Diagnostic Capability of OCTA-Derived Macular Biomarkers for Early to Moderate Primary Open Angle Glaucoma
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Medeiros, F.A.; Zangwill, L.M.; Bowd, C.; Vessani, R.M.; Susanna, R., Jr.; Weinreb, R.N. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am. J. Ophthalmol. 2005, 139, 44–55. [Google Scholar] [CrossRef]
- Harris, A.; Guidoboni, G.; Siesky, B.; Mathew, S.; Verticchio Vercellin, A.C.; Rowe, L.; Arciero, J. Ocular blood flow as a clinical observation: Value, limitations and data analysis. Prog. Retin. Eye Res. 2020, 24, 100841. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.D.; Wolf, A.T.; Harris, A.; Verticchio Vercellin, A.; Siesky, B.; Rowe, L.W.; Packles, M.; Oddone, F. Vascular biomarkers from optical coherence tomography angiography and glaucoma: Where do we stand in 2021? Acta Ophthalmol. 2022, 100, e377–e385. [Google Scholar] [CrossRef] [PubMed]
- Suh, M.H.; Weinreb, R.N.; Zangwill, L.M. Optic Disc Microvasculature Dropout in Pre-perimetric Glaucoma. J. Glaucoma 2024, 33, 490–498. [Google Scholar] [CrossRef]
- Tansuebchueasai, N.; Nishida, T.; Moghimi, S.; Wu, J.H.; Mahmoudinezhad, G.; Gunasegaran, G.; Kamalipour, A.; Zangwill, L.M.; Weinreb, R.N. Rate of Initial Optic Nerve Head Capillary Density Loss and Risk of Visual Field Progression. JAMA Ophthalmol. 2024, 142, 530–537. [Google Scholar] [CrossRef]
- Yarmohammadi, A.; Zangwill, L.M.; Diniz-Filho, A.; Suh, M.H.; Manalastas, P.I.; Fatehee, N.; Yousefi, S.; Belghith, A.; Saunders, L.J.; Medeiros, F.A.; et al. Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes. Investig. Ophthalmol. Vis. Sci. 2016, 57, OCT451–OCT459. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.; Moghimi, S.; Nishida, T.; Mahmoudinezhad, G.; Zangwill, L.M.; Weinreb, R.N. Detection and agreement of event-based OCT and OCTA analysis for glaucoma progression. Eye 2024, 38, 973–979. [Google Scholar] [CrossRef]
- Bowd, C.; Belghith, A.; Proudfoot, J.A.; Zangwill, L.M.; Christopher, M.L.; Goldbaum, M.H.; Hou, H.; Penteado, R.C.; Moghimi, S.; Weinreb, R.N. Gradient-Boosting Classifiers Combining Vessel Density and Tissue Thickness Measurements for Classifying Early to Moderate Glaucoma. Am. J. Ophthalmol. 2020, 217, 131–139. [Google Scholar] [CrossRef]
- Bowd, C.; Belghith, A.; Zangwill, L.M.; Christopher, M.; Goldbaum, M.H.; Fan, R.; Rezapour, J.; Moghimi, S.; Kamalipour, A.; Hou, H.; et al. Deep Learning Image Analysis of Optical Coherence Tomography Angiography Measured Vessel Density Improves Classification of Healthy and Glaucoma Eyes. Am. J. Ophthalmol. 2022, 236, 298–308. [Google Scholar] [CrossRef]
- Christopher, M.; Hoseini, P.; Walker, E.; Proudfoot, J.A.; Bowd, C.; Fazio, M.A.; Girkin, C.A.; De Moraes, C.G.; Liebmann, J.M.; Weinreb, R.N.; et al. A Deep Learning Approach to Improve Retinal Structural Predictions and Aid Glaucoma Neuroprotective Clinical Trial Design. Ophthalmol. Glaucoma 2023, 6, 147–159. [Google Scholar] [CrossRef]
- Riina, N.; Harris, A.; Siesky, B.; Pasquale, L.R.; Tsai, J.C.; Sekeh, S.Y.; Wirostko, B.; Arciero, J.; Fry, B.; Eckert, G.; et al. Utilizing neural network models on optical coherence tomography angiography biomarkers to enhance diagnosis of primary open angle glaucoma. In Proceedings of the Association for Research in Vision and Ophthalmology (ARVO) Annual Meeting 2024, Seattle, WA, USA, 5–9 May 2024. [Google Scholar]
- Verticchio Vercellin, A.C.; Siesky, B.; Antman, G.; Oddone, F.; Chang, M.; Eckert, G.; Arciero, J.; Kellner, R.L.; Fry, B.; Coleman-Belin, J.; et al. Regional Vessel Density Reduction in the Macula and Optic Nerve Head of Patients with Pre-Perimetric Primary Open Angle Glaucoma. J. Glaucoma 2023, 32, 930–941. [Google Scholar] [CrossRef] [PubMed]
- Yarmohammadi, A.; Zangwill, L.M.; Diniz-Filho, A.; Saunders, L.J.; Suh, M.H.; Wu, Z.; Manalastas, P.I.C.; Akagi, T.; Medeiros, F.A.; Weinreb, R.N. Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect. Ophthalmology 2017, 124, 709–719. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T.; Zangwill, L.M.; Akagi, T.; Saunders, L.J.; Yarmohammadi, A.; Manalastas, P.I.C.; Penteado, R.C.; Weinreb, R.N. Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study. Am. J. Ophthalmol. 2017, 182, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Sebastian, R.T.; Chu, C.J.; McGregor, F.; Dick, A.D.; Liu, L. Reduced Macular Vessel Density and Capillary Perfusion in Glaucoma Detected Using OCT Angiography. Curr. Eye Res. 2019, 44, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudinezhad, G.; Moghimi, S.; Nishida, T.; Latif, K.; Yamane, M.; Micheletti, E.; Mohammadzadeh, V.; Wu, J.H.; Kamalipour, A.; Li, E.; et al. Association between Rate of Ganglion Cell Complex Thinning and Rate of Central Visual Field Loss. JAMA Ophthalmol. 2023, 141, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Rezapour, J.; Walker, E.; Belghith, A.; Bowd, C.; Fazio, M.A.; Jiravarnsirikul, A.; Hyman, L.; Jonas, J.B.; Weinreb, R.N.; Zangwill, L.M. Diagnostic Accuracy of Optic Nerve Head and Macula OCT Parameters for Detecting Glaucoma in Eyes with and without High Axial Myopia. Am. J. Ophthalmol. 2024, 266, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Rezapour, J.; Bowd, C.; Dohleman, J.; Belghith, A.; Proudfoot, J.A.; Christopher, M.; Hyman, L.; Jonas, J.B.; Penteado, R.C.; Moghimi, S.; et al. Macula structural and vascular differences in glaucoma eyes with and without high axial myopia. Br. J. Ophthalmol. 2023, 107, 1286–1294. [Google Scholar] [CrossRef]
- Shin, J.W.; Lee, J.; Kwon, J.; Jo, Y.; Jeong, D.; Shon, G.; Kook, M.S. Relationship between macular vessel density and central visual field sensitivity at different glaucoma stages. Br. J. Ophthalmol. 2019, 103, 1827–1833. [Google Scholar] [CrossRef] [PubMed]
- Hsia, Y.; Wang, T.H.; Huang, J.Y.; Su, C.C. Relationship between the Macular Microvasculature and Central Visual Field Sensitivity in Patients with Advanced Glaucoma. Ophthalmol. Glaucoma 2023, 6, 413–421. [Google Scholar] [CrossRef]
- Scuderi, G.; Fragiotta, S.; Scuderi, L.; Iodice, C.M.; Perdicchi, A. Ganglion Cell Complex Analysis in Glaucoma Patients: What Can It Tell Us? Eye Brain 2020, 12, 33–44. [Google Scholar] [CrossRef]
- Hou, H.; Moghimi, S.; Zangwill, L.M.; Shoji, T.; Ghahari, E.; Penteado, R.C.; Akagi, T.; Manalastas, P.I.C.; Weinreb, R.N. Macula Vessel Density and Thickness in Early Primary Open-Angle Glaucoma. Am. J. Ophthalmol. 2019, 199, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.S.; Liu, C.H.; Wu, W.C.; Tseng, H.J.; Lee, Y.S. Optical Coherence Tomography Angiography of the Superficial Microvasculature in the Macular and Peripapillary Areas in Glaucomatous and Healthy Eyes. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3637–3645. [Google Scholar] [CrossRef] [PubMed]
- Oba, T.; Solmaz, N.; Onder, F. Peripapillary and Macular Vascular Density in Patients with Preperimetric and Early Primary Open Angle Glaucoma. J. Glaucoma 2022, 31, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Ghahari, E.; Bowd, C.; Zangwill, L.M.; Proudfoot, J.A.; Penteado, R.C.; Kyung, H.; Hou, H.; Moghimi, S.; Weinreb, R.N. The Association between Regional Macula Vessel Density and Central Visual Field Damage in Advanced Glaucoma Eyes. J. Glaucoma 2022, 31, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Ghahari, E.; Bowd, C.; Zangwill, L.M.; Proudfoot, J.; Hasenstab, K.A.; Hou, H.; Penteado, R.C.; Manalastas, P.I.C.; Moghimi, S.; Shoji, T.; et al. Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma. Am. J. Ophthalmol. 2019, 204, 51–61. [Google Scholar] [CrossRef] [PubMed]
- El-Nimri, N.W.; Manalastas, P.I.C.; Zangwill, L.M.; Proudfoot, J.A.; Bowd, C.; Hou, H.; Moghimi, S.; Penteado, R.C.; Rezapour, J.; Ekici, E.; et al. Superficial and Deep Macula Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes. J. Glaucoma 2021, 30, e276–e284. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.; Moghimi, S.; Nishida, T.; Proudfoot, J.A.; Kamalipour, A.; Zangwill, L.M.; Weinreb, R.N. Correlation of ganglion cell complex thinning with baseline deep and superficial macular vessel density in glaucoma. Br. J. Ophthalmol. 2023, 107, 953–958. [Google Scholar] [CrossRef] [PubMed]
- RTVue XR Avanti User Manual; Optovue, Inc.: Fremont, CA, USA, 2019.
- Kwon, J.; Choi, J.; Shin, J.W.; Lee, J.; Kook, M.S. Glaucoma Diagnostic Capabilities of Foveal Avascular Zone Parameters Using Optical Coherence Tomography Angiography According to Visual Field Defect Location. J. Glaucoma 2017, 26, 1120–1129. [Google Scholar] [CrossRef] [PubMed]
- Zivkovic, M.; Dayanir, V.; Kocaturk, T.; Zlatanovic, M.; Zlatanovic, G.; Jaksic, V.; Radenkovic, M.; Jovanovic, P.; Sefic Kasumovic, S.; Golubovic, M.; et al. Foveal Avascular Zone in Normal Tension Glaucoma Measured by Optical Coherence Tomography Angiography. Biomed. Res. Int. 2017, 2017, 3079141. [Google Scholar] [CrossRef]
- Milani, P.; Urbini, L.E.; Bulone, E.; Nava, U.; Visintin, D.; Cremonesi, G.; Scotti, L.; Bergamini, F. The Macular Choriocapillaris Flow in Glaucoma and Within-Day Fluctuations: An Optical Coherence Tomography Angiography Study. Investig. Ophthalmol. Vis. Sci. 2021, 62, 22. [Google Scholar] [CrossRef]
- Nishida, T.; Moghimi, S.; Walker, E.; Gunasegaran, G.; Wu, J.H.; Kamalipour, A.; Mahmoudinezhad, G.; Zangwill, L.M.; Weinreb, R.N. Association of foveal avascular zone change and glaucoma progression. Br. J. Ophthalmol. 2023, bjo-2023-323970. [Google Scholar] [CrossRef] [PubMed]
- Brusini, P.; Filacorda, S. Enhanced Glaucoma Staging System (GSS 2) for classifying functional damage in glaucoma. J. Glaucoma 2006, 15, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.; Moghimi, S.; Nishida, T.; Walker, E.; Kamalipour, A.; Li, E.; Mahmoudinezhad, G.; Zangwill, L.M.; Weinreb, R.N. Evaluation of the long-term variability of macular OCT/OCTA and visual field parameters. Br. J. Ophthalmol. 2024, 108, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Xiao, H.; Liang, C.; Xu, Y.; Ye, D.; Huang, J. Quantitative Analysis of Microvasculature in Macular and Peripapillary Regions in Early Primary Open-Angle Glaucoma. Curr. Eye Res. 2020, 45, 629–635. [Google Scholar] [CrossRef]
- Penteado, R.C.; Bowd, C.; Proudfoot, J.A.; Moghimi, S.; Manalastas, P.I.C.; Ghahari, E.; Hou, H.; Shoji, T.; Zangwill, L.M.; Weinreb, R.N. Diagnostic Ability of Optical Coherence Tomography Angiography Macula Vessel Density for the Diagnosis of Glaucoma Using Difference Scan Sizes. J. Glaucoma 2020, 29, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Lin, F.; Gao, K.; Cheng, W.; Song, Y.; Liu, Y.; Wang, Y.M.; Lam, A.; Tham, C.C.; Cheung, C.; et al. Association of foveal avascular zone area with structural and functional progression in glaucoma patients. Br. J. Ophthalmol. 2022, 106, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Gunasegaran, G.; Moghimi, S.; Nishida, T.; Walker, E.; Kamalipour, A.; Wu, J.H.; Mahmoudinezhad, G.; Zangwill, L.M.; Weinreb, R.N. Racial Differences in the Diagnostic Accuracy of OCT Angiography Macular Vessel Density for Glaucoma. Ophthalmol. Glaucoma 2024, 7, 197–205. [Google Scholar] [CrossRef]
- Siesky, B.; Harris, A.; Verticchio Vercellin, A.; Arciero, J.; Fry, B.; Eckert, G.; Guidoboni, G.; Oddone, F.; Antman, G. Heterogeneity of Ocular Hemodynamic Biomarkers among Open Angle Glaucoma Patients of African and European Descent. J. Clin. Med. 2023, 12, 1287. [Google Scholar] [CrossRef] [PubMed]
- Abay, R.N.; Akdeniz, G.Ş.; Katipoğlu, Z.; Kerimoğlu, H. Normative data assessment of age-related changes in macular and optic nerve head vessel density using optical coherence tomography angiography. Photodiagnosis Photodyn. Ther. 2022, 37, 102624. [Google Scholar] [CrossRef]
- Chua, J.; Sim, R.; Tan, B.; Wong, D.; Yao, X.; Liu, X.; Ting, D.S.W.; Schmidl, D.; Ang, M.; Garhöfer, G.; et al. Optical Coherence Tomography Angiography in Diabetes and Diabetic Retinopathy. J. Clin. Med. 2020, 9, 1723. [Google Scholar] [CrossRef]
- Sun, C.; Ladores, C.; Hong, J.; Nguyen, D.Q.; Chua, J.; Ting, D.; Schmetterer, L.; Wong, T.Y.; Cheng, C.Y.; Tan, A.C.S. Systemic hypertension associated retinal microvascular changes can be detected with optical coherence tomography angiography. Sci. Rep. 2020, 10, 9580. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.; Moghimi, S.; Nishida, T.; Mohammadzadeh, V.; Kamalipour, A.; Zangwill, L.M.; Weinreb, R.N. Association of macular OCT and OCTA parameters with visual acuity in glaucoma. Br. J. Ophthalmol. 2023, 107, 1652–1657. [Google Scholar] [CrossRef] [PubMed]
- Susanna, R., Jr.; Vessani, R.M. Staging glaucoma patient: Why and how? Open Ophthalmol. J. 2009, 3, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Hodapp, E.; Parrish, R.K., II; Anderson, D.R. Clinical Decisions in Glaucoma; The CV Mosby Co.: St. Louis, MO, USA, 1993; pp. 52–61. [Google Scholar]
- Brusini, P. Global Glaucoma Staging System (GGSS): A New Method to Simultaneously Assess the Severity of Both Functional and Structural Damage in Glaucoma. J. Clin. Med. 2021, 10, 4414. [Google Scholar] [CrossRef] [PubMed]
Control | POAG | p-Value Control vs. POAG | |
---|---|---|---|
Age at visit, years | 40.3 (16.7) | 63.7 (13.2) | p < 0.001 |
Sex, Male:Female | 35%:65% | 46%:54% | p = 0.17 |
Race | European descent: 44% African descent: 12% Latin descent: 20% Asian descent: 20% Other: 4% | European descent: 47% African descent: 21% Latin descent: 16% Asian descent: 16% | p = 0.50 |
BMI, kg/m2 | 26.4 (6.5) | 25.1 (4.6) | p = 0.50 |
Diabetes | 6% | 16% | p = 0.056 |
Hypertension | 18% | 34% | p = 0.028 |
IOP, mmHg | 14.7 (3.0) | 16.0 (3.8) | p = 0.78 |
SBP, mmHg | 120 (17) | 123 (13) | p = 0.077 |
DBP, mmHg | 75 (10) | 76 (9) | p = 0.66 |
MAP, mmHg | 90 (12) | 92 (10) | p = 0.28 |
OPP, mmHg | 45 (8) | 45 (7) | p = 0.36 |
SOPP, mmHg | 105 (17) | 107 (13) | p = 0.086 |
DOPP, mmHg | 61 (11) | 60 (10) | p = 0.70 |
MOPP, mmHg | 75 (12) | 76 (10) | p = 0.32 |
Heart Rate, bpm | 71 (12) | 71 (13) | p = 0.75 |
Visual Field MD, decibel | −1.32 (1.83) | −2.72 (4.29) | p = 0.026 |
Visual Field PSD, decibel | 2.14 (1.65) | 3.40 (2.54) | p < 0.001 |
GSS2 Stage | S0: 13 Borderline: 8 S1: 12 S2: 15 S3: 2 S4: 1 Undetermined: 5 |
Control | POAG | p-Value Control vs. POAG | ||||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
SCP VD (%) | Whole image | 49.54 | 3.89 | 43.02 | 5.16 | p < 0.001 |
Whole image superior hemisphere | 49.61 | 3.75 | 43.68 | 5.06 | p = 0.003 | |
Whole image inferior hemisphere | 49.47 | 4.19 | 42.33 | 5.50 | p < 0.001 | |
Fovea global | 20.15 | 7.35 | 17.65 | 7.92 | p = 0.79 | |
Parafovea global | 52.20 | 4.35 | 46.02 | 6.28 | p = 0.011 | |
Parafovea superior hemisphere | 52.30 | 4.17 | 46.46 | 6.19 | p = 0.015 | |
Parafovea inferior hemisphere | 52.09 | 4.87 | 45.57 | 6.84 | p = 0.014 | |
Parafovea temporal quadrant | 52.04 | 4.09 | 45.89 | 6.37 | p = 0.003 | |
Parafovea superior quadrant | 52.75 | 4.57 | 46.97 | 7.17 | p = 0.05 | |
Parafovea nasal quadrant | 51.72 | 4.51 | 45.56 | 6.77 | p = 0.017 | |
Parafovea inferior quadrant | 52.29 | 5.50 | 45.63 | 7.54 | p = 0.039 | |
Perifovea global | 50.06 | 4.17 | 43.62 | 5.28 | p = 0.003 | |
Perifovea superior hemisphere | 50.18 | 4.04 | 44.21 | 5.34 | p = 0.007 | |
Perifovea inferior hemisphere | 49.96 | 4.50 | 42.90 | 5.59 | p = 0.001 | |
Perifovea temporal quadrant | 45.85 | 4.75 | 39.55 | 5.30 | p = 0.009 | |
Perifovea superior quadrant | 50.42 | 4.48 | 43.97 | 5.85 | p = 0.004 | |
Perifovea nasal quadrant | 54.10 | 3.70 | 48.64 | 5.48 | p = 0.022 | |
Perifovea inferior quadrant | 49.94 | 4.83 | 42.47 | 5.90 | p = 0.002 | |
DCP VD (%) | Whole image | 52.26 | 6.57 | 46.39 | 6.75 | p = 0.18 |
Whole image superior hemisphere | 52.51 | 6.39 | 46.57 | 6.92 | p = 0.12 | |
Whole image inferior hemisphere | 52.01 | 6.98 | 46.18 | 6.85 | p = 0.26 | |
Fovea global | 37.91 | 8.63 | 34.43 | 8.80 | p = 0.53 | |
Parafovea global | 56.92 | 4.86 | 52.02 | 5.59 | p = 0.07 | |
Parafovea superior hemisphere | 57.21 | 4.67 | 52.36 | 5.82 | p = 0.045 | |
Parafovea inferior hemisphere | 56.62 | 5.34 | 51.85 | 5.68 | p = 0.16 | |
Parafovea temporal quadrant | 57.65 | 4.68 | 53.20 | 5.35 | p = 0.049 | |
Parafovea superior quadrant | 56.31 | 5.02 | 50.80 | 7.17 | p = 0.05 | |
Parafovea nasal quadrant | 58.18 | 4.63 | 53.99 | 5.65 | p = 0.23 | |
Parafovea inferior quadrant | 55.54 | 6.29 | 50.08 | 6.83 | p = 0.15 | |
Perifovea global | 53.52 | 7.05 | 47.50 | 7.43 | p = 0.19 | |
Perifovea superior hemisphere | 53.90 | 6.79 | 47.85 | 7.67 | p = 0.16 | |
Perifovea inferior hemisphere | 53.07 | 7.56 | 46.98 | 7.56 | p = 0.26 | |
Perifovea temporal quadrant | 55.32 | 6.50 | 49.34 | 6.69 | p = 0.08 | |
Perifovea superior quadrant | 53.36 | 7.62 | 47.12 | 8.20 | p = 0.26 | |
Perifovea nasal quadrant | 52.49 | 7.13 | 46.96 | 8.42 | p = 0.22 | |
Perifovea inferior quadrant | 52.79 | 8.42 | 46.52 | 8.04 | p = 0.43 | |
FAZ | FAZ area (mm2) | 0.27 | 0.12 | 0.29 | 0.12 | p = 0.19 |
FAZ perimeter (mm) | 1.99 | 0.45 | 2.06 | 0.46 | p = 0.22 | |
FD (%) | 54.37 | 4.55 | 50.57 | 6.40 | p = 0.12 | |
Flow Area (mm2) | Retina | 0.70 | 0.35 | 0.74 | 0.40 | p = 0.71 |
Choriocapillaris | 2.17 | 0.13 | 2.07 | 0.16 | p = 0.60 | |
RNFL thickness | Average RNFL thickness | 100.33 | 9.02 | 82.33 | 12.48 | p < 0.001 |
GCC thickness | Average GCC thickness | 95.20 | 7.46 | 83.32 | 10.35 | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verticchio Vercellin, A.; Harris, A.; Oddone, F.; Carnevale, C.; Siesky, B.A.; Arciero, J.; Fry, B.; Eckert, G.; Sidoti, P.A.; Antman, G.; et al. Diagnostic Capability of OCTA-Derived Macular Biomarkers for Early to Moderate Primary Open Angle Glaucoma. J. Clin. Med. 2024, 13, 4190. https://doi.org/10.3390/jcm13144190
Verticchio Vercellin A, Harris A, Oddone F, Carnevale C, Siesky BA, Arciero J, Fry B, Eckert G, Sidoti PA, Antman G, et al. Diagnostic Capability of OCTA-Derived Macular Biomarkers for Early to Moderate Primary Open Angle Glaucoma. Journal of Clinical Medicine. 2024; 13(14):4190. https://doi.org/10.3390/jcm13144190
Chicago/Turabian StyleVerticchio Vercellin, Alice, Alon Harris, Francesco Oddone, Carmela Carnevale, Brent A. Siesky, Julia Arciero, Brendan Fry, George Eckert, Paul A. Sidoti, Gal Antman, and et al. 2024. "Diagnostic Capability of OCTA-Derived Macular Biomarkers for Early to Moderate Primary Open Angle Glaucoma" Journal of Clinical Medicine 13, no. 14: 4190. https://doi.org/10.3390/jcm13144190