Approximation of Glomerular Filtration Rate after 1 Year Using Annual Medical Examination Data
Abstract
:1. Introduction
2. Methods
2.1. Ethical Approval
2.2. Study Participants
2.3. Study Design
2.4. Laboratory Methods
2.5. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Importance of Clinical Parameters in Terms of Associations with eGFR after 1 Year
3.3. Formula for Approximation of GFR after 1 Year
3.4. Correlation between the Approximate GFR after 1 Year and the eGFR after 1 Year
3.5. Agreement between the Approximate GFR after 1 Year and the eGFR after 1 Year
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Tellez-Plaza, M.; Orozco-Beltran, D.; Gil-Guillen, V.; Pita-Fernandez, S.; Navarro-Perez, J.; Pallares, V.; Valls, F.; Fernandez, A.; Perez-Navarro, A.M.; Sanchis, C.; et al. Renal function and attributable risk of death and cardiovascular hospitalization in patients with cardiovascular risk factors from a registry-based cohort: The Estudio Cardiovascular Valencia-risk study. J. Hypertens. 2016, 34, 2266–2273. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Watanabe, T.; Takeuchi, A.; Ohashi, Y.; Nitta, K.; Akizawa, T.; Matsuo, S.; Imai, E.; Makino, H.; Hishida, A.; et al. Cardiovascular events and death in Japanese patients with chronic kidney disease. Kidney Int. 2017, 91, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Swartling, O.; Rydell, H.; Stendahl, M.; Segelmark, M.; Trolle Lagerros, Y.; Evans, M. CKD Progression and Mortality Among Men and Women: A Nationwide Study in Sweden. Am. J. Kidney Dis. 2021, 78, 190–199.e1. [Google Scholar] [CrossRef]
- Chesnaye, N.C.; Dekker, F.W.; Evans, M.; Caskey, F.J.; Torino, C.; Postorino, M.; Szymczak, M.; Ramspek, C.L.; Drechsler, C.; Wanner, C.; et al. Renal function decline in older men and women with advanced chronic kidney disease-results from the EQUAL study. Nephrol. Dial. Transplant. 2021, 36, 1656–1663. [Google Scholar] [CrossRef] [PubMed]
- Rule, A.D.; Amer, H.; Cornell, L.D.; Taler, S.J.; Cosio, F.G.; Kremers, W.K.; Textor, S.C.; Stegall, M.D. The association between age and nephrosclerosis on renal biopsy among healthy adults. Ann. Int. Med. 2010, 152, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Han, K.D.; Oh, T.R.; Kim, C.S.; Bae, E.H.; Ma, S.K.; Kim, S.W. Smoking and risk of incident end-stage kidney disease in general population: A Nationwide Population-based Cohort Study from Korea. Sci. Rep. 2019, 9, 19511. [Google Scholar] [CrossRef] [PubMed]
- Ito, J.; Fukagawa, M. Slope of the estimated glomerular filtration rate and its associated factors among individuals with chronic kidney disease in the general Japanese population. Clin. Exp. Nephrol. 2024, 28, 522–530. [Google Scholar] [CrossRef]
- Hung, C.C.; Yu, P.H.; Niu, S.W.; Kuo, I.C.; Lee, J.J.; Shen, F.C.; Chang, J.M.; Hwang, S.J. Association between Body Mass Index and Renal Outcomes Modified by Chronic Kidney Disease and Anemia: The Obesity Paradox for Renal Outcomes. J. Clin. Med. 2022, 11, 2787. [Google Scholar] [CrossRef]
- Lee, K.P.; Kim, Y.S.; Yoon, S.A.; Han, K.; Kim, Y.O. Association between Blood Pressure and Renal Progression in Korean Adults with Normal Renal Function. J. Korean Med. Sci. 2020, 35, e312. [Google Scholar] [CrossRef]
- Lee, J.Y.; Park, J.T.; Joo, Y.S.; Lee, C.; Yun, H.R.; Yoo, T.H.; Kang, S.W.; Choi, K.H.; Ahn, C.; Oh, K.H.; et al. Association of Blood Pressure With the Progression of CKD: Findings from KNOW-CKD Study. Am. J. Kidney Dis. 2021, 78, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Meng, Q.; Wang, H.; Wang, Y.; Su, Z.; Liu, L.; Liu, W.; Kong, G.; Zhang, L.; Zhao, Y.; et al. Anemia and Kidney Function Decline among the Middle-Aged and Elderly in China: A Population-Based National Longitudinal Study. Biomed. Res. Int. 2020, 2020, 2303541. [Google Scholar] [CrossRef]
- Pan, W.; Han, Y.; Hu, H.; He, Y. Association between hemoglobin and chronic kidney disease progression: A secondary analysis of a prospective cohort study in Japanese patients. BMC Nephrol. 2022, 23, 295. [Google Scholar] [CrossRef]
- Tseng, W.C.; Chen, Y.T.; Lin, Y.P.; Ou, S.M.; Yang, C.Y.; Lin, C.H.; Tarng, D.C.; Taiwan Geriatric Kidney Disease Research, G. Hyperuricemia Predicts an Early Decline in Renal Function among Older People: A Community-Based Cohort Study. Sci. Rep. 2019, 9, 980. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zheng, X.; Luo, J.; Luo, X.; Zhang, Y.; Xu, L.; Wang, Y. A follow-up study to explore factors associated with rapid kidney function decline and new-onset kidney disease among Chinese elderly population. Geriatr. Gerontol. Int. 2022, 22, 968–975. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, B.; Yang, J.; Wang, J.; Yu, Y.; Jiang, C.; Xie, L.; Song, Y.; Zhong, B.; Li, Y.; et al. Serum Lipids and Risk of Rapid Renal Function Decline in Treated Hypertensive Adults with Normal Renal Function. Am. J. Hypertens. 2019, 32, 393–401. [Google Scholar] [CrossRef]
- Rahman, M.; Yang, W.; Akkina, S.; Alper, A.; Anderson, A.H.; Appel, L.J.; He, J.; Raj, D.S.; Schelling, J.; Strauss, L.; et al. Relation of serum lipids and lipoproteins with progression of CKD: The CRIC study. Clin. J. Am. Soc. Nephrol. 2014, 9, 1190–1198. [Google Scholar] [CrossRef]
- de Goeij, M.C.; Rotmans, J.I.; Matthijssen, X.; de Jager, D.J.; Dekker, F.W.; Halbesma, N.; Group, P.-S. Lipid levels and renal function decline in pre-dialysis patients. Nephron Extra 2015, 5, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Luk, A.O.Y.; Tam, C.H.T.; Xie, F.; Carstensen, B.; Lau, E.S.H.; Lim, C.K.P.; Lee, H.M.; Ng, A.C.W.; Ng, M.C.Y.; et al. Progression of diabetic kidney disease and trajectory of kidney function decline in Chinese patients with Type 2 diabetes. Kidney Int. 2019, 95, 178–187. [Google Scholar] [CrossRef]
- Moriya, T.; Hayashi, A.; Matsubara, M.; Suzuki, A.; Ouchi, M. Glucose control, diabetic retinopathy, and hemodialysis induction in subjects with normo-microalbuminuric type 2 diabetic patients with normal renal function followed for 15 years. J. Diabetes Complicat. 2022, 36, 108080. [Google Scholar] [CrossRef]
- Su, W.Y.; Wu, P.Y.; Huang, J.C.; Chen, S.C.; Chang, J.M. Increased Proteinuria is Associated with Increased Aortic Arch Calcification, Cardio-Thoracic Ratio, Rapid Renal Progression and Increased Overall and Cardiovascular Mortality in Chronic Kidney Disease. Int. J. Med. Sci. 2020, 17, 1102–1111. [Google Scholar] [CrossRef]
- Baba, M.; Shimbo, T.; Horio, M.; Ando, M.; Yasuda, Y.; Komatsu, Y.; Masuda, K.; Matsuo, S.; Maruyama, S. Longitudinal Study of the Decline in Renal Function in Healthy Subjects. PLoS ONE 2015, 10, e0129036. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A.; et al. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Tangri, N.; Grams, M.E.; Levey, A.S.; Coresh, J.; Appel, L.J.; Astor, B.C.; Chodick, G.; Collins, A.J.; Djurdjev, O.; Elley, C.R.; et al. Multinational Assessment of Accuracy of Equations for Predicting Risk of Kidney Failure: A Meta-analysis. JAMA 2016, 315, 164–174. [Google Scholar] [CrossRef]
- Ohno, I.; Hosoya, T.; Gomi, H.; Ichida, K.; Okabe, H.; Hikita, M. Serum uric acid and renal prognosis in patients with IgA nephropathy. Nephron 2001, 87, 333–339. [Google Scholar] [CrossRef]
- Uchida, S.; Chang, W.X.; Ota, T.; Tamura, Y.; Shiraishi, T.; Kumagai, T.; Shibata, S.; Fujigaki, Y.; Hosoyamada, M.; Kaneko, K.; et al. Targeting Uric Acid and the Inhibition of Progression to End-Stage Renal Disease—A Propensity Score Analysis. PLoS ONE 2015, 10, e0145506. [Google Scholar] [CrossRef]
- Iseki, K.; Iseki, C.; Kinjo, K. Changes in serum uric acid have a reciprocal effect on eGFR change: A 10-year follow-up study of community-based screening in Okinawa, Japan. Hypertens. Res. 2013, 36, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Miyazaki, M.; Nakayama, M.; Yamada, G.; Matsushima, M.; Sato, M.; Sato, T.; Taguma, Y.; Sato, H.; Ito, S. Impact of hemoglobin levels on renal and non-renal clinical outcomes differs by chronic kidney disease stages: The Gonryo study. Clin. Exp. Nephrol. 2016, 20, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.T.; Chiu, H.C.; Su, H.M.; Yang, J.F.; Voon, W.C.; Lin, T.H.; Lai, W.T.; Sheu, S.H. Lower hemoglobin concentrations and subsequent decline in kidney function in an apparently healthy population aged 60 year and older. Clin. Chim. Acta 2008, 389, 25–30. [Google Scholar] [CrossRef]
- Oh, S.W.; Baek, S.H.; Kim, Y.C.; Goo, H.S.; Chin, H.J.; Na, K.Y.; Chae, D.W.; Kim, S. Higher hemoglobin level is associated with subtle declines in renal function and presence of cardiorenal risk factors in early CKD stages. Nephrol. Dial. Transplant. 2012, 27, 267–275. [Google Scholar] [CrossRef]
- Shin, N.; Kim, H.; Kim, H.J.; Han, M.; Lee, S.; Jo, H.; Hyuk, H.; Chin, H.J. A mild decrease of renal function is related to increased hemoglobin level during 5-year follow-up period. Korean J. Int. Med. 2014, 29, 341–351. [Google Scholar] [CrossRef]
- Poggio, E.D.; Rule, A.D.; Tanchanco, R.; Arrigain, S.; Butler, R.S.; Srinivas, T.; Stephany, B.R.; Meyer, K.H.; Nurko, S.; Fatica, R.A.; et al. Demographic and clinical characteristics associated with glomerular filtration rates in living kidney donors. Kidney Int. 2009, 75, 1079–1087. [Google Scholar] [CrossRef]
- Imai, E.; Horio, M.; Yamagata, K.; Iseki, K.; Hara, S.; Ura, N.; Kiyohara, Y.; Makino, H.; Hishida, A.; Matsuo, S. Slower decline of glomerular filtration rate in the Japanese general population: A longitudinal 10-year follow-up study. Hypertens. Res. 2008, 31, 433–441. [Google Scholar] [CrossRef]
- Fay, M.P.; Tiwari, R.C.; Feuer, E.J.; Zou, Z. Estimating average annual percent change for disease rates without assuming constant change. Biometrics 2006, 62, 847–854. [Google Scholar] [CrossRef]
- Dineva, K.; Atanasova, T. Systematic Look at Machine Learning Algorithms–Advantages, Disadvantages and Practical Applications. In Proceedings of the 20th International Multidisciplinary Scientific GeoConference SGEM 2020, Albena, Bulgaria, 16–25 August 2020; pp. 317–324. [Google Scholar]
Risk Factor | Author (Reference) | Year | Risk Factor | Author (Reference) | Year |
---|---|---|---|---|---|
Male sex | Swartling et al. [4] | 2021 | Hemoglobin | Yang et al. [12] | 2020 |
Chesnaye et al. [5] | 2021 | Pan et al. [13] | 2022 | ||
Age | Rule et al. [6] | 2010 | Uric acid | Tseng et al. [14] | 2019 |
Smoking | Choi et al. [7] | 2019 | Xiong et al. [15] | 2022 | |
Ito et al. [8] | 2024 | Triglyceride | Zhang et al. [16] | 2019 | |
BMI | Hung et al. [9] | 2022 | HDL-C | Rahman et al. [17] | 2014 |
SBP | Lee et al. [10] | 2020 | LDL-C | Goeij et al. [18] | 2015 |
Lee et al. [11] | 2021 | HbA1c | Jiang et al. [19] | 2019 | |
DBP | Lee et al. [10] | 2020 | Moriya et al. [20] | 2022 | |
Lee et al. [11] | 2021 | Urinary protein | Su et al. [21] | 2020 | |
eGFR | Baba et al. [22] | 2015 |
Characteristic | All participants (n = 41,337) | |
---|---|---|
Men (number, %) | 16,918 (40.9) | |
Age (years) | 64.0 ± 6.9 | |
Smoking (number, %) | 4561 (11.0) | |
Body mass index (kg/m2) | 22.8 ± 3.2 | |
Systolic blood pressure (mmHg) | 128.2 ± 16.2 | |
Diastolic blood pressure (mmHg) | 76.3 ± 10.6 | |
Hemoglobin (g/dL) | 13.8 ± 1.3 | |
Uric acid (mg/dL) | 5.2 ± 1.3 | |
Triglyceride (mg/dL) | 108.9 ± 68.0 | |
High-density lipoprotein cholesterol (mg/dL) | 63.8 ± 15.8 | |
Low-density lipoprotein cholesterol (mg/dL) | 126.2 ± 30.0 | |
Hemoglobin A1c (%) | 5.9 ± 0.6 | |
Urinary protein grade (number, %) | 1: − | 35,542 (86.0) |
2: ± | 3648 (8.8) | |
3: 1+ | 1651 (4.0) | |
4: 2+ | 397 (1.0) | |
5: ≥3+ | 96 (0.2) | |
Estimated glomerular filtration rate (mL/min/1.73 m2) | 74.3 ± 14.2 | |
Estimated glomerular filtration rate category (number, %) | G1: ≥90 mL/min/1.73 m2 | 28,198 (68.2) |
G2: 60–89 mL/min/1.73 m2 | 7037 (17.0) | |
G3a: 45–59 mL/min/1.73 m2 | 5506 (13.3) | |
G3b: 30–44 mL/min/1.73 m2 | 525 (1.3) | |
G4: 15–29 mL/min/1.73 m2 | 54 (0.1) | |
G5: <15 mL/min/1.73 m2 | 17 (0.0) |
(A) Using clinical parameters as independent variables | ||
Variable | Coefficient | p-value |
Age (years) | −0.054 | <0.001 |
Hemoglobin (g/dL) | 0.162 | <0.001 |
Uric acid (mg/dL) | −0.085 | <0.001 |
Estimated glomerular filtration rate (mL/min/1.73 m2) | 0.849 | <0.001 |
Intercept | 11.5 | <0.001 |
(B) Using annual changes in clinical parameters as independent variables | ||
Variable | Coefficient | p-value |
Age (years) | −0.050 | <0.001 |
Annual change in hemoglobin (g/dL) | −0.398 | <0.001 |
Annual change in uric acid (mg/dL) | −3.205 | <0.001 |
Estimated glomerular filtration rate (mL/min/1.73 m2) | 0.864 | <0.001 |
Intercept | 11.9 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirai, K.; Kitano, T.; Nakayama, K.; Morita, F.; Satomura, H.; Tanaka, T.; Yoshioka, T.; Matsumoto, M.; Kimura, Y.; Shikanai, T.; et al. Approximation of Glomerular Filtration Rate after 1 Year Using Annual Medical Examination Data. J. Clin. Med. 2024, 13, 4207. https://doi.org/10.3390/jcm13144207
Hirai K, Kitano T, Nakayama K, Morita F, Satomura H, Tanaka T, Yoshioka T, Matsumoto M, Kimura Y, Shikanai T, et al. Approximation of Glomerular Filtration Rate after 1 Year Using Annual Medical Examination Data. Journal of Clinical Medicine. 2024; 13(14):4207. https://doi.org/10.3390/jcm13144207
Chicago/Turabian StyleHirai, Keiji, Taisuke Kitano, Keiji Nakayama, Fujiko Morita, Hajime Satomura, Takahisa Tanaka, Toru Yoshioka, Masahiko Matsumoto, Yuichi Kimura, Taku Shikanai, and et al. 2024. "Approximation of Glomerular Filtration Rate after 1 Year Using Annual Medical Examination Data" Journal of Clinical Medicine 13, no. 14: 4207. https://doi.org/10.3390/jcm13144207
APA StyleHirai, K., Kitano, T., Nakayama, K., Morita, F., Satomura, H., Tanaka, T., Yoshioka, T., Matsumoto, M., Kimura, Y., Shikanai, T., Sasaki, K., Zhang, Z., Ito, K., Ookawara, S., & Morishita, Y. (2024). Approximation of Glomerular Filtration Rate after 1 Year Using Annual Medical Examination Data. Journal of Clinical Medicine, 13(14), 4207. https://doi.org/10.3390/jcm13144207