The Importance of Cardiac Magnetic Resonance in the Assessment Risk of Cardiac Arrhythmias in Patients with Arterial Hypertension
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mancia, G.; Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J. Hypertens. 2023, 41, 1874–2071. [Google Scholar] [CrossRef] [PubMed]
- Oparil, S.; Acelajado, M.C.; Bakris, G.L.; Berlowitz, D.R.; Cífková, R.; Dominiczak, A.F.; Grassi, G.; Jordan, J.; Poulter, N.R.; Rodgers, A.; et al. Hypertension. Nat. Rev. Dis. Prim. 2018, 4, 18014. [Google Scholar] [CrossRef] [PubMed]
- Rimoldi, S.F.; Scherrer, U.; Messerli, F.H. Secondary arterial hypertension: When, who, and how to screen? Eur. Heart J. 2014, 35, 1245–1254. [Google Scholar] [CrossRef]
- Nagaraju, S.P.; Shenoy, S.V.; Rao, I.R.; Bhojaraja, M.V.; Rangaswamy, D.; Prabhu, R.A. Measurement of Blood Pressure in Chronic Kidney Disease: Time to Change Our Clinical Practice—A Comprehensive Review. Int. J. Nephrol. Renovasc. Dis. 2022, 15, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Di Palo, K.E.; Barone, N.J. Hypertension and Heart Failure: Prevention, Targets, and Treatment. Cardiol. Clin. 2022, 40, 237–244. [Google Scholar] [CrossRef]
- Di Palo, K.E.; Barone, N.J. Hypertension and Heart Failure: Prevention, Targets, and Treatment. Heart Fail. Clin. 2020, 16, 99–106. [Google Scholar] [CrossRef]
- Rifkin, D.E.; Kiernan, M.; Sarnak, M.J. Hitting the Mark: Blood Pressure Targets and Agents in Those with Prevalent Cardiovascular Disease and Heart Failure. Adv. Chronic Kidney Dis. 2015, 22, 140–144. [Google Scholar] [CrossRef]
- Cerasola, G.; Cottone, S.; Mulé, G.; Nardi, E.; Mangano, M.T.; Andronico, G.; Contorno, A.; Li Vecchi, M.; Galione, P.; Renda, F.; et al. Microalbuminuria, renal dysfunction and cardiovascular complication in essential hypertension. J. Hypertens. 1996, 14, 915–920. [Google Scholar] [CrossRef]
- Tien, Y.W.; McIntosh, R. Hypertensive retinopathy signs as risk indicators of cardiovascular morbidity and mortality. Br. Med. Bull. 2005, 73–74, 57–70. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chattopadhya, S.; Hope-Ross, M.; Lip, P.L. Hypertension and the eye: Changing perspectives. J. Hum. Hypertens. 2002, 16, 667–675. [Google Scholar] [CrossRef]
- Xu, Y.; Bouliotis, G.; Beckett, N.S.; Antikainen, R.L.; Anderson, C.S.; Bulpitt, C.J.; Peters, R. Left ventricular hypertrophy and incident cognitive decline in older adults with hypertension. J. Hum. Hypertens. 2023, 37, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Kockskämper, J.; Pluteanu, F. Left Atrial Myocardium in Arterial hypertension. Cells 2022, 11, 3157. [Google Scholar] [CrossRef] [PubMed]
- Imbalzano, E.; Vatrano, M.; Ghiadoni, L.; Mandraffino, G.; Dalbeni, A.; Khandheria, B.K.; Costantino, R.; Trapani, G.; Manganaro, R.; Cusmà Piccione, M.; et al. Arterial stiffness and mitral regurgitation in arterial hypertension: An intriguing pathophysiological link. Vascul. Pharmacol. 2018, 111, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Shenasa, M.; Shenasa, H. Hypertension, left ventricular hypertrophy, and sudden cardiac death. Int. J. Cardiol. 2017, 237, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, M.; Oktay, A.A.; Stewart, M.H.; Milani, R.V.; Ventura, H.O.; Lavie, C.J. Left ventricular hypertrophy and hypertension. Prog. Cardiovasc. Dis. 2020, 63, 10–21. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bavishi, C.; Sardar, P.; Agarwal, V.; Krishnamoorthy, P.; Grodzicki, T.; Messerli, F.H. Meta-analysis of left ventricular hypertrophy and sustained arrhythmias. Am. J. Cardiol. 2014, 114, 1049–1052. [Google Scholar] [CrossRef]
- Liu, C.; Ferrari, V.A.; Han, Y. Cardiovascular Magnetic Resonance Imaging and Heart Failure. Curr. Cardiol. Rep. 2021, 23, 35. [Google Scholar] [CrossRef]
- Baritussio, A.; Scatteia, A.; Bucciarelli-Ducci, C. Role of cardiovascular magnetic resonance in acute and chronic ischemic heart disease. Int. J. Cardiovasc. Imaging 2018, 34, 67. [Google Scholar] [CrossRef]
- Patel, A.R.; Kramer, C.M. Role of Cardiac Magnetic Resonance in the Diagnosis and Prognosis of Nonischemic Cardiomyopathy. JACC Cardiovasc. Imaging 2017, 10, 1180–1193. [Google Scholar] [CrossRef]
- Bravo, P.E.; Luo, H.C.; Pozios, I.; Zimmerman, S.L.; Corona-Villalobos, C.P.; Sorensen, L.; Kamel, I.R.; Bluemke, D.A.; Wahl, R.L.; Abraham, M.R.; et al. Late gadolinium enhancement confined to the right ventricular insertion points in hypertrophic cardiomyopathy: An intermediate stage phenotype? Eur. Heart J. Cardiovasc. Imaging 2016, 17, 293–300. [Google Scholar] [CrossRef]
- Cardim, N.; Galderisi, M.; Edvardsen, T.; Plein, S.; Popescu, B.A.; D’Andrea, A.; Bruder, O.; Cosyns, B.; Davin, L.; Donal, E.; et al. Role of multimodality cardiac imaging in the management of patients with hypertrophic cardiomyopathy: An expert consensus of the European Association of Cardiovascular Imaging Endorsed by the Saudi Heart Association. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 280. [Google Scholar] [CrossRef] [PubMed]
- Grigoratos, C.; Pantano, A.; Meschisi, M.; Gaeta, R.; Ait-Ali, L.; Barison, A.; Todiere, G.; Festa, P.; Sinagra, G.; Aquaro, G.D. Clinical importance of late gadolinium enhancement at right ventricular insertion points in otherwise normal hearts. Int. J. Cardiovasc. Imaging 2020, 36, 913–920. [Google Scholar] [CrossRef]
- Miszalski-Jamka, T.; Szczeklik, W.; Karwat, K.; Sokołowska, B.; Gąsior, J.; Rucińska, M.; Mazur, W.; Skotnicki, A.; Kereiakes, D.J.; Urbańczyk, M.; et al. MRI-based evidence for myocardial involvement in women with hypereosinophilic syndrome. Magn. Reson. Med. Sci. 2015, 14, 107–114. [Google Scholar] [CrossRef]
- Muser, D.; Chahal, A.A.; Selvanayagam, J.B.; Nucifora, G. Clinical Applications of Cardiac Magnetic Resonance Parametric Mapping. Diagnostics 2024, 14, 1816. [Google Scholar] [CrossRef] [PubMed]
- Vaitiekiene, A.; Kulboke, M.; Bieseviciene, M.; Jankauskas, A.; Bartnykaite, A.; Rinkuniene, D.; Strazdiene, I.; Lidziute, E.; Jankauskaite, D.; Gaidamavicius, I.; et al. T1 Mapping in Cardiovascular Magnetic Resonance—A Marker of Diffuse Myocardial Fibrosis in Patients Undergoing Hematopoietic Stem Cell Transplantation. J. Pers. Med. 2024, 14, 412. [Google Scholar] [CrossRef] [PubMed]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Arbelo, E.; Barriales-Villa, R.; Basso, C.; Biagini, E.; Blom, N.A.; De Boer, R.A.; et al. 2023 ESC Guidelines for the management of cardiomyopathies: Developed by the task force on the management of cardiomyopathies of the European Society of Cardiology (ESC). Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef]
- Escobar, E. Hypertension and coronary heart disease. J. Hum. Hypertens. 2002, 16 (Suppl. S1), S61–S63. [Google Scholar] [CrossRef]
- Duncker, D.J.; Bache, R.J. Regulation of coronary blood flow during exercise. Physiol. Rev. 2008, 88, 1009–1086. [Google Scholar] [CrossRef]
- Wakatsuki, T.; Schlessinger, J.; Elson, E.L. The biochemical response of the heart to hypertension and exercise. Trends Biochem. Sci. 2004, 29, 609–617. [Google Scholar] [CrossRef]
- Sullivan, K.E.; Black, L.D. The role of cardiac fibroblasts in extracellular matrix-mediated signaling during normal and pathological cardiac development. J. Biomech. Eng. 2013, 135, 071001. [Google Scholar] [CrossRef]
- Afzal, M.R.; Savona, S.; Mohamed, O.; Mohamed-Osman, A.; Kalbfleisch, S.J. Hypertension and Arrhythmias. Heart Fail. Clin. 2019, 15, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Yiu, K.H.; Tse, H.F. Hypertension and cardiac arrhythmias: A review of the epidemiology, pathophysiology and clinical implications. J. Hum. Hypertens. 2008, 22, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Hennersdorf, M.G.; Strauer, B.E. Arterial hypertension and cardiac arrhythmias. J. Hypertens. 2001, 19, 167–177. [Google Scholar] [CrossRef]
- Nitsche, C.; Kammerlander, A.A.; Binder, C.; Duca, F.; Aschauer, S.; Koschutnik, M.; Snidat, A.; Beitzke, D.; Loewe, C.; Bonderman, D.; et al. Native T1 time of right ventricular insertion points by cardiac magnetic resonance: Relation with invasive haemodynamics and outcome in heart failure with preserved ejection fraction. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 683–691. [Google Scholar] [CrossRef]
- Burrage, M.K.; Ferreira, V.M. Cardiovascular Magnetic Resonance for the Differentiation of Left Ventricular Hypertrophy. Curr. Heart Fail. Rep. 2020, 17, 192. [Google Scholar] [CrossRef]
- Mahrholdt, H.; Wagner, A.; Judd, R.M.; Sechtem, U.; Kim, R.J. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur. Heart J. 2005, 26, 1461–1474. [Google Scholar] [CrossRef]
- Jackson, E.; Bellenger, N.; Seddon, M.; Harden, S.; Peebles, C. Ischaemic and non-ischaemic cardiomyopathies—Cardiac MRI appearances with delayed enhancement. Clin. Radiol. 2007, 62, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Nakou, E.; Patel, R.K.; Fontana, M.; Bucciarelli-Ducci, C. Cardiovascular Magnetic Resonance Parametric Mapping Techniques: Clinical Applications and Limitations. Curr. Cardiol. Rep. 2021, 23, 185. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, J.; Wan, K.; Yu, L.; Wang, J.; Li, W.; Yang, F.; Sun, J.; Cheng, W.; Mui, D.; et al. Multiparametric cardiovascular magnetic resonance characteristics and dynamic changes in myocardial and skeletal muscles in idiopathic inflammatory cardiomyopathy. J. Cardiovasc. Magn. Reson. 2020, 22, 22. [Google Scholar] [CrossRef]
- Kim, P.K.; Hong, Y.J.; Im, D.J.; Suh, Y.J.; Park, C.H.; Kim, J.Y.; Chang, S.; Lee, H.J.; Hur, J.; Kim, Y.J.; et al. Myocardial T1 and T2 Mapping: Techniques and Clinical Applications. Korean J. Radiol. 2017, 18, 113–131. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, L.; Cao, J.; Li, X.; Wang, J.; Jing, Z.; Jin, Z.; Wang, Y. The application value of cardiac magnetic resonance quantitative T1 mapping technique for risk stratification in patients with pulmonary arterial hypertension. Zhonghua Yi Xue Za Zhi 2022, 102, 2963–2968. [Google Scholar] [CrossRef] [PubMed]
- Hesselstrand, R.; Scheja, A.; Wuttge, D.M.; Arheden, H.; Ugander, M. Enlarged right-sided dimensions and fibrosis of the right ventricular insertion point on cardiovascular magnetic resonance imaging is seen early in patients with pulmonary arterial hypertension associated with connective tissue disease. Scand. J. Rheumatol. 2011, 40, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Cabanis, P.; Magat, J.; Rodriguez-Padilla, J.; Ramlugun, G.; Yon, M.; Bihan-Poudec, Y.; Pallares-Lupon, N.; Vaillant, F.; Pasdois, P.; Jais, P.; et al. Cardiac structure discontinuities revealed by ex-vivo microstructural characterization. A focus on the basal inferoseptal left ventricle region. J. Cardiovasc. Magn. Reson. 2023, 25, 78. [Google Scholar] [CrossRef]
- Yi, J.E.; Park, J.; Lee, H.J.; Shin, D.G.; Kim, Y.; Kim, M.; Kwon, K.; Pyun, W.B.; Kim, Y.J.; Joung, B. Prognostic implications of late gadolinium enhancement at the right ventricular insertion point in patients with non-ischemic dilated cardiomyopathy: A multicenter retrospective cohort study. PLoS ONE 2018, 13, e0208100. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.H.; Maron, B.J.; Olivotto, I.; Pencina, M.J.; Assenza, G.E.; Haas, T.; Lesser, J.R.; Gruner, C.; Crean, A.M.; Rakowski, H.; et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation 2014, 130, 484–495. [Google Scholar] [CrossRef]
- Allwood, R.P.; Papadakis, M.; Androulakis, E. Myocardial Fibrosis in Young and Veteran Athletes: Evidence from a Systematic Review of the Current Literature. J. Clin. Med. 2024, 13, 4536. [Google Scholar] [CrossRef]
- Małek, Ł.A.; Barczuk-Falęcka, M.; Werys, K.; Czajkowska, A.; Mróz, A.; Witek, K.; Burrage, M.; Bakalarski, W.; Nowicki, D.; Roik, D.; et al. Cardiovascular magnetic resonance with parametric mapping in long-term ultra-marathon runners. Eur. J. Radiol. 2019, 117, 89–94. [Google Scholar] [CrossRef]
Age [years] 1 | 56.7 ± 7.1 |
BMI [kg/m2] 1 | 26.9 ± 3.0 |
Sex 2 | |
Men | 37/45.7 |
Women | 44/54.3 |
Grades of arterial hypertension according to ESH/ECS 2 | |
Mild | 31/38.3 |
Moderate | 48/59.2 |
Severe | 2/2.5 |
Treatment of arterial hypertension 2 | 81/100.0 |
Monotherapy | 29/35.8 |
Combination Therapy | 52/64.2 |
Drugs in the treatment of arterial hypertension 2 | 81/100.0 |
ACE inhibitors | 48/59.2 |
β-blockers | 39/48.1 |
Diuretics | 17/21.0 |
Calcium channel blockers | 29/35.8 |
Angiotensin receptor blockers | 11/13.6 |
Duration of arterial hypertension [years] 1 | 14.3 ± 4.8 |
Systolic blood pressure [mmHg] 1 | 138.4 ± 16.9 |
Diastolic blood pressure [mmHg] 1 | 83.7 ± 8.3 |
Type 2 of diabetes 2 | 14/17.3 |
Fasting glucose [mg/dL] 1 | 123.6 ± 37.2 |
Hypercholesterolemia 2 | 44/54.3 |
Total cholesterol [mg/dL] 1 | 247.3 ± 48.4 |
Smoking 2 | 22/27.2 |
Cigarette years 1 | 307.2 ± 168.1 |
Left atrial area in 4-chamber projection (LAA) [cm2] 1 | 27.8 ± 7.6 |
Right atrial area in 4-chamber projection (RAA) [cm2] 1 | 21.4 ± 4.3 |
Left ventricular end-diastolic diameter (LVEDD) [mm] 1 | 58.7 ± 10.6 |
Left ventricular end-systolic diameter (LVESD) [mm] 1 | 34.7 ± 11.6 |
Interventricular septal end-diastolic wall thickness (IVS-EDWT) [mm] 1 | 10.9 ± 1.3 |
Posterior wall end-diastolic thickness (PW-EDWT) [mm] 1 | 9.3 ± 1.7 |
Left ventricular mass index (LVMI) [g/m2] 1 | 74.3 ± 14.7 |
Left ventricular end-diastolic volume index (LVEDVI) [mL/m2] 1 | 83.4 ± 21.5 |
Left ventricular end-systolic volume index (LVESVI) [mL/m2] 1 | 34.7 ± 13.0 |
Left ventricular stroke volume index (LVSVI) [mL/m2] 1 | 48.7 ± 9.7 |
Left ventricular ejection fraction (LVEF) [%] 1 | 66.1 ± 6.1 |
Left ventricular edema 2 | 0/0.0 |
The ratio of myocardial intensity to skeletal muscle intensity (T2 ratio) 1 | 1.6 ± 0.3 |
Late gadolinium enhancement (LGE) 2 | 27/33.3 |
Late gadolinium enhancement (LGE) at the right ventricular insertion point (RVIP) 2 | 27/33.3 |
Late gadolinium enhancement (LGE) in other locations of the myocardium 2 | 0/0.0 |
Myocardium T1 time [ms] 1 | 1024.9 ± 8.1 |
Myocardium T2 time [ms] 1 | 42.4 ± 2.7 |
Myocardium post-contrast T1 time (T1 C+) [ms] 1 | 443.0 ± 19.6 |
Pericardial effusion 2 | 0/0.0 |
RVIP+ (n = 27) | RVIP− (n = 54) | p | |
---|---|---|---|
Left atrial area in 4-chamber projection (LAA) [cm2] 1 | 33.0 ± 5.3 | 24.4 ± 5.6 | <0.05 |
Right atrial area in 4-chamber projection (RAA) [cm2] 1 | 20.5 ± 5.3 | 21.0 ± 3.4 | ns |
Left ventricular end-diastolic diameter (LVEDD) [mm] 1 | 60.2 ± 11.9 | 58.4 ± 9.8 | ns |
Left ventricular end-systolic diameter (LVESD) [mm] 1 | 35.3 ± 8.7 | 36.9 ± 11.4 | ns |
Interventricular septal end-diastolic wall thickness (IVS-EDWT) [mm] 1 | 10.2 ± 1.3 | 9.9 ± 1.4 | ns |
Posterior wall end-diastolic thickness (PW-EDWT) [mm] 1 | 9.7 ± 1.6 | 9.2 ± 2.0 | ns |
Left ventricular mass index (LVMI) [g/m2] 1 | 79.5 ± 17.4 | 78.8 ± 16.9 | ns |
Left ventricular end-diastolic volume index (LVEDVI) [mL/m2] 1 | 86.4 ± 16.8 | 82.8 ± 22.3 | ns |
Left ventricular end-systolic volume index (LVESVI) [mL/m2] 1 | 37.2 ± 14.2 | 35.8 ± 12.9 | ns |
Left ventricular stroke volume index (LVSVI) [mL/m2] 1 | 47.7 ± 9.8 | 50.2 ± 11.6 | ns |
Left ventricular ejection fraction (LVEF) [%] 1 | 64.4 ± 6.4 | 66.7 ± 5.3 | ns |
Left ventricular edema 2 | 0/0.0 | 0/0.0 | ns |
The ratio of myocardial intensity to skeletal muscle intensity (T2 ratio) 1 | 1.5 ± 0.3 | 1.6 ± 0.2 | ns |
Myocardium T1 time [ms] 1 | 1024.3 ± 7.6 | 1025.3 ± 8.5 | ns |
Myocardium T2 time [ms] 1 | 42.1 ± 2.9 | 42.6 ± 2.6 | ns |
Myocardium post-contrast T1 time (T1 C+) [ms] 1 | 439.7 ± 21.4 | 446.2 ± 18.5 | ns |
Pericardial effusion 2 | 0/0.0 | 0/0.0 | ns |
RVIP+ (n = 27) | RVIP− (n = 54) | p | |
---|---|---|---|
HR mean [bpm] 1 | 71.3 ± 6.9 | 65.9 ± 6.8 | <0.05 |
HR min [bpm] 1 | 56.6 ± 6.4 | 54.8 ± 7.0 | ns |
HR max [bpm] 1 | 104.8 ± 13.4 | 98.6 ± 14.1 | <0.05 |
SVPC 1 | 217.2 ± 401.6 | 8.1 ± 10.8 | <0.05 |
SVPC pairs 1 | 18.6 ± 45.3 | 1.2 ± 1.4 | <0.05 |
SVT 1 | 1.4 ± 2.7 | 0.2 ± 0.1 | ns |
VPC 1 | 104.6 ± 271.6 | 67.4 ± 110.6 | ns |
VPC pairs 1 | 0.6 ± 3.1 | 0.0 ± 0.0 | ns |
bigeminy 1 | 0.2 ± 0.8 | 0.0 ± 0.0 | ns |
trigeminy 1 | 0.4 ± 0.7 | 0.2 ± 0.1 | ns |
sinus tachycardia 1 | 0.2 ± 0.6 | 0.4 ± 0.9 | ns |
sinus bradycardia 1 | 0.7 ± 1.1 | 0.0 ± 0.00 | ns |
pauses > 2.5 s 1 | 1.1 ± 2.0 | 0.0 ± 0.00 | ns |
RVIP+ (n = 27) | RVIP− (n = 54) | p | |
---|---|---|---|
sinus rhythm 1 | 25/92.6 | 54/100.0 | ns |
escape rhythm 1 | 2/7.4 | 0/0.0 | ns |
AF 1 | 4/14.8 | 1/1.8 | <0.05 |
VT 1 | 1/3.7 | 1/1.8 | ns |
sinus tachycardia 1 | 5/18.5 | 2/3.7 | <0.05 |
sinus bradycardia 1 | 1/3.7 | 0/0.0 | ns |
pauses > 2.5 s 1 | 2/7.4 | 0/0.0 | ns |
I-degree atrioventricular block 1 | 8/29.6 | 11/20.4 | ns |
Wenckebach’s II-degree atrioventricular block 1 | 2/7.4 | 1/1.8 | ns |
Mobitz’s II-degree atrioventricular block 1 | 0/0.0 | 0/0.0 | ns |
III-degree atrioventricular block 1 | 1/3.7 | 0/0.0 | ns |
ST-T changes 1 | 6/22.2 | 7/13.0 | <0.05 |
∑ categorical changes 2 | 4.2 ± 0.6 | 0.9 ± 0.5 | <0.05 |
Model for: ∑ Categorical Changes in 24 h Holter ECG Monitoring | |||
---|---|---|---|
Intercept | LGE at RVIP # | Duration of arterial hypertension (years) | |
Regression coefficient | 0.584 | 2.628 | 0.143 |
SEM of Rc | 0.211 | 1.175 | 0.059 |
p | <0.05 | <0.05 | <0.05 |
statistical power of estimation | p < 0.05, SEM of estimation 0.089, corrected R2 0.577 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wysocki, A.; Macek, P.; Dziadkowiec-Macek, B.; Poręba, M.; Gać, P.; Poręba, R. The Importance of Cardiac Magnetic Resonance in the Assessment Risk of Cardiac Arrhythmias in Patients with Arterial Hypertension. J. Clin. Med. 2024, 13, 5383. https://doi.org/10.3390/jcm13185383
Wysocki A, Macek P, Dziadkowiec-Macek B, Poręba M, Gać P, Poręba R. The Importance of Cardiac Magnetic Resonance in the Assessment Risk of Cardiac Arrhythmias in Patients with Arterial Hypertension. Journal of Clinical Medicine. 2024; 13(18):5383. https://doi.org/10.3390/jcm13185383
Chicago/Turabian StyleWysocki, Andrzej, Piotr Macek, Barbara Dziadkowiec-Macek, Małgorzata Poręba, Paweł Gać, and Rafał Poręba. 2024. "The Importance of Cardiac Magnetic Resonance in the Assessment Risk of Cardiac Arrhythmias in Patients with Arterial Hypertension" Journal of Clinical Medicine 13, no. 18: 5383. https://doi.org/10.3390/jcm13185383
APA StyleWysocki, A., Macek, P., Dziadkowiec-Macek, B., Poręba, M., Gać, P., & Poręba, R. (2024). The Importance of Cardiac Magnetic Resonance in the Assessment Risk of Cardiac Arrhythmias in Patients with Arterial Hypertension. Journal of Clinical Medicine, 13(18), 5383. https://doi.org/10.3390/jcm13185383