplasty Positioning and Comparison to Weightbearing X-Ray Measurements. Foot Ankle Int. 2023, 44, 637–644. [Google Scholar] [CrossRef]
- Turmezei, T.D.; Malhotra, K.; MacKay, J.W.; Gee, A.H.; Treece, G.M.; Poole, K.E.S.; Welck, M.J. 3-D Joint Space Mapping at the Ankle from Weight-Bearing CT: Reproducibility, Repeatability, and Challenges for Standardisation. Eur. Radiol. 2023, 33, 8333–8342. [Google Scholar] [CrossRef] [PubMed]
- Faict, S.; Burssens, A.; Van Oevelen, A.; Maeckelbergh, L.; Mertens, P.; Buedts, K. Correction of Ankle Varus Deformity Using Patient-Specific Dome-Shaped Osteotomy Guides Designed on Weight-Bearing CT: A Pilot Study. Arch. Orthop. Trauma Surg. 2023, 143, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Kvarda, P.; Siegler, L.; Burssens, A.; Susdorf, R.; Ruiz, R.; Hintermann, B. Effect of Total Ankle Replacement on the 3-Dimensional Subtalar Joint Alignment in Varus Ankle Osteoarthritis. Foot Ankle Surg. 2023, 29, 424–429. [Google Scholar] [CrossRef]
- Kim, J.B.; Yi, Y.; Kim, J.Y.; Cho, J.H.; Kwon, M.S.; Choi, S.H.; Lee, W.C. Weight-Bearing Computed Tomography Findings in Varus Ankle Osteoarthritis: Abnormal Internal Rotation of the Talus in the Axial Plane. Skelet. Radiol. 2017, 46, 1071–1080. [Google Scholar] [CrossRef]
- Lintz, F.; Jepsen, M.; De Cesar Netto, C.; Bernasconi, A.; Ruiz, M.; Siegler, S. Distance Mapping of the Foot and Ankle Joints Using Weightbearing CT: The Cavovarus Configuration. Foot Ankle Surg. 2021, 27, 412–420. [Google Scholar] [CrossRef]
- Sangoi, D.; Ranjit, S.; Bernasconi, A.; Cullen, N.; Patel, S.; Welck, M.; Malhotra, K. 2D Manual vs 3D Automated Assessment of Alignment in Normal and Charcot-Marie-Tooth Cavovarus Feet Using Weightbearing CT. Foot Ankle Int. 2022, 43, 973–982. [Google Scholar] [CrossRef]
- Bernasconi, A.; Cooper, L.; Lyle, S.; Patel, S.; Cullen, N.; Singh, D.; Welck, M. Intraobserver and Interobserver Reliability of Cone Beam Weightbearing Semi-Automatic Three-Dimensional Measurements in Symptomatic Pes Cavovarus. Foot Ankle Surg. 2020, 26, 564–572. [Google Scholar] [CrossRef]
- Bernasconi, A.; Cooper, L.; Lyle, S.; Patel, S.; Cullen, N.; Singh, D.; Welck, M. Pes Cavovarus in Charcot-Marie-Tooth Compared to the Idiopathic Cavovarus Foot: A Preliminary Weightbearing CT Analysis. Foot Ankle Surg. 2021, 27, 186–195. [Google Scholar] [CrossRef]
- Ranjit, S.; Sangoi, D.; Cullen, N.; Patel, S.; Welck, M.; Malhotra, K. Assessing the Coronal Plane Deformity in Charcot Marie Tooth Cavovarus Feet Using Automated 3D Measurements. Foot Ankle Surg. 2023, 29, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Jacques, T.; Morel, V.; Dartus, J.; Badr, S.; Demondion, X.; Cotten, A. Impact of Introducing Extremity Cone-Beam CT in an Emergency Radiology Department: A Population-Based Study. Orthop. Traumatol. Surg. Res. 2021, 107, 102834. [Google Scholar] [CrossRef] [PubMed]
- Haldar, A.; Bernasconi, A.; Junaid, S.E.; Lee, K.H.B.; Welck, M.; Saifuddin, A. 3D Imaging for Hindfoot Alignment Assessment: A Comparative Study between Non-Weight-Bearing MRI and Weight-Bearing CT. Skelet. Radiol. 2021, 50, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Schilke, R.; Duerr, F.; Zech, S.; Andreas Meissner, S.; Naef, I. Automatic Software-Based 3D-Angular Measurement for Weight-Bearing CT (WBCT) Provides Different Angles than Measurement by Hand. Foot Ankle Surg. 2022, 28, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Kvarda, P.; Heisler, L.; Krähenbühl, N.; Steiner, C.S.; Ruiz, R.; Susdorf, R.; Sripanich, Y.; Barg, A.; Hintermann, B. 3D Assessment in Posttraumatic Ankle Osteoarthritis. Foot Ankle Int. 2021, 42, 200–214. [Google Scholar] [CrossRef]
- Rowe, N.; Robertson, C.E.; Singh, S.; Campbell, J.T.; Jeng, C.L. Weightbearing CT Analysis of the Transverse Tarsal Joint During Eversion and Inversion. Foot Ankle Int. 2022, 43, 123–130. [Google Scholar] [CrossRef]
- Schmidt, E.; Silva, T.; Baumfeld, D.; Dibbern, K.N.; Lee, H.Y.; Femino, J.; Barbachan Mansur, N.S.; de Cesar Netto, C. The Rotational Positioning of the Bones in the Medial Column of the Foot: A Weightbearing CT Analysis. Iowa Orthop. J. 2021, 41, 103–109. [Google Scholar]
- Baboeram, N.S.V.L.; Sanders, F.R.K.; Wellenberg, R.H.H.; Dobbe, J.G.G.; Streekstra, G.J.; Maas, M.; Schepers, T. Primary Arthrodesis versus Open Reduction and Internal Fixation Following Intra-Articular Calcaneal Fractures: A Weight-Bearing CT Analysis. Arch. Orthop. Trauma Surg. 2024, 144, 755–762. [Google Scholar] [CrossRef]
- Day, M.A.; Ho, M.; Dibbern, K.; Rao, K.; An, Q.; Anderson, D.D.; Marsh, J.L. Correlation of 3D Joint Space Width From Weightbearing CT With Outcomes After Intra-Articular Calcaneal Fracture. Foot Ankle Int. 2020, 41, 1106–1116. [Google Scholar] [CrossRef]
- Lee, H.Y.; Mansur, N.S.; Lalevee, M.; Maly, C.; Iehl, C.J.; Hembree, W.C.; Godoy-Santos, A.; de Cesar Netto, C. Does Metatarsus Primus Elevatus Really Exist in Hallux Rigidus? A Weightbearing CT Case-Control Study. Arch. Orthop. Trauma Surg. 2023, 143, 755–761. [Google Scholar] [CrossRef]
- Zhong, Z.; Zhang, P.; Duan, H.; Yang, H.; Li, Q.; He, F. A Comparison Between X-Ray Imaging and an Innovative Computer-Aided Design Method Based on Weightbearing CT Scan Images for Assessing Hallux Valgus. J. Foot Ankle Surg. 2021, 60, 6–10. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, K.A.M.; Walt, J.S.; Ehret, A.; Tazegul, T.E.; Dibbern, K.; Mansur, N.S.B.; Lalevée, M.; de Cesar Netto, C. Comparison between Weightbearing-CT Semiautomatic and Manual Measurements in Hallux Valgus. Foot Ankle Surg. 2022, 28, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Scheele, C.B.; Christel, S.T.; Fröhlich, I.; Mehlhorn, A.; Walther, M.; Hörterer, H.; Harrasser, N.; Kinast, C. A Cone Beam CT Based 3D-Assessment of Bony Forefoot Geometry after Modified Lapidus Arthrodesis. Foot Ankle Surg. 2020, 26, 883–889. [Google Scholar] [CrossRef]
- Najefi, A.A.; Alsafi, M.K.; Malhotra, K.; Patel, S.; Cullen, N.; Welck, M. Repeatability of Weightbearing Computed Tomography Measurement of First Metatarsal Alignment and Rotation. Foot Ankle Int. 2022, 43, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Mens, M.A.; Bouman, C.M.B.; Dobbe, J.G.G.; Bus, S.A.; Nieuwdorp, M.; Maas, M.; Wellenberg, R.H.H.; Streekstra, G.J. Metatarsophalangeal and Interphalangeal Joint Angle Measurements on Weight-Bearing CT Images. Foot Ankle Surg. 2023, 29, 538–543. [Google Scholar] [CrossRef]
- Randich, J.R.; John, K.J.; Gomez, K.; Bush, W. Frontal Plane Rotation of the First Ray in Hallux Valgus Using Standing Computerized Tomography (CT). J. Foot Ankle Surg. 2021, 60, 489–493. [Google Scholar] [CrossRef]
- Siebert, M.J.; Steadman, J.N.; Saltzman, C.L. Sesamoid View Weightbearing Radiography vs Weightbearing Computed Tomography in the Measurement of Metatarsal Pronation Angle. Foot Ankle Int. 2023, 44, 291–296. [Google Scholar] [CrossRef]
- Day, J.; de Cesar Netto, C.; Burssens, A.; Bernasconi, A.; Fernando, C.; Lintz, F. A Case-Control Study of 3D vs 2D Weightbearing CT Measurements of the M1-M2 Intermetatarsal Angle in Hallux Valgus. Foot Ankle Int. 2022, 43, 1049–1052. [Google Scholar] [CrossRef]
- Collan, L.; Kankare, J.A.; Mattila, K. The Biomechanics of the First Metatarsal Bone in Hallux Valgus: A Preliminary Study Utilizing a Weight Bearing Extremity CT. Foot Ankle Surg. 2013, 19, 155–161. [Google Scholar] [CrossRef]
- Kimura, T.; Kubota, M.; Taguchi, T.; Suzuki, N.; Hattori, A.; Marumo, K. Evaluation of First-Ray Mobility in Patients with Hallux Valgus Using Weight-Bearing CT and a 3-D Analysis System a Comparison with Normal Feet. J. Bone Jt. Surg. 2017, 99, 247–255. [Google Scholar] [CrossRef]
- Kawalec, J.S.; Chambers, S.P.; Ali, R.; Osher, L.S. Multiple Factors Contributing to the Metatarsal Head Eversion in Hallux Valgus Deformity. A Prospective Study Using Weight-Bearing CT. Foot 2023, 57, 101965. [Google Scholar] [CrossRef] [PubMed]
- Kawalec, J.S.; Dort, P.; Leo, T.; Osher, L.S.; Petrozzi, R.A. The Distal Metatarsal Articular Angle in Hallux Valgus Deformities. Comparisons of Radiographic and Weightbearing CT Scan Measurements with Variations in Hindfoot Position. Foot 2023, 56, 102030. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.J.; Conti, S.F.; Conti, M.; Fadle, A.A.; Ellis, S.J.; Miller, M.C. The Association of Crista Volume With Sesamoid Position as Measured From 3D Reconstructions of Weightbearing CT Scans. Foot Ankle Int. 2022, 43, 658–664. [Google Scholar] [CrossRef]
- Patel, T.J.; Conti, M.S.; Caolo, K.C.; Miller, M.C.; Conti, S.F.; Ellis, S.J. Pronation on Weightbearing Radiographs Does Not Correlate with Pronation from Weightbearing CT Scans. Foot Ankle Surg. 2022, 28, 763–769. [Google Scholar] [CrossRef]
- Day, J.; de Cesar Netto, C.; Richter, M.; Mansur, N.S.; Fernando, C.; Deland, J.T.; Ellis, S.J.; Lintz, F. Evaluation of a Weightbearing CT Artificial Intelligence-Based Automatic Measurement for the M1-M2 Intermetatarsal Angle in Hallux Valgus. Foot Ankle Int. 2021, 42, 1502–1509. [Google Scholar] [CrossRef]
- Mahmoud, K.; Metikala, S.; Mehta, S.D.; Fryhofer, G.W.; Farber, D.C.; Prat, D. The Role of Weightbearing Computed Tomography Scan in Hallux Valgus. Foot Ankle Int. 2021, 42, 287–293. [Google Scholar] [CrossRef]
- Conti, M.S.; Patel, T.J.; Caolo, K.C.; Amadio, J.M.; Miller, M.C.; Costigliola, S.V.; Ellis, S.J.; Conti, S.F. Correlation of Different Methods of Measuring Pronation of the First Metatarsal on Weightbearing CT Scans. Foot Ankle Int. 2021, 42, 1049–1059. [Google Scholar] [CrossRef]
- Lalevée, M.; Barbachan Mansur, N.S.; Lee, H.Y.; Maly, C.J.; Iehl, C.J.; Nery, C.; Lintz, F.; de Cesar Netto, C. Distal Metatarsal Articular Angle in Hallux Valgus Deformity. Fact or Fiction? A 3-Dimensional Weightbearing CT Assessment. Foot Ankle Int. 2022, 43, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Kubota, M.; Suzuki, N.; Hattori, A.; Marumo, K. Comparison of Intercuneiform 1-2 Joint Mobility Between Hallux Valgus and Normal Feet Using Weightbearing Computed Tomography and 3-Dimensional Analysis. Foot Ankle Int. 2018, 39, 355–360. [Google Scholar] [CrossRef]
- Brandenburg, L.S.; Siegel, M.; Neubauer, J.; Merz, J.; Bode, G.; Kühle, J. Measuring Standing Hindfoot Alignment: Reliability of Different Approaches in Conventional x-Ray and Cone-Beam CT. Arch. Orthop. Trauma Surg. 2022, 142, 3035–3043. [Google Scholar] [CrossRef]
- Burssens, A.; Peeters, J.; Buedts, K.; Victor, J.; Vandeputte, G. Measuring Hindfoot Alignment in Weight Bearing CT: A Novel Clinical Relevant Measurement Method. Foot Ankle Surg. 2016, 22, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Colin, F.; Horn Lang, T.; Zwicky, L.; Hintermann, B.; Knupp, M. Subtalar Joint Configuration on Weightbearing CT Scan. Foot Ankle Int. 2014, 35, 1057–1062. [Google Scholar] [CrossRef]
- Kvarda, P.; Krähenbühl, N.; Susdorf, R.; Burssens, A.; Ruiz, R.; Barg, A.; Hintermann, B. High Reliability for Semiautomated 3D Measurements Based on Weightbearing CT Scans. Foot Ankle Int. 2022, 43, 91–95. [Google Scholar] [CrossRef]
- Burssens, A.; Van Herzele, E.; Leenders, T.; Clockaerts, S.; Buedts, K.; Vandeputte, G.; Victor, J. Weightbearing CT in Normal Hindfoot Alignment—Presence of a Constitutional Valgus? Foot Ankle Surg. 2018, 24, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Hirschmann, A.; Pfirrmann, C.W.A.; Klammer, G.; Espinosa, N.; Buck, F.M. Upright Cone CT of the Hindfoot: Comparison of the Non-Weight-Bearing with the Upright Weight-Bearing Position. Eur. Radiol. 2014, 24, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, R.; Sangoi, D.; Cullen, N.; Patel, S.; Welck, M.; Malhotra, K. Semi-Automated 3-Dimensional Analysis of the Normal Foot and Ankle Using Weight Bearing CT—A Report of Normal Values and Bony Relationships. Foot Ankle Surg. 2023, 29, 111–117. [Google Scholar] [CrossRef]
- Rojas, E.O.; Barbachan Mansur, N.S.; Dibbern, K.; Lalevee, M.; Auch, E.; Schmidt, E.; Vivtcharenko, V.; Li, S.; Phisitjkul, P.; Femino, J.; et al. Weightbearing Computed Tomography for Assessment of Foot and Ankle Deformities: The Iowa Experience. Iowa Orthop. J. 2021, 41, 111–119. [Google Scholar] [CrossRef]
- Krähenbühl, N.; Tschuck, M.; Bolliger, L.; Hintermann, B.; Knupp, M. Orientation of the Subtalar Joint. Foot Ankle Int. 2016, 37, 109–114. [Google Scholar] [CrossRef]
- Krähenbühl, N.; Bailey, T.L.; Weinberg, M.W.; Davidson, N.P.; Hintermann, B.; Presson, A.P.; Allen, C.M.; Henninger, H.B.; Saltzman, C.L.; Barg, A. Impact of Torque on Assessment of Syndesmotic Injuries Using Weightbearing Computed Tomography Scans. Foot Ankle Int. 2019, 40, 710–719. [Google Scholar] [CrossRef]
- Burssens, A.; Krähenbühl, N.; Lenz, A.L.; Howell, K.; Zhang, C.; Sripanich, Y.; Saltzman, C.L.; Barg, A. Interaction of Loading and Ligament Injuries in Subtalar Joint Instability Quantified by 3D Weightbearing Computed Tomography. J. Orthop. Res. 2022, 40, 933–944. [Google Scholar] [CrossRef]
- Hirschmann, A.; Buck, F.M.; Fucentese, S.F.; Pfirrmann, C.W.A. Upright CT of the Knee: The Effect of Weight-Bearing on Joint Alignment. Eur. Radiol. 2015, 25, 3398–3404. [Google Scholar] [CrossRef] [PubMed]
- Marzo, J.M.; Kluczynski, M.A.; Clyde, C.; Anders, M.J.; Mutty, C.E.; Ritter, C.A. Weight Bearing Cone Beam CT Scan versus Gravity Stress Radiography for Analysis of Supination External Rotation Injuries of the Ankle. Quant. Imaging Med. Surg. 2017, 7, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Hirschmann, A.; Buck, F.M.; Herschel, R.; Pfirrmann, C.W.A.; Fucentese, S.F. Upright Weight-Bearing CT of the Knee during Flexion: Changes of the Patellofemoral and Tibiofemoral Articulations between 0° and 120°. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 853–862. [Google Scholar] [CrossRef]
- Hodel, S.; Hasler, J.; Fürnstahl, P.; Fucentese, S.F.; Vlachopoulos, L. Elongation Patterns of Posterolateral Corner Reconstruction Techniques: Results Using 3-Dimensional Weightbearing Computed Tomography Simulation. Orthop. J. Sports Med. 2022, 10, 23259671221090219. [Google Scholar] [CrossRef]
- Turmezei, T.D.; Low, S.B.; Rupret, S.; Treece, G.M.; Gee, A.H.; MacKay, J.W.; Lynch, J.A.; Poole, K.E.S.; Segal, N.A. Quantitative Three-Dimensional Assessment of Knee Joint Space Width from Weight-Bearing CT. Radiology 2021, 299, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Kaneda, K.; Harato, K.; Oki, S.; Yamada, Y.; Nakamura, M.; Nagura, T.; Jinzaki, M. Increase in Tibial Internal Rotation Due to Weight-Bearing Is a Key Feature to Diagnose Early-Stage Knee Osteoarthritis: A Study with Upright Computed Tomography. BMC Musculoskelet. Disord. 2022, 23, 253. [Google Scholar] [CrossRef]
- Fritz, B.; Fritz, J.; Fucentese, S.F.; Pfirrmann, C.W.A.; Sutter, R. Three-Dimensional Analysis for Quantification of Knee Joint Space Width with Weight-Bearing CT: Comparison with Non-Weight-Bearing CT and Weight-Bearing Radiography. Osteoarthr. Cartil. 2022, 30, 671–680. [Google Scholar] [CrossRef]
- Segal, N.A.; Murphy, M.T.; Everist, B.M.; Brown, K.D.; He, J.; Lynch, J.A.; Nevitt, M.C. Clinical Value of Weight-Bearing CT and Radiographs for Detecting Patellofemoral Cartilage Visualized by MRI in the MOST Study. Osteoarthr. Cartil. 2021, 29, 1540–1548. [Google Scholar] [CrossRef] [PubMed]
- Thawait, G.K.; Demehri, S.; Almuhit, A.; Zbijweski, W.; Yorkston, J.; Del Grande, F.; Zikria, B.; Carrino, J.A.; Siewerdsen, J.H. Extremity Cone-Beam CT for Evaluation of Medial Tibiofemoral Osteoarthritis: Initial Experience in Imaging of the Weight-Bearing and Non-Weight-Bearing Knee. Eur. J. Radiol. 2015, 84, 2564–2570. [Google Scholar] [CrossRef]
- Segal, N.A.; Nevitt, M.C.; Morales Aquino, M.; McFadden, E.; Ho, M.; Duryea, J.; Tolstykh, I.; Cheng, H.; He, J.; Lynch, J.A.; et al. Improved Responsiveness to Change in Joint Space Width over 24-Month Follow-up: Comparison of 3D JSW on Weight-Bearing CT vs 2D JSW on Radiographs in the MOST Study. Osteoarthr. Cartil. 2023, 31, 406–413. [Google Scholar] [CrossRef]
- Turmezei, T.D.; Low, S.B.; Rupret, S.; Treece, G.M.; Gee, A.H.; MacKay, J.W.; Lynch, J.A.; Poole, K.E.; Segal, N.A. Multiparametric 3-D Analysis of Bone and Joint Space Width at the Knee from Weight Bearing Computed Tomography. Osteoarthr. Imaging 2022, 2, 100069. [Google Scholar] [CrossRef] [PubMed]
- Segal, N.A.; Nevitt, M.C.; Lynch, J.A.; Niu, J.; Torner, J.C.; Guermazi, A. Diagnostic Performance of 3D Standing CT Imaging for Detection of Knee Osteoarthritis Features. Phys. Sportsmed. 2015, 43, 213–220. [Google Scholar] [CrossRef]
- Bhimani, R.; Sornsakrin, P.; Ashkani-Esfahani, S.; Lubberts, B.; Guss, D.; De Cesar Netto, C.; Waryasz, G.R.; Kerkhoffs, G.M.M.J.; DiGiovanni, C.W. Using Area and Volume Measurement via Weightbearing CT to Detect Lisfranc Instability. J. Orthop. Res. 2021, 39, 2497–2505. [Google Scholar] [CrossRef]
- Sripanich, Y.; Steadman, J.; Krähenbühl, N.; Rungprai, C.; Mills, M.K.; Saltzman, C.L.; Barg, A. Asymmetric Lambda Sign of the Second Tarsometatarsal Joint on Axial Weight-Bearing Cone-Beam CT Scans of the Foot: Preliminary Investigation for Diagnosis of Subtle Ligamentous Lisfranc Injuries in a Cadaveric Model. Skelet. Radiol. 2020, 49, 1615–1621. [Google Scholar] [CrossRef] [PubMed]
- Sripanich, Y.; Weinberg, M.W.; Krähenbühl, N.; Rungprai, C.; Saltzman, C.L.; Barg, A. Reliability of Measurements Assessing the Lisfranc Joint Using Weightbearing Computed Tomography Imaging. Arch. Orthop. Trauma Surg. 2021, 141, 775–781. [Google Scholar] [CrossRef]
- Penev, P.; Qawasmi, F.; Mosheiff, R.; Knobe, M.; Lehnert, M.; Krause, F.; Raykov, D.; Richards, G.; Gueorguiev, B.; Klos, K. Ligamentous Lisfranc Injuries: Analysis of CT Findings under Weightbearing. Eur. J. Trauma Emerg. Surg. 2021, 47, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
- Wijetunga, C.G.; Roebert, J.; Hiscock, R.J.; Bedi, H.S.; Roshan-Zamir, S.; Wang, O.; Fraval, A.; Tate, J.; Eden, M.; Rotstein, A.H. Defining Reference Values for the Normal Adult Lisfranc Joint Using Weightbearing Computed Tomography. J. Foot Ankle Surg. 2023, 62, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, R.; Niki, Y.; Kaneda, K.; Yamada, Y.; Nagura, T.; Nakamura, M.; Jinzaki, M. A Novel Anteroposterior Axis of the Tibia for Total Knee Arthroplasty: An Upright Weight-Bearing Computed Tomography Analysis. Knee 2022, 36, 80–86. [Google Scholar] [CrossRef]
- Burssens, A.; Barg, A.; van Ovost, E.; Van Oevelen, A.; Leenders, T.; Peiffer, M.; Bodere, I.; Richter, M.; Barg, A.; Lintz, F.; et al. The Hind- and Midfoot Alignment Computed after a Medializing Calcaneal Osteotomy Using a 3D Weightbearing CT. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 1439–1447. [Google Scholar] [CrossRef]
- Smolinski, M.P.; Amadio, J.; Prisk, V.; Conti, S.F.; Miller, M.C. A Comparison of Imaging Outcomes From 2 Weightbearing CT Modalities. Foot Ankle Int. 2023, 44, 1174–1180. [Google Scholar] [CrossRef]
- Dufrénot, M.; Dagneaux, L.; Fernando, C.; Chabrand, P.; Ollivier, M.; Lintz, F. Three-Dimensional Biometrics Using Weight-Bearing Imaging Shows Relationship between Knee and Hindfoot Axial Alignment. Orthop. Traumatol. Surg. Res. 2023, 109, 103482. [Google Scholar] [CrossRef] [PubMed]
- Dagneaux, L.; Dufrenot, M.; Bernasconi, A.; Bedard, N.A.; de Cesar Netto, C.; Lintz, F. Three-Dimensional Biometrics to Correlate Hindfoot and Knee Coronal Alignments Using Modern Weightbearing Imaging. Foot Ankle Int. 2020, 41, 1411–1418. [Google Scholar] [CrossRef]
- Liu, S.Z.; Cao, Q.; Osgood, G.M.; Siewerdsen, J.H.; Stayman, J.W.; Zbijewski, W. Quantitative Assessment of Weight-Bearing Fracture Biomechanics Using Extremity Cone-Beam CT. Proc. SPIE Int. Soc. Opt. Eng. 2020, 11317, 17. [Google Scholar] [CrossRef]
- Welck, M.J.; Kaplan, J.; Myerson, M.S. Müller-Weiss Syndrome: Radiological Features and the Role of Weightbearing Computed Tomography Scan. Foot Ankle Spec. 2016, 9, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Krähenbühl, N.; Kvarda, P.; Susdorf, R.; Burssens, A.; Ruiz, R.; Barg, A.; Hintermann, B. Assessment of Progressive Collapsing Foot Deformity Using Semiautomated 3D Measurements Derived From Weightbearing CT Scans. Foot Ankle Int. 2022, 43, 363–370. [Google Scholar] [CrossRef]
- De Cesar Netto, C.; Godoy-Santos, A.L.; Saito, G.H.; Lintz, F.; Siegler, S.; O’Malley, M.J.; Deland, J.T.; Ellis, S.J. Subluxation of the Middle Facet of the Subtalar Joint as a Marker of Peritalar Subluxation in Adult Acquired Flatfoot Deformity: A Case-Control Study. J. Bone Jt. Surg. Am. 2019, 101, 1838–1844. [Google Scholar] [CrossRef]
- Netto, C.D.C.; Schon, L.C.; Thawait, G.K.; Da Fonseca, L.F.; Chinanuvathana, A.; Zbijewski, W.B.; Siewerdsen, J.H.; Demehri, S. Flexible Adult Acquired Flatfoot Deformity: Comparison Between Weight-Bearing and Non-Weight-Bearing Measurements Using Cone-Beam Computed Tomography. J. Bone Jt. Surg. Am. 2017, 99, e98. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Wang, X.; Huang, J.; Zhang, C.; Chen, L.; Wang, C.; Ma, X. An in Vivo Study of Hindfoot 3D Kinetics in Stage II Posterior Tibial Tendon Dysfunction (PTTD) Flatfoot Based on Weight-Bearing CT Scan. Bone Jt. Res. 2013, 2, 255–263. [Google Scholar] [CrossRef]
- de Cesar Netto, C.; Silva, T.; Li, S.; Mansur, N.S.; Auch, E.; Dibbern, K.; Femino, J.E.; Baumfeld, D. Assessment of Posterior and Middle Facet Subluxation of the Subtalar Joint in Progressive Flatfoot Deformity. Foot Ankle Int. 2020, 41, 1190–1197. [Google Scholar] [CrossRef]
- Day, J.; de Cesar Netto, C.; Nishikawa, D.R.C.; Garfinkel, J.; Roney, A.; J. O’Malley, M.; Deland, J.T.; Ellis, S.J. Three-Dimensional Biometric Weightbearing CT Evaluation of the Operative Treatment of Adult-Acquired Flatfoot Deformity. Foot Ankle Int. 2020, 41, 930–936. [Google Scholar] [CrossRef]
- de Cesar Netto, C.; Bernasconi, A.; Roberts, L.; Pontin, P.A.; Lintz, F.; Saito, G.H.; Roney, A.; Elliott, A.; O’Malley, M. Foot Alignment in Symptomatic National Basketball Association Players Using Weightbearing Cone Beam Computed Tomography. Orthop. J. Sports Med. 2019, 7, 2325967119826081. [Google Scholar] [CrossRef] [PubMed]
- Shakoor, D.; de Cesar Netto, C.; Thawait, G.K.; Ellis, S.J.; Richter, M.; Schon, L.C.; Demehri, S. Weight-Bearing Radiographs and Cone-Beam Computed Tomography Examinations in Adult Acquired Flatfoot Deformity. Foot Ankle Surg. 2021, 27, 201–206. [Google Scholar] [CrossRef]
- Efrima, B.; Barbero, A.; Ramalingam, K.; Indino, C.; Maccario, C.; Usuelli, F.G. Three-Dimensional Distance Mapping to Identify Safe Zones for Lateral Column Lengthening. Foot Ankle Int. 2023, 44, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Thorhauer, E.D.; Kindig, M.W.; Sangeorzan, B.J.; Ledoux, W.R. Evaluation of the Foot Arch in Partial Weightbearing Conditions. Foot Ankle Int. 2022, 43, 113–122. [Google Scholar] [CrossRef]
- Jeng, C.L.; Rutherford, T.; Hull, M.G.; Cerrato, R.A.; Campbell, J.T. Assessment of Bony Subfibular Impingement in Flatfoot Patients Using Weight-Bearing CT Scans. Foot Ankle Int. 2019, 40, 152–158. [Google Scholar] [CrossRef]
- Behrens, A.; Dibbern, K.; Lalevée, M.; Alencar Mendes de Carvalho, K.; Lintz, F.; Barbachan Mansur, N.S.; de Cesar Netto, C. Coverage Maps Demonstrate 3D Chopart Joint Subluxation in Weightbearing CT of Progressive Collapsing Foot Deformity. Sci. Rep. 2022, 12, 19367. [Google Scholar] [CrossRef]
- Pilania, K.; Jankharia, B.; Monoot, P. Role of the Weight-Bearing Cone-Beam CT in Evaluation of Flatfoot Deformity. Indian J. Radiol. Imaging 2019, 29, 364–371. [Google Scholar] [CrossRef]
- de Cesar Netto, C.; Barbachan Mansur, N.S.; Lalevee, M.; de Carvalho, K.A.M.; Godoy-Santos, A.L.; Kim, K.C.; Lintz, F.; Dibbern, K. Effect of Peritalar Subluxation Correction for Progressive Collapsing Foot Deformity on Patient-Reported Outcomes. Foot Ankle Int. 2023, 44, 1128–1141. [Google Scholar] [CrossRef] [PubMed]
- Dibbern, K.N.; Li, S.; Vivtcharenko, V.; Auch, E.; Lintz, F.; Ellis, S.J.; Femino, J.E.; de Cesar Netto, C. Three-Dimensional Distance and Coverage Maps in the Assessment of Peritalar Subluxation in Progressive Collapsing Foot Deformity. Foot Ankle Int. 2021, 42, 757–767. [Google Scholar] [CrossRef]
- Pavani, C.; Belvedere, C.; Ortolani, M.; Girolami, M.; Durante, S.; Berti, L.; Leardini, A. 3D Measurement Techniques for the Hindfoot Alignment Angle from Weight-Bearing CT in a Clinical Population. Sci. Rep. 2022, 12, 16900. [Google Scholar] [CrossRef]
- de Cesar Netto, C.; Bang, K.; Mansur, N.S.; Garfinkel, J.H.; Bernasconi, A.; Lintz, F.; Deland, J.T.; Ellis, S.J. Multiplanar Semiautomatic Assessment of Foot and Ankle Offset in Adult Acquired Flatfoot Deformity. Foot Ankle Int. 2020, 41, 839–848. [Google Scholar] [CrossRef] [PubMed]
- de Cesar Netto, C.; Shakoor, D.; Dein, E.J.; Zhang, H.; Thawait, G.K.; Richter, M.; Ficke, J.R.; Schon, L.C.; Barg, A.; Lintz, F.; et al. Influence of Investigator Experience on Reliability of Adult Acquired Flatfoot Deformity Measurements Using Weightbearing Computed Tomography. Foot Ankle Surg. 2019, 25, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.C.; Fayed, A.; Schmidt, E.; de Carvalho, K.A.M.; Lalevee, M.; Mansur, N.; de Cesar Netto, C. Relationship Between Obesity and Medial Longitudinal Arch Bowing. Foot Ankle Int. 2023, 44, 1181–1191. [Google Scholar] [CrossRef]
- Burssens, A.; Peeters, J.; Peiffer, M.; Marien, R.; Lenaerts, T.; Vandeputte, G.; Victor, J. Reliability and Correlation Analysis of Computed Methods to Convert Conventional 2D Radiological Hindfoot Measurements to a 3D Setting Using Weightbearing CT. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 1999–2008. [Google Scholar] [CrossRef]
- Efrima, B.; Barbero, A.; Ovadia, J.E.; Indino, C.; Maccario, C.; Usuelli, F.G. Classification of the Os Calcis Subtalar Morphology in Symptomatic Flexible Pediatric Pes Planus Deformity Using Weightbearing CT and Distance Mapping. Foot Ankle Int. 2023, 44, 322–329. [Google Scholar] [CrossRef]
- Ortolani, M.; Leardini, A.; Pavani, C.; Scicolone, S.; Girolami, M.; Bevoni, R.; Lullini, G.; Durante, S.; Berti, L.; Belvedere, C. Angular and Linear Measurements of Adult Flexible Flatfoot via Weight-Bearing CT Scans and 3D Bone Reconstruction Tools. Sci. Rep. 2021, 11, 16139. [Google Scholar] [CrossRef]
- Dibbern, K.; Vivtcharenko, V.; Salomao Barbachan Mansur, N.; Lalevée, M.; Alencar Mendes de Carvalho, K.; Lintz, F.; Barg, A.; Goldberg, A.J.; de Cesar Netto, C. Distance Mapping and Volumetric Assessment of the Ankle and Syndesmotic Joints in Progressive Collapsing Foot Deformity. Sci. Rep. 2023, 13, 4801. [Google Scholar] [CrossRef]
- Marzo, J.; Kluczynski, M.; Notino, A.; Bisson, L. Comparison of a Novel Weightbearing Cone Beam Computed Tomography Scanner Versus a Conventional Computed Tomography Scanner for Measuring Patellar Instability. Orthop. J. Sports Med. 2016, 4, 2325967116673560. [Google Scholar] [CrossRef] [PubMed]
- Lullini, G.; Belvedere, C.; Busacca, M.; Moio, A.; Leardini, A.; Caravelli, S.; Maccaferri, B.; Durante, S.; Zaffagnini, S.; Marcheggiani Muccioli, G.M. Weight Bearing versus Conventional CT for the Measurement of Patellar Alignment and Stability in Patients after Surgical Treatment for Patellar Recurrent Dislocation. Radiol. Med. 2021, 126, 869–877. [Google Scholar] [CrossRef]
- Holbrook, H.S.; Bowers, A.F.; Mahmoud, K.; Kelly, D.M. Weight-Bearing Computed Tomography of the Foot and Ankle in the Pediatric Population. J. Pediatr. Orthop. 2022, 42, 321–326. [Google Scholar] [CrossRef]
- Wellenberg, R.H.H.; Schallig, W.; Steenbergen, P.; den Tex, P.; Dobbe, J.G.G.; Streekstra, G.J.; Witbreuk, M.M.E.H.; Buizer, A.I.; Maas, M. Assessment of Foot Deformities in Individuals with Cerebral Palsy Using Weight-Bearing CT. Skelet. Radiol. 2023, 52, 1313–1320. [Google Scholar] [CrossRef] [PubMed]
- Willey, M.C.; Compton, J.T.; Marsh, J.L.; Kleweno, C.P.; Agel, J.; Scott, E.J.; Bui, G.; Davison, J.; Anderson, D.D. Weight-Bearing CT Scan After Tibial Pilon Fracture Demonstrates Significant Early Joint-Space Narrowing. J. Bone Jt. Surg. Am. 2020, 102, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Bernasconi, A.; Thornton, J.; Buraimoh, O.; Cullen, N.P.; Welck, M.J.; Singh, D. Relationship between Foot Posture Index and Weight Bearing Computed Tomography 3D Biometrics to Define Foot Alignment. Gait Posture 2020, 80, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Feldle, P.; Grunz, J.P.; Kunz, A.S.; Patzer, T.S.; Huflage, H.; Hendel, R.; Luetkens, K.S.; Ergün, S.; Bley, T.A.; Conrads, N. Weight-Bearing Gantry-Free Cone-Beam CT of the Lumbar Spine: Image Quality Analysis and Dose Efficiency. Eur. J. Radiol. 2023, 165, 110951. [Google Scholar] [CrossRef]
- Ashkani Esfahani, S.; Bhimani, R.; Lubberts, B.; Kerkhoffs, G.M.; Waryasz, G.; DiGiovanni, C.W.; Guss, D. Volume Measurements on Weightbearing Computed Tomography Can Detect Subtle Syndesmotic Instability. J. Orthop. Res. 2022, 40, 460–467. [Google Scholar] [CrossRef]
- Borjali, A.; Ashkani-Esfahani, S.; Bhimani, R.; Guss, D.; Muratoglu, O.K.; DiGiovanni, C.W.; Varadarajan, K.M.; Lubberts, B. The Use of Deep Learning Enables High Diagnostic Accuracy in Detecting Syndesmotic Instability on Weight-Bearing CT Scanning. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 6039–6045. [Google Scholar] [CrossRef]
- Elghazy, M.A.; Hagemeijer, N.C.; Guss, D.; El-Hawary, A.; Johnson, A.H.; El-Mowafi, H.; DiGiovanni, C.W. Screw versus Suture Button in Treatment of Syndesmosis Instability: Comparison Using Weightbearing CT Scan. Foot Ankle Surg. 2021, 27, 285–290. [Google Scholar] [CrossRef]
- Krähenbühl, N.; Bailey, T.L.; Presson, A.P.; Allen, C.M.C.; Henninger, H.B.; Saltzman, C.L.; Barg, A. Torque Application Helps to Diagnose Incomplete Syndesmotic Injuries Using Weight-Bearing Computed Tomography Images. Skelet. Radiol. 2019, 48, 1367–1376. [Google Scholar] [CrossRef]
- del Rio, A.; Bewsher, S.M.; Roshan-Zamir, S.; Tate, J.; Eden, M.; Gotmaker, R.; Wang, O.; Bedi, H.S.; Rotstein, A.H. Weightbearing Cone-Beam Computed Tomography of Acute Ankle Syndesmosis Injuries. J. Foot Ankle Surg. 2020, 59, 258–263. [Google Scholar] [CrossRef]
- Hagemeijer, N.C.; Chang, S.H.; Abdelaziz, M.E.; Casey, J.C.; Waryasz, G.R.; Guss, D.; DiGiovanni, C.W. Range of Normal and Abnormal Syndesmotic Measurements Using Weightbearing CT. Foot Ankle Int. 2019, 40, 1430–1437. [Google Scholar] [CrossRef]
- Hamard, M.; Neroladaki, A.; Bagetakos, I.; Dubois-Ferrière, V.; Montet, X.; Boudabbous, S. Accuracy of Cone-Beam Computed Tomography for Syndesmosis Injury Diagnosis Compared to Conventional Computed Tomography. Foot Ankle Surg. 2020, 26, 265–272. [Google Scholar] [CrossRef]
- Peiffer, M.; Burssens, A.; De Mits, S.; Heintz, T.; Van Waeyenberge, M.; Buedts, K.; Victor, J.; Audenaert, E. Statistical Shape Model-Based Tibiofibular Assessment of Syndesmotic Ankle Lesions Using Weight-Bearing CT. J. Orthop. Res. 2022, 40, 2873–2884. [Google Scholar] [CrossRef] [PubMed]
- Shakoor, D.; Osgood, G.M.; Brehler, M.; Zbijewski, W.B.; de Cesar Netto, C.; Shafiq, B.; Orapin, J.; Thawait, G.K.; Shon, L.C.; Demehri, S. Cone-Beam CT Measurements of Distal Tibio-Fibular Syndesmosis in Asymptomatic Uninjured Ankles: Does Weight-Bearing Matter? Skelet. Radiol. 2019, 48, 583–594. [Google Scholar] [CrossRef]
- Rooney, P.; Haller, J.; Kleweno, C.; Glass, N.; Davison, J.; Miller, A.; Anderson, D.D.; Marsh, J.L.; Willey, M. Syndesmosis Malposition Assessed on Weight-Bearing CT Is Common After Operative Fixation of Intra-Articular Distal Tibia Plafond Fracture. J. Orthop. Trauma 2022, 36, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, K.; Welck, M.; Cullen, N.; Singh, D.; Goldberg, A.J. The Effects of Weight Bearing on the Distal Tibiofibular Syndesmosis: A Study Comparing Weight Bearing-CT with Conventional CT. Foot Ankle Surg. 2019, 25, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Osgood, G.M.; Shakoor, D.; Orapin, J.; Qin, J.; Khodarahmi, I.; Thawait, G.K.; Ficke, J.R.; Schon, L.C.; Demehri, S. Reliability of Distal Tibio-Fibular Syndesmotic Instability Measurements Using Weightbearing and Non-Weightbearing Cone-Beam CT. Foot Ankle Surg. 2019, 25, 771–781. [Google Scholar] [CrossRef]
- Patel, S.; Malhotra, K.; Cullen, N.P.; Singh, D.; Goldberg, A.J.; Welck, M.J. Defining Reference Values for the Normal Tibiofibular Syndesmosis in Adults Using Weight-Bearing CT. Bone Jt. J. 2019, 101, 348–352. [Google Scholar] [CrossRef]
- Hoogervorst, P.; Working, Z.M.; El Naga, A.N.; Marmor, M. In Vivo CT Analysis of Physiological Fibular Motion at the Level of the Ankle Syndesmosis During Plantigrade Weightbearing. Foot Ankle Spec. 2019, 12, 233–237. [Google Scholar] [CrossRef]
- Peiffer, M.; Dhont, T.; Cuigniez, F.; Tampere, T.; Ashkani-Esfahani, S.; D’Hooghe, P.; Audenaert, E.; Burssens, A. Application of External Torque Enhances the Detection of Subtle Syndesmotic Ankle Instability in a Weight-Bearing CT. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 4886–4894. [Google Scholar] [CrossRef]
- Kihara, T.; Kimura, T.; Saito, M.; Suzuki, N.; Hattori, A.; Kubota, M. Three-Dimensional Analysis of the Windlass Mechanism Using Weightbearing Computed Tomography in Healthy Volunteers. Foot Ankle Int. 2023, 44, 545–553. [Google Scholar] [CrossRef]
- Buckwalter V, J.A.; Scigliano, N.M.; Fleury, I.G.; Watson, N.A.D.; Dibbern, K.N.; Glass, N.A.; Goetz, J.E. Altered Ulnar Variance With Full-Body Weight-Bearing During Handstands With Upper Extremity Weight-Bearing CT. J. Hand Surg. Am. 2023, in press. [CrossRef]
- Bernasconi, A.; Netto, C.D.C.; Roberts, L.; Lintz, F.; Godoy-Santos, A.L.; O’Malley, M.J. Foot alignment in symptomatic national football league (NFL) athletes: A weightbearing CT analysis. Acta Ortop. Bras. 2021, 29, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Kawalec, J.S.; Ehredt, D.J.; Bakhaj, K.; Fleck, J.; Nutter, K.; Osher, L. Inaccuracy of Forefoot Axial Radiographs in Determining the Coronal Plane Angle of Sesamoid Rotation in Adult Hallux Valgus Deformity: A Study Using Weightbearing Computed Tomography. J. Am. Podiatr. Med. Assoc. 2021, 111. [Google Scholar] [CrossRef]
- Lintz, F.; Welck, M.; Bernasconi, A.; Thornton, J.; Cullen, N.P.; Singh, D.; Goldberg, A. 3D Biometrics for Hindfoot Alignment Using Weightbearing CT. Foot Ankle Int. 2017, 38, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Ryan, P.M.; Eakin, J.L.; Goodrum, J.T. Subtle Syndesmotic Instability. J. Am. Acad. Orthop. Surg. 2024, 32, 719–727. [Google Scholar] [CrossRef]
- Amin, A.; Janney, C.; Sheu, C.; Jupiter, D.C.; Panchbhavi, V.K. Weight-Bearing Radiographic Analysis of the Tibiofibular Syndesmosis. Foot Ankle Spec. 2019, 12, 211–217. [Google Scholar] [CrossRef]
- Hastie, G.R.; Akhtar, S.; Butt, U.; Baumann, A.; Barrie, J.L. Weightbearing Radiographs Facilitate Functional Treatment of Ankle Fractures of Uncertain Stability. J. Foot Ankle Surg. 2015, 54, 1042–1046. [Google Scholar] [CrossRef] [PubMed]
- de-las-Heras Romero, J.; Alvarez, A.M.L.; Sanchez, F.M.; Garcia, A.P.; Porcel, P.A.G.; Sarabia, R.V.; Torralba, M.H. Management of Syndesmotic Injuries of the Ankle. EFORT Open Rev. 2017, 2, 403–409. [Google Scholar] [CrossRef]
- Cornu, O.; Manon, J.; Tribak, K.; Putineanu, D. Traumatic Injuries of the Distal Tibiofibular Syndesmosis. Orthop. Traumatol. Surg. Res. 2021, 107, 102778. [Google Scholar] [CrossRef]
- Raheman, F.J.; Rojoa, D.M.; Hallet, C.; Yaghmour, K.M.; Jeyaparam, S.; Ahluwalia, R.S.; Mangwani, J. Can Weightbearing Cone-Beam CT Reliably Differentiate Between Stable and Unstable Syndesmotic Ankle Injuries? A Systematic Review and Meta-Analysis. Clin. Orthop. Relat. Res. 2022, 480, 1547–1562. [Google Scholar] [CrossRef]
- Chen, C.; Jiang, J.T.; Wang, C.; Zou, J.; Shi, Z.M.; Yang, Y.F. Is the Diagnostic Validity of Conventional Radiography for Lisfranc Injury Acceptable? J. Foot Ankle Res. 2023, 16, 9. [Google Scholar] [CrossRef]
- Rikken, Q.G.H.; Hagemeijer, N.C.; De Bruijn, J.; Kaiser, P.; Kerkhoffs, G.M.M.J.; DiGiovanni, C.W.; Guss, D. Novel Values in the Radiographic Diagnosis of Ligamentous Lisfranc Injuries. Injury 2022, 53, 2326–2332. [Google Scholar] [CrossRef] [PubMed]
- De Bruijn, J.; Hagemeijer, N.C.; Rikken, Q.G.H.; Husseini, J.S.; Saengsin, J.; Kerkhoffs, G.M.M.J.; Waryasz, G.; Guss, D.; DiGiovanni, C.W. Lisfranc Injury: Refined Diagnostic Methodology Using Weightbearing and Non-Weightbearing Radiographs. Injury 2022, 53, 2318–2325. [Google Scholar] [CrossRef] [PubMed]
- Seow, D.; Yasui, Y.; Chan, L.Y.T.; Murray, G.; Kubo, M.; Nei, M.; Matsui, K.; Kawano, H.; Miyamoto, W. Inconsistent Radiographic Diagnostic Criteria for Lisfranc Injuries: A Systematic Review. BMC Musculoskelet. Disord. 2023, 24, 915. [Google Scholar] [CrossRef]
- Dossett, H.G.; Deckey, D.G.; Clarke, H.D.; Spangehl, M.J. Individualizing a Total Knee Arthroplasty with Three-Dimensional Planning. J. Am. Acad. Orthop. Surg. Glob. Res. Rev. 2024, 8, e24. [Google Scholar] [CrossRef] [PubMed]
- Orsi, A.D.; Shatrov, J.; Plaskos, C.; Kreuzer, S. Personalized Alignment Techniques Better Restore the Native Trochlear Groove Compared to Systematic Alignment Techniques in Total Knee Arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 915–928. [Google Scholar] [CrossRef]
- Lee, O.S.; Raheman, F.; Jaiswal, P. The Accuracy of Digital Templating in the Preoperative Planning of Total Knee Arthroplasties: A Systematic Review and Meta-Analysis. Knee 2024, 47, 139–150. [Google Scholar] [CrossRef]
- The, B.; Diercks, R.L.; Van Ooijen, P.M.A.; Van Horn, J.R. Comparison of Analog and Digital Preoperative Planning in Total Hip and Knee Arthroplasties: A Prospective Study of 173 Hips and 65 Total Knees. Acta Orthop. Scand. 2005, 76, 78–84. [Google Scholar] [CrossRef]
- Trickett, R.W.; Hodgson, P.; Forster, M.C.; Robertson, A. The Reliability and Accuracy of Digital Templating in Total Knee Replacement. J. Bone Jt. Surg. Ser. B 2009, 91, 903–906. [Google Scholar] [CrossRef]
- Bishi, H.; Smith, J.B.V.; Asopa, V.; Field, R.E.; Wang, C.; Sochart, D.H. Comparison of the Accuracy of 2D and 3D Templating Methods for Planning Primary Total Hip Replacement: A Systematic Review and Meta-Analysis. EFORT Open Rev. 2022, 7, 70–83. [Google Scholar] [CrossRef]
- Burssens, A.B.M.; Buedts, K.; Barg, A.; Vluggen, E.; Demey, P.; Saltzman, C.L.; Victor, J.M.K. Is Lower-Limb Alignment Associated with Hindfoot Deformity in the Coronal Plane? A Weightbearing CT Analysis. Clin. Orthop. Relat. Res. 2020, 478, 154–168. [Google Scholar] [CrossRef]
- Etani, Y.; Hirao, M.; Ebina, K.; Noguchi, T.; Okamura, G.; Tsuboi, H.; Miyama, A.; Tsuji, S.; Kunugiza, Y.; Okada, S.; et al. Improvement of Knee Alignment and Function After Corrective Surgery for Hindfoot Deformity: A Report of 3 Cases. JBJS Case Connect. 2022, 12, e21. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, Y.; Maeyama, A.; Miyazaki, K.; Ishimatsu, T.; Yoshimura, I.; Yamamoto, T. Evaluation of the Hindfoot Alignment before and after Total Knee Arthroplasty. J. Clin. Orthop. Trauma 2022, 31, 101947. [Google Scholar] [CrossRef] [PubMed]
- Nha, K.W.; Han, J.H.; Chae, S.W.; Choi, J.Y. Effect of Medial Closing Wedge Distal Femoral Varization Osteotomy on Coronal Ankle and Hindfoot Alignment. Foot Ankle Int. 2023, 44, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, K.; Maeyama, A.; Matsunaga, T.; Ishimatsu, T.; Yamamoto, T. Pathophysiology of Abnormal Compensation Ability of the Subtalar Joint in the Varus Knee. J. Orthop. Sci. 2023, 29, 1259–1264. [Google Scholar] [CrossRef]
- Xie, K.; Han, X.; Jiang, X.; Ai, S.; Dai, K.; Yu, Z.; Wu, H.; Qu, X.; Yan, M. The Effect of Varus Knee Deformities on the Ankle Alignment in Patients with Knee Osteoarthritis. J. Orthop. Surg. Res. 2019, 14, 134. [Google Scholar] [CrossRef]
- Kikuchi, K.; Nakano, N.; Ishida, K.; Kuroda, Y.; Hayashi, S.; Tsubosaka, M.; Kamenaga, T.; Matsushita, T.; Kuroda, R.; Matsumoto, T. Influence of Distal Reference Point of the Tibial Mechanical Axis on the Ankle and Hindlimb Alignment Change after Total Knee Arthroplasty. J. Knee Surg. 2023, 37, 409–415. [Google Scholar] [CrossRef]
- Thienpont, E.; Schwab, P.E.; Cornu, O.; Bellemans, J.; Victor, J. Bone Morphotypes of the Varus and Valgus Knee. Arch. Orthop. Trauma Surg. 2017, 137, 393–400. [Google Scholar] [CrossRef]
- Jeong, B.O.; Kim, T.Y.; Baek, J.H.; Jung, H.; Song, S.H. Following the Correction of Varus Deformity of the Knee through Total Knee Arthroplasty, Significant Compensatory Changes Occur Not Only at the Ankle and Subtalar Joint, but Also at the Foot. KneeSurg. Sports Traumatol. Arthrosc. 2018, 26, 3230–3237. [Google Scholar] [CrossRef]
- Kikuchi, N.; Kanamori, A.; Okuno, K.; Yamazaki, M. Weight-Bearing Line at the Ankle Joint Level Shifted Laterally after Total Knee Arthroplasty for Varus Knee Osteoarthritis: Evaluation of the Hip-to-Calcaneus Line. Orthop. Traumatol. Surg. Res. 2024, 110, 103690. [Google Scholar] [CrossRef]
- Harvey, J.; Eltayeb, M.; Moulder, E.H.; Muir, R.L.; Sharma, H.K. Compensatory Mechanisms for Proximal & Distal Joint Alignment & Gait in Varus Knee Osteoarthritis Treated with High Tibial Osteotomy: A Systematic Review. J. Orthop. 2024, 54, 148–157. [Google Scholar] [CrossRef]
- Norton, A.A.; Callaghan, J.J.; Amendola, A.; Phisitkul, P.; Wongsak, S.; Liu, S.S.; Fruehling-Wall, C. Correlation of Knee and Hindfoot Deformities in Advanced Knee OA: Compensatory Hindfoot Alignment and Where It Occurs. Clin. Orthop. Relat. Res. 2015, 473, 166–174. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, B.; Zhao, C.; Fan, L.; Kang, J. Assessment of Lower Limb Alignment: Supine Weight-Bearing CT Scanograms Compared with a Standing Full-Length Radiograph. Skelet. Radiol. 2024, 53, 1465–1471. [Google Scholar] [CrossRef]
- Yang, H.Y.; Kang, J.K.; Kim, J.W.; Yoon, T.W.; Seon, J.K. Preoperative Hindfoot Alignment and Outcomes After High Tibial Osteotomy for Varus Knee Osteoarthritis: We Walk on Our Heel, Not Our Ankle. J. Bone Jt. Surg. Am. 2024, 106, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Park, J.G.; Han, S.B.; Jang, K.M. Association of Preoperative Tibial Varus Deformity With Joint Line Orientation and Clinical Outcome After Open-Wedge High Tibial Osteotomy for Medial Compartment Osteoarthritis: A Propensity Score–Matched Analysis. Am. J. Sports Med. 2021, 49, 3551–3560. [Google Scholar] [CrossRef]
- Yang, T.W.; Lin, Y.Y.; Hsu, S.C.; Chu, K.C.W.; Hsiao, C.W.; Hsu, C.W.; Bai, C.H.; Chang, C.K.; Hsu, Y.P. Diagnostic Performance of Cone-Beam Computed Tomography for Scaphoid Fractures: A Systematic Review and Diagnostic Meta-Analysis. Sci. Rep. 2021, 11, 2587. [Google Scholar] [CrossRef]
- Fitzpatrick, E.; Sharma, V.; Rojoa, D.; Raheman, F.; Singh, H. The Use of Cone-Beam Computed Tomography (CBCT) in Radiocarpal Fractures: A Diagnostic Test Accuracy Meta-Analysis. Skelet. Radiol. 2022, 51, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, J.; Benndorf, M.; Ehritt-Braun, C.; Reising, K.; Yilmaz, T.; Klein, C.; Zajonc, H.; Kotter, E.; Langer, M.; Goerke, S.M. Comparison of the Diagnostic Accuracy of Cone Beam Computed Tomography and Radiography for Scaphoid Fractures. Sci. Rep. 2018, 8, 3906. [Google Scholar] [CrossRef] [PubMed]
- Bry, K.; Kortesniemi, M.; Koivikko, M.; Kerttula, L. Comparison of Cone Beam Computed Tomography and Plane Radiographs of Radial Fractures as a Basis for Radiographical Measurements. BMC Med. Imaging 2023, 23, 125. [Google Scholar] [CrossRef]
- Suojärvi, N.; Sillat, T.; Lindfors, N.; Koskinen, S.K. Radiographical Measurements for Distal Intra-Articular Fractures of the Radius Using Plain Radiographs and Cone Beam Computed Tomography Images. Skelet. Radiol. 2015, 44, 1769–1775. [Google Scholar] [CrossRef]
- Colville, J.G.; Ray, A.; Harris, M.A.; Spencer, N.; Snaith, B. Evaluating Cone-Beam CT in the Diagnosis of Suspected Scaphoid Fractures in the Emergency Department: Preliminary Findings. Clin. Imaging 2022, 83, 65–71. [Google Scholar] [CrossRef]
- Borel, C.; Larbi, A.; Delclaux, S.; Lapegue, F.; Chiavassa-Gandois, H.; Sans, N.; Faruch-Bilfeld, M. Diagnostic Value of Cone Beam Computed Tomography (CBCT) in Occult Scaphoid and Wrist Fractures. Eur. J. Radiol. 2017, 97, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Krayem, M.; Weber Lensing, C.; Fornander, L. Cone-Beam Computed Tomography for Primary Investigation of Wrist Trauma Provides a New Map of Fractures of Carpal Bones. J. Hand Surg. Eur. Vol. 2021, 46, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Mallee, W.H.; Wang, J.; Poolman, R.W.; Kloen, P.; Maas, M.; de Vet, H.C.W.; Doornberg, J.N. Computed Tomography versus Magnetic Resonance Imaging versus Bone Scintigraphy for Clinically Suspected Scaphoid Fractures in Patients with Negative Plain Radiographs. Cochrane Database Syst. Rev. 2015, 2015, CD010023. [Google Scholar] [CrossRef] [PubMed]
- Roolker, W.; Maas, M.; Broekhuizen, A.H. Diagnosis and Treatment of Scaphoid Fractures, Can Non-Union Be Prevented? Arch. Orthop. Trauma Surg. 1999, 119, 428–431. [Google Scholar] [CrossRef]
- Orji, C.; Reghefaoui, M.; Saavedra Palacios, M.S.; Thota, P.; Peresuodei, T.S.; Gill, A.; Hamid, P. Application of Artificial Intelligence and Machine Learning in Diagnosing Scaphoid Fractures: A Systematic Review. Cureus 2023, 15, e47732. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Shen, Y.W.; Zhang, K.R.; Jiang, Z.K.; Ma, L.T.; Ding, C.; Wang, B.Y.; Meng, Y.; Liu, H. Diagnostic Accuracy and Potential Covariates of Artificial Intelligence for Diagnosing Orthopedic Fractures: A Systematic Literature Review and Meta-Analysis. Eur. Radiol. 2022, 32, 7196–7216. [Google Scholar] [CrossRef]
- Langerhuizen, D.W.G.; Bulstra, A.E.J.; Janssen, S.J.; Ring, D.; Kerkhoffs, G.M.M.J.; Jaarsma, R.L.; Doornberg, J.N. Is Deep Learning on Par with Human Observers for Detection of Radiographically Visible and Occult Fractures of the Scaphoid? Clin. Orthop. Relat. Res. 2020, 478, 2653–2659. [Google Scholar] [CrossRef]
- Oeding, J.F.; Kunze, K.N.; Messer, C.J.; Pareek, A.; Fufa, D.T.; Pulos, N.; Rhee, P.C. Diagnostic Performance of Artificial Intelligence for Detection of Scaphoid and Distal Radius Fractures: A Systematic Review. J. Hand Surg. 2024, 49, 411–422. [Google Scholar] [CrossRef]
- Kraus, M.; Anteby, R.; Konen, E.; Eshed, I.; Klang, E. Artificial Intelligence for X-ray Scaphoid Fracture Detection: A Systematic Review and Diagnostic Test Accuracy Meta-Analysis. Eur. Radiol. 2023, 34, 4341–4351. [Google Scholar] [CrossRef]
- Michelini, G.; Corridore, A.; Torlone, S.; Bruno, F.; Marsecano, C.; Capasso, R.; Caranci, F.; Barile, A.; Masciocchi, C.; Splendiani, A. Dynamic MRI in the Evaluation of the Spine: State of the Art. Acta Biomed. 2018, 89, 89–101. [Google Scholar] [CrossRef]
- Baker, M.A.; MacKay, S. Please Be Upstanding—A Narrative Review of Evidence Comparing Upright to Supine Lumbar Spine MRI. Radiography 2021, 27, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Doktor, K.; Hartvigsen, J.; Hancock, M.; Christensen, H.W.; Fredberg, U.; Boyle, E.; Kindt, M.; Brix, L.; Jensen, T.S. Reliability of Reporting Differences in Degenerative MRI Findings of the Lumbar Spine from the Supine to the Upright Position. Skelet. Radiol. 2022, 51, 2141–2154. [Google Scholar] [CrossRef] [PubMed]
- Mahato, N.K.; Sybert, D.; Law, T.; Clark, B. Effects of Spine Loading in a Patient with Post-Decompression Lumbar Disc Herniation: Observations Using an Open Weight-Bearing MRI. Eur. Spine J. 2017, 26, S17–S23. [Google Scholar] [CrossRef] [PubMed]
- Mahato, N.K. Load-Bearing Shifts in Laminar and Ligament Morphology: Comparing Spinal Canal Dimensions Using Supine versus Upright Lumbar MRI in Adults without Back Pain. Indian J. Radiol. Imaging 2023, 33, 344–350. [Google Scholar] [CrossRef]
- Mahato, N.K.; Maharaj, P.; Clark, B.C. Lumbar Spine Anatomy in Supine versus Weight-Bearing Magnetic Resonance Imaging: Detecting Significant Positional Changes and Testing Reliability of Quantification. Asian Spine J. 2024, 18, 1–11. [Google Scholar] [CrossRef]
Company | Device | Body Parts Scanned | N. of Studies | % |
---|---|---|---|---|
Carestream | Onsight | Knee, ankle, foot, toes (single-leg stance, weightbearing); hand, wrist, forearm, elbow (non-weightbearing) | 18 | 13.9 |
Curvebeam AI | HiRise | Whole lower limb (double-leg stance, weightbearing); hand, wrist, forearm, elbow (non-weightbearing) | 1 | 0.7 |
Curvebeam AI | Pedcat | Ankle, foot, toes (double-leg stance, weightbearing) | 82 | 63.6 |
Planmed Oy | Verity | Knee, ankle, foot, toes (single-leg stance, weightbearing); hand, wrist, forearm, elbow (non-weightbearing) | 19 | 14.8 |
Not specified | - | 9 | 7 | |
129 | 100 |
Design | Elective | % | Trauma | % |
---|---|---|---|---|
Prospective Comparative | 5 | 4.8 | 3 | 12.5 |
Prospective Non-comparative | 6 | 5.7 | 1 | 4.1 |
Retrospective Comparative | 61 | 58.6 | 14 | 58.3 |
Retrospective Non-comparative | 25 | 23.8 | 2 | 8.3 |
Cadaveric study | 5 | 4.8 | 3 | 12.5 |
Laboratory study | 3 | 2.8 | 1 | 4.1 |
Total | 105 | 24 |
Anatomical Area | Elective | % | Trauma | % |
---|---|---|---|---|
Foot and Ankle | 88 | 83.8 | 20 | 82.6 |
Progressive Collapsing Foot Deformity | 22 | 25 | ||
Hallux Valgus | 19 | 21.5 | ||
Hindfoot alignment | 13 | 14.7 | ||
Ankle osteoarthritis | 7 | 7.9 | ||
Cavovarus foot | 5 | 5.6 | ||
Foot alignment | 5 | 5.6 | ||
Lower limb alignment | 3 | 3.4 | ||
Syndesmotic injury | 3 | 3.4 | 12 | 60 |
Foot fractures | - | 2 | 10 | |
Hindfoot instability | 2 | 2.2 | ||
Lisfranc instability | 2 | 2.2 | 3 | 15 |
Ankle instability | 1 | 1.1 | 2 | 10 |
Hallux Rigidus | 1 | 1.1 | ||
Hindfoot osteoarthritis | 1 | 1.1 | ||
Muller-Weiss | 1 | 1.1 | ||
Pediatrics | 1 | 1.1 | ||
Pediatric deformities | 1 | 1.1 | ||
Pilon fracture | - | 1 | 5 | |
Windlass mechanism | 1 | 1.1 | ||
Knee | 13 | 12.5 | 2 | 8.6 |
Osteoarthritis | 7 | 6.7 | ||
Patellar instability | 2 | 8.3 | ||
Knee Alignment | 3 | 2.8 | ||
Knee instability | 1 | 0.9 | ||
Total Knee Replacement | 2 | 1.9 | ||
Lower Limb | 2 | 1.9 | 1 | 4.1 |
Spine | 1 | 0.9 | - | |
Wrist | 1 | 0.9 | ||
All Joints | - | 1 | 4.1 | |
Total | 105 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernasconi, A.; Dechir, Y.; Izzo, A.; D’Agostino, M.; Magliulo, P.; Smeraglia, F.; de Cesar Netto, C.; International Weightbearing CT Society; Lintz, F. Trends in the Use of Weightbearing Computed Tomography. J. Clin. Med. 2024, 13, 5519. https://doi.org/10.3390/jcm13185519
Bernasconi A, Dechir Y, Izzo A, D’Agostino M, Magliulo P, Smeraglia F, de Cesar Netto C, International Weightbearing CT Society, Lintz F. Trends in the Use of Weightbearing Computed Tomography. Journal of Clinical Medicine. 2024; 13(18):5519. https://doi.org/10.3390/jcm13185519
Chicago/Turabian StyleBernasconi, Alessio, Yanis Dechir, Antonio Izzo, Martina D’Agostino, Paolo Magliulo, Francesco Smeraglia, Cesar de Cesar Netto, International Weightbearing CT Society, and François Lintz. 2024. "Trends in the Use of Weightbearing Computed Tomography" Journal of Clinical Medicine 13, no. 18: 5519. https://doi.org/10.3390/jcm13185519
APA StyleBernasconi, A., Dechir, Y., Izzo, A., D’Agostino, M., Magliulo, P., Smeraglia, F., de Cesar Netto, C., International Weightbearing CT Society, & Lintz, F. (2024). Trends in the Use of Weightbearing Computed Tomography. Journal of Clinical Medicine, 13(18), 5519. https://doi.org/10.3390/jcm13185519