SURgical vs. PERcutaneous ACCESS in Transfemoral Transcatheter Aortic Valve Implantation (SU-PER-ACCESS Study)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Data Collection
2.2. TAVI Procedure
2.3. Procedural and Clinical End-Points
- Rate of vascular complication.
- Rate of access-related non-vascular complication.
- Rate of bleeding events according.
2.4. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Unmatched Population
3.3. Matched Population
3.4. Perioperative Adverse Events and 30-Day Mortality
4. Discussion
- The surgical and percutaneous approaches did not differ in term of mortality.
- The percutaneous technique was associated with an increased risk of minor vascular complication and minor bleeding.
- Major vascular complications occurred with the same rate in the two groups.
- No difference in term of stroke were reported.
- Non-vascular-related access complications were associated with surgical cut-down, which increased the length of stay after the procedure.
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, C.R.; Leon, M.B.; Mack, M.J.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 2011, 364, 2187–2198. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- Leon, M.B.; Smith, C.R.; Mack, M.J.; Makkar, R.R.; Svensson, L.G.; Kodali, S.K.; Thourani, V.H.; Tuzcu, E.M.; Miller, D.C.; Herrmann, H.C.; et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2016, 374, 1609–1620. [Google Scholar] [CrossRef]
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.R.; Nishimura, R.A.; Grover, F.L.; Brindis, R.G.; Carroll, J.D.; Edwards, F.H.; Peterson, E.D.; Rumsfeld, J.S.; Shahian, D.M.; Thourani, V.H.; et al. Annual Outcomes With Transcatheter Valve Therapy: From the STS/ACC TVT Registry. J. Am. Coll. Cardiol. 2015, 66, 2813–2823. [Google Scholar] [CrossRef] [PubMed]
- Beurtheret, S.; Karam, N.; Resseguier, N.; Houel, R.; Modine, T.; Folliguet, T.; Chamandi, C.; Com, O.; Gelisse, R.; Bille, J.; et al. Femoral Versus Nonfemoral Peripheral Access for Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2019, 74, 2728–2739. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, H.K.; Megaly, M.; Debski, M.; Rahbi, H.; Kamal, D.; Saad, M.; Wiper, A.; More, R.; Roberts, D.H. Meta-Analysis Comparing Percutaneous to Surgical Access in Trans-Femoral Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2020, 125, 1239–1248. [Google Scholar] [CrossRef]
- Ullery, B.W.; Jin, R.; Kirker, E.B.; Hayes, G.; Siwek, L.; Brevig, J.; Hodson, R.W.; Spinelli, K.J. Trends in vascular complications and associated treatment strategies following transfemoral transcatheter aortic valve replacement. J. Vasc. Surg. 2020, 72, 1313–1324.e5. [Google Scholar] [CrossRef]
- Mach, M.; Okutucu, S.; Kerbel, T.; Arjomand, A.; Fatihoglu, S.G.; Werner, P.; Simon, P.; Andreas, M. Vascular Complications in TAVR: Incidence, Clinical Impact, and Management. J. Clin. Med. 2021, 10, 5046. [Google Scholar] [CrossRef]
- Généreux, P.; Webb, J.G.; Svensson, L.G.; Kodali, S.K.; Satler, L.F.; Fearon, W.F.; Davidson, C.J.; Eisenhauer, A.C.; Makkar, R.R.; Bergman, G.W.; et al. Vascular complications after transcatheter aortic valve replacement: Insights from the PARTNER (Placement of AoRTic TraNscathetER Valve) trial. J. Am. Coll. Cardiol. 2012, 60, 1043–1052. [Google Scholar] [CrossRef]
- Beohar, N.; Zajarias, A.; Thourani, V.H.; Herrmann, H.C.; Mack, M.; Kapadia, S.; Green, P.; Arnold, S.V.; Cohen, D.J.; Généreux, P.; et al. Analysis of early out-of hospital mortality after transcatheter aortic valve implantation among patients with aortic stenosis successfully discharged from the hospital and alive at 30 days (from the placement of aortic transcatheter valves trial). Am. J. Cardiol. 2014, 114, 1550–1555. [Google Scholar] [CrossRef] [PubMed]
- Youn, Y.J.; Khalid, S.; Azrin, M.; Lee, J. Stenosis Caused by Suture-Mediated Vascular Closure Device in an Angiographic Normal Common Femoral Artery: Its Mechanism and Management. Vasc. Endovasc. Surg. 2019, 53, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Chakravarty, T.; Jilaihawi, H.; Doctor, N.; Dohad, S.; Fontana, G.; Cheng, W.; Makkar, R.R. Complete percutaneous approach for arterial access in transfemoral transcatheter aortic valve replacement: A comparison with surgical cut-down and closure. Catheter. Cardiovasc. Interv. 2014, 84, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Enriquez, M.; Andrea, R.; Brugaletta, S.; Jiménez-Quevedo, P.; Hernández-García, J.M.; Trillo, R.; Larman, M.; Fernández-Avilés, F.; Vázquez-González, N.; Iñiguez, A.; et al. Puncture Versus Surgical Cutdown Complications of Transfemoral Aortic Valve Implantation (from the Spanish TAVI Registry). Am. J. Cardiol. 2016, 118, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Généreux, P.; Piazza, N.; Alu, M.C.; Nazif, T.; Hahn, R.T.; Pibarot, P.; Bax, J.J.; Leipsic, J.A.; Blanke, P.; Blackstone, E.H.; et al. Valve Academic Research Consortium 3: Updated endpoint definitions for aortic valve clinical research. Eur. Heart J. 2021, 42, 1825–1857. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Su, X.; Ge, T.; Fan, J. Propensity score and proximity matching using random forest. Contemp. Clin. Trials 2016, 47, 85–92. [Google Scholar] [CrossRef]
- Bansal, A.; Kalra, A.; Kumar, A.; Campbell, J.; Krishnaswamy, A.; Kapadia, S.R.; Reed, G.W. Outcomes of Combined Transcatheter Aortic Valve Replacement and Peripheral Vascular Intervention in the United States. JACC Cardiovasc. Interv. 2021, 14, 2572–2580. [Google Scholar] [CrossRef] [PubMed]
- Isogai, T.; Agrawal, A.; Shekhar, S.; Spilias, N.; Puri, R.; Krishnaswamy, A.; Unai, S.; Yun, J.J.; Kapadia, S.R.; Reed, G.W. Comparison of Outcomes Following Transcatheter Aortic Valve Replacement Requiring Peripheral Vascular Intervention or Alternative Access. J. Am. Heart Assoc. 2023, 12, e028878. [Google Scholar] [CrossRef] [PubMed]
- Piperata, A.; Van den Eynde, J.; Pernot, M.; Avesani, M.; Seguy, B.; Bonnet, G.; Ben Ali, W.; Leroux, L.; Labrousse, L.; Modine, T. Impact of Valve Academic Research Consortium 3 (VARC-3) minor access site vascular complications in patients undergoing percutaneous transfemoral transcatheter aortic valve implantation. Eur. J. Cardiothorac. Surg. 2023, 64, ezad255. [Google Scholar] [CrossRef]
- McCabe, J.M.; Huang, P.H.; Cohen, D.J.; Blackstone, E.H.; Welt, F.G.P.; Davidson, M.J.; Kaneko, T.; Eng, M.H.; Allen, K.B.; Xu, K.; et al. Surgical Versus Percutaneous Femoral Access for Delivery of Large-Bore Cardiovascular Devices (from the PARTNER Trial). Am. J. Cardiol. 2016, 117, 1643–1650. [Google Scholar] [CrossRef]
- Kochman, J.; Kołtowski, Ł.; Huczek, Z.; Rymuza, B.; Wilimski, R.; Dąbrowski, M.; Witkowski, A.; Grygier, M.; Olasińska-Wiśniewska, A.; Kubler, P.; et al. Complete percutaneous approach versus surgical access in transfemoral transcatheter aortic valve implantation: Results from a multicentre registry. Kardiol. Pol. 2018, 76, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, H.; Watanabe, Y.; Kozuma, K.; Nara, Y.; Hioki, H.; Kataoka, A.; Yamamoto, M.; Takagi, K.; Araki, M.; Tada, N.; et al. Propensity-matched comparison of percutaneous and surgical cut-down approaches in transfemoral transcatheter aortic valve implantation using a balloon-expandable valve. EuroIntervention 2017, 12, 1954–1961. [Google Scholar] [CrossRef] [PubMed]
- Sumii, Y.; Morisaki, A.; Okai, T.; Taniuchi, S.; Shintani, A.; Kawase, T.; Nishiya, K.; Sakon, Y.; Fujii, H.; Shibata, T.; et al. Vascular access site complications after transfemoral transcatheter aortic valve implantation: A comparison of open and percutaneous puncture approaches. J. Thorac. Dis. 2023, 15, 5901–5912. [Google Scholar] [CrossRef] [PubMed]
- Doshi, R.; Vasudev, R.; Guragai, N.; Patel, K.N.; Kumar, A.; Majmundar, M.; Doshi, P.; Patel, P.; Shah, K.; Santana, M.; et al. Clinical outcomes of MANTA vs suture-based vascular closure devices after transcatheter aortic valve replacement: An updated meta-analysis. Indian. Heart J. 2023, 75, 59–67. [Google Scholar] [CrossRef]
- Abdel-Wahab, M.; Hartung, P.; Dumpies, O.; Obradovic, D.; Wilde, J.; Majunke, N.; Boekstegers, P.; Müller, R.; Seyfarth, M.; Vorpahl, M.; et al. Comparison of a Pure Plug-Based Versus a Primary Suture-Based Vascular Closure Device Strategy for Transfemoral Transcatheter Aortic Valve Replacement: The CHOICE-CLOSURE Randomized Clinical Trial. Circulation 2022, 145, 170–183. [Google Scholar] [CrossRef]
Unmatched | Matched | |||||
---|---|---|---|---|---|---|
Characteristic | SC N = 420 | PC N = 354 | SMD | SC N = 323 | PC N = 323 | SMD |
Male | 206 (49%) | 137 (39%) | 0.21 | 135 (42%) | 127 (39%) | 0.05 |
Age | 82 (79–85) | 82 (80–86) | −0.02 | 82 (80–85) | 82 (80–86) | −0.01 |
NYHA | −0.08 | 0.00 | ||||
I | 31 (7.4%) | 15 (4.2%) | 19 (5.9%) | 15 (4.6%) | ||
II | 160 (38%) | 124 (35%) | 119 (37%) | 114 (35%) | ||
III | 185 (44%) | 191 (54%) | 152 (47%) | 173 (54%) | ||
IV | 44 (10%) | 24 (6.8%) | 33 (10%) | 21 (6.5%) | ||
Hypertension | 362 (86%) | 292 (82%) | 0.10 | 275 (85%) | 265 (82%) | 0.08 |
Dyslipidemia | 185 (44%) | 158 (45%) | −0.01 | 138 (43%) | 147 (46%) | −0.06 |
Diabetes | 122 (29%) | 75 (21%) | 0.18 | 69 (21%) | 73 (23%) | −0.03 |
COPD | 124 (30%) | 75 (21%) | 0.19 | 81 (25%) | 74 (23%) | 0.05 |
Neurological dysfunction | 45 (11%) | 18 (5.1%) | 0.21 | 21 (6.5%) | 18 (5.6%) | 0.04 |
PVD | 81 (19%) | 41 (12%) | 0.21 | 37 (11%) | 39 (12%) | −0.02 |
Recent MI | 10 (2.4%) | 7 (2.0%) | 0.03 | 8 (2.5%) | 7 (2.2%) | 0.02 |
Cirrhosis | 4 (1.0%) | 7 (2.0%) | −0.09 | 3 (0.9%) | 5 (1.5%) | −0.06 |
CRF | 97 (23%) | 73 (21%) | 0.06 | 63 (20%) | 68 (21%) | −0.04 |
Dialysis | 8 (1.9%) | 9 (2.5%) | −0.04 | 7 (2.2%) | 8 (2.5%) | −0.02 |
Redo | 54 (13%) | 37 (10%) | 0.08 | 27 (8.4%) | 30 (9.3%) | −0.03 |
LVEF | 59 (54, 64) | 57 (55, 63) | −0.05 | 60 (55, 64) | 57 (55, 63) | −0.02 |
Prior CABG | 38 (9.0%) | 13 (3.7%) | 0.22 | 11 (3.4%) | 13 (4.0%) | −0.03 |
Prior AVR | 13 (3.1%) | 19 (5.4%) | −0.11 | 13 (4.0%) | 16 (5.0%) | −0.04 |
Prior PM | 31 (7.4%) | 29 (8.2%) | −0.03 | 19 (5.9%) | 22 (6.8%) | −0.04 |
Characteristic | SC N = 420 | PC N = 354 | p-Value |
---|---|---|---|
Local Anesthesia | 404 (97%) | 351 (99%) | 0.028 |
Valve in valve procedure | 11 (2.6%) | 17 (4.8%) | 0.11 |
Pre-Implant Valvuloplasty | 101 (24%) | 110 (31%) | 0.029 |
Prosthesis Size | <0.001 | ||
20 | 9 (2.2%) | 7 (2.2%) | |
23 | 81 (20%) | 115 (35%) | |
25 | 4 (1.0%) | 0 (0%) | |
26 | 134 (33%) | 106 (33%) | |
27 | 0 (0%) | 10 (3.1%) | |
29 | 129 (32%) | 70 (22%) | |
34 | 45 (11%) | 16 (4.9%) | |
Device Success | 400 (95%) | 334 (94%) | 0.6 |
Technical Success | 404 (96%) | 335 (95%) | 0.3 |
Cardiac tamponade | 12 (2.9%) | 16 (4.5%) | 0.2 |
Emergency Cardiac Surgery | 7 (1.7%) | 15 (4.2%) | 0.032 |
ICU stay (days) | 0 (0–1) | 0 (0–0) | <0.001 |
Hospital Stay (days) | 5 (4, 7) | 4 (3, 5) | <0.001 |
Vascular complications | 0.013 | ||
Minor | 21 (5.0%) | 37 (10%) | |
Major | 6 (1.4%) | 7 (2.0%) | |
Non-vascular complications, access-related | <0.001 | ||
Minor | 31 (7.4%) | 4 (1.1%) | |
Major | 9 (2.1%) | 5 (1.4%) | |
Bleeding | <0.001 | ||
Minor | 17 (4.0%) | 36 (10%) | |
Major | 16 (3.8%) | 5 (1.4%) | |
Neurological complications | >0.9 | ||
TIA | 6 (1.4%) | 4 (1.1%) | |
Stroke | 5 (1.2%) | 5 (1.4%) | |
Atrial Fibrillation | 31 (7.4%) | 10 (2.8%) | 0.005 |
Pacemaker implantation | 46 (11%) | 27 (7.6%) | 0.11 |
Acute kidney injury | 7 (1.7%) | 6 (1.7%) | >0.9 |
Myocardial infarction | 0 (0%) | 0 (0%) | |
Death CV-related | 10 (2.4%) | 6 (1.7%) | 0.5 |
Death not CV-related | 8 (1.9%) | 3 (0.8%) | 0.2 |
Characteristic | SC N = 323 | PC N = 323 | p-Value |
---|---|---|---|
Local Anesthesia | 314 (98%) | 320 (99%) | 0.13 |
Valve in valve procedure | 11 (3.4%) | 14 (4.3%) | 0.5 |
Pre-implant Valvuloplasty | 82 (25%) | 103 (32%) | 0.068 |
Prosthesis Size | |||
20 | 9 (2.9%) | 6 (2.0%) | |
23 | 70 (23%) | 108 (36%) | |
25 | 4 (1.3%) | 0 (0%) | |
26 | 102 (33%) | 97 (33%) | |
27 | 0 (0%) | 10 (3.4%) | |
29 | 94 (30%) | 62 (21%) | |
34 | 30 (9.7%) | 15 (5.0%) | |
Device Success | 310 (96%) | 305 (94%) | 0.4 |
Technical Success | 312 (97%) | 306 (95%) | 0.2 |
Cardiac tamponade | 10 (3.1%) | 12 (3.7%) | 0.7 |
Emergency Cardiac Surgery | 6 (1.9%) | 13 (4.0%) | 0.10 |
ICU stay (days) | 0 (0, 1) | 0 (0, 0) | <0.001 |
Hospital Stay (days) | 5 (4, 7) | 4 (3, 5) | <0.001 |
Vascular complications | 0.017 | ||
Minor | 15 (4.6%) | 34 (11%) | |
Major | 5 (1.5%) | 6 (1.9%) | |
Non-vascular complications, access-related | <0.001 | ||
Minor | 26 (8.0%) | 4 (1.2%) | |
Major | 7 (2.2%) | 4 (1.2%) | |
Bleeding | <0.001 | ||
Minor | 10 (3.1%) | 34 (11%) | |
Major | 9 (2.8%) | 4 (1.2%) | |
Neurological complications | 0.7 | ||
TIA | 3 (0.9%) | 4 (1.2%) | |
Stroke | 3 (0.9%) | 5 (1.5%) | |
Atrial fibrillation | |||
Pacemaker implantation | 23 (7.1%) | 10 (3.1%) | 0.020 |
Acute kidney injury | 33 (10%) | 23 (7.1%) | 0.2 |
Myocardial Infarction | 6 (1.9%) | 6 (1.9%) | >0.9 |
Death CV-related | 0 (0%) | 0 (0%) | |
Death not CV-related | 8 (2.5%) | 5 (1.5%) | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cammardella, A.G.; Russo, M.; Di Mauro, M.; Romagnoni, C.; Ceresa, F.; Patanè, F.; Gelpi, G.; Pollari, F.; Barili, F.; Parolari, A.; et al. SURgical vs. PERcutaneous ACCESS in Transfemoral Transcatheter Aortic Valve Implantation (SU-PER-ACCESS Study). J. Clin. Med. 2024, 13, 4471. https://doi.org/10.3390/jcm13154471
Cammardella AG, Russo M, Di Mauro M, Romagnoni C, Ceresa F, Patanè F, Gelpi G, Pollari F, Barili F, Parolari A, et al. SURgical vs. PERcutaneous ACCESS in Transfemoral Transcatheter Aortic Valve Implantation (SU-PER-ACCESS Study). Journal of Clinical Medicine. 2024; 13(15):4471. https://doi.org/10.3390/jcm13154471
Chicago/Turabian StyleCammardella, Antonio Giovanni, Marco Russo, Michele Di Mauro, Claudia Romagnoni, Fabrizio Ceresa, Francesco Patanè, Guido Gelpi, Francesco Pollari, Fabio Barili, Alessandro Parolari, and et al. 2024. "SURgical vs. PERcutaneous ACCESS in Transfemoral Transcatheter Aortic Valve Implantation (SU-PER-ACCESS Study)" Journal of Clinical Medicine 13, no. 15: 4471. https://doi.org/10.3390/jcm13154471
APA StyleCammardella, A. G., Russo, M., Di Mauro, M., Romagnoni, C., Ceresa, F., Patanè, F., Gelpi, G., Pollari, F., Barili, F., Parolari, A., & Ranocchi, F., on behalf of Italian Group for Research and Outcomes in Cardiac Surgery (GIROC) of the Italian Society for Cardiac Surgery (SICCH). (2024). SURgical vs. PERcutaneous ACCESS in Transfemoral Transcatheter Aortic Valve Implantation (SU-PER-ACCESS Study). Journal of Clinical Medicine, 13(15), 4471. https://doi.org/10.3390/jcm13154471