Intra- and Early Post-Operative Factors Affecting Spinal Cord Ischemia in Patients Undergoing Fenestrated and Branched Endovascular Aortic Repair
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion Criteria
2.3. Data Collection
2.4. Definitions
2.5. Outcomes
2.6. Statistical Analysis
3. Results
3.1. Patient Cohort
3.2. Intra-Operative Characteristics among SCI and Grade 3 Patients
3.3. ROC Analysis for Intra-Operative Parameters and Grade 3 SCI
3.4. Propensity Analysis on the Impact of Intra- and Early Post-Operative Factors on SCI
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Locatelli, F.; Nana, P.; Le Houerou, T.; Guirimand, A.; Nader, M.; Gaudin, A.; Bosse, C.; Fabre, D.; Haulon, S. Spinal cord ischemia rates and prophylactic spinal drainage in patients treated with fenestrated/branched endovascular repair for thoracoabdominal aneurysms. J. Vasc. Surg. 2023, 78, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Nana, P.; Panuccio, G.; Rohlffs, F.; Torrealba, J.I.; Tsilimparis, N.; Kolbel, T. Early and midterm outcomes of fenestrated and branched endovascular aortic repair in thoracoabdominal aneurysms types I through III. J. Vasc. Surg. 2023, in press. [CrossRef]
- Spanos, K.; Kölbel, T.; Kubitz, J.C.; Wipper, S.; Konstantinou, N.; Heidemann, F.; Rohlffs, F.; Debus, S.E.; Tsilimparis, N. Risk of spinal cord ischemia after fenestrated or branched endovascular repair of complex aortic aneurysms. J. Vasc. Surg. 2019, 69, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, E.; Melloni, A.; Gallitto, E.; Fargion, A.; Isernia, G.; Kahlberg, A.; Bertoglio, L.; Faggioli, G.; Lenti, M. Spinal Cord Ischemia After Thoracoabdominal Aortic Aneurysms Endovascular Repair: From the Italian Multicenter Fenestrated/Branched Endovascular Aneurysm Repair Registry. J. Endovasc. Ther. 2023, 30, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Lella, S.K.; Waller, H.D.; Pendleton, A.; Latz, C.A.; Boitano, L.T.; Dua, A. A systematic review of spinal cord ischemia prevention and management after open and endovascular aortic repair. J. Vasc. Surg. 2022, 75, 1091–1106. [Google Scholar] [CrossRef] [PubMed]
- Eagleton, M.J.; Follansbee, M.; Wolski, K.; Mastracci, T.; Kuramochi, Y. Fenestrated and branched endovascular aneurysm repair outcomes for type II and III thoracoabdominal aortic aneurysms. J. Vasc. Surg. 2016, 63, 930–942. [Google Scholar] [CrossRef]
- Aucoin, V.J.; Bolaji, B.; Novak, Z.; Spangler, E.L.; Sutzko, D.C.; McFarland, G.E.; Pearce, B.J.; Passman, M.A.; Scali, S.T. Trends in the use of cerebrospinal drains and outcomes related to spinal cord ischemia after thoracic endovascular aortic repair and complex endovascular aortic repair in the Vascular Quality Initiative database. J. Vasc. Surg. 2021, 74, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- Bisdas, T.; Panuccio, G.; Sugimoto, M.; Torsello, G.; Austermann, M. Risk factors for spinal cord ischemia after endovascular repair of thoracoabdominal aortic aneurysms. J. Vasc. Surg. 2015, 61, 1408–1416. [Google Scholar] [CrossRef] [PubMed]
- Kitpanit, N.; Ellozy, S.H.; Connolly, P.H.; Agrusa, C.J.; Lichtman, A.D.; Schneider, D.B. Risk factors for spinal cord injury and complications of cerebrospinal fluid drainage in patients undergoing fenestrated and branched endovascular aneurysm repair. J. Vasc. Surg. 2021, 73, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Heidemann, F.; Tsilimparis, N.; Rohlffs, F.; Debus, E.S.; Larena-Avellaneda, A.; Wipper, S.; Kölbel, T. Staged procedures for prevention of spinal cord ischemia in endovascular aortic surgery. Gefasschirurgie 2018, 23, 39–45. [Google Scholar] [CrossRef]
- Etz, C.D.; Debus, E.S.; Mohr, F.W.; Kölbel, T. First-in-man endovascular preconditioning of the paraspinal collateral network by segmental artery coil embolization to prevent ischemic spinal cord injury. J. Thorac. Cardiovasc. Surg. 2015, 149, 1074–1079. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Y.; Lin, S.; Xiao, J.; Ai, W.; Zhang, W.W. Systematic review and meta-analysis of association of prophylactic cerebrospinal fluid drainage in preventing spinal cord ischemia after thoracic endovascular aortic repair. J. Vasc. Surg. 2022, 75, 1478–1489. [Google Scholar] [CrossRef] [PubMed]
- Ullery, B.W.; Cheung, A.T.; Fairman, R.M.; Jackson, B.M.; Woo, E.Y.; Bavaria, J.; Pochettino, A.; Wang, G.J. Risk factors, outcomes, and clinical manifestations of spinal cord ischemia following thoracic endovascular aortic repair. J. Vasc. Surg. 2011, 54, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Gallitto Faggioli, G.; Melissano, G.; Fargion, A.; Isernia, G.; Lenti, M.; Pratesi, C.; Chiesa, R.; Gargiulo, M. Preoperative and postoperative predictors of clinical outcome of fenestrated and branched endovascular repair for complex abdominal and thoracoabdominal aortic aneurysms in an Italian multicenter registry. J. Vasc. Surg. 2021, 74, 1795–1806.e6. [Google Scholar] [CrossRef] [PubMed]
- Hiramoto, J.S.; Fernandez, C.; Gasper, W.; Vartanian, S.; Reilly, L.; Chuter, T. Lower extremity weakness is associated with elevated blood and cerebrospinal fluid glucose levels following multibranched endovascular aortic aneurysm repair. J. Vasc. Surg. 2017, 65, 311–317. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. Strobe Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Oderich, G.S.; Forbes, T.L.; Chaer, R.; Davies, M.G.; Lindsay, T.F.; Mastracci, T.; Singh, M.J.; Timaran, C.; Woo, E.Y. Reporting standards for endovascular aortic repair of aneurysms involving the renal-mesenteric arteries. J. Vasc. Surg. 2021, 73, 4S–52S. [Google Scholar] [CrossRef] [PubMed]
- Riambau, V.; Böckler, D.; Brunkwall, J.; Cao, P.; Chiesa, R.; Coppi, G.; Czerny, M.; Fraedrich, G.; Haulon, S. Editor’s Choice-Management of Descending Thoracic Aorta Diseases: Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. 2017, 53, 4–52. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, J.V.; Hughes, G.C.; Appoo, J.J.; Bavaria, J.E.; Beck, A.W.; Cambria, R.P.; Charlton-Ouw, K.; Eslami, M.H.; Kim, K.M. Society for Vascular Surgery (SVS) and Society of Thoracic Surgeons (STS) reporting standards for type B aortic dissections. J. Vasc. Surg. 2020, 71, 723–747. [Google Scholar] [CrossRef]
- Raulli, S.J.; Gomes, V.C.; Parodi, F.E.; Vasan, P.; Sun, D.; Marston, W.A.; Pascarella, L.; McGinigle, K.L.; Wood, J.C. Five-year outcomes of fenestrated and branched endovascular repair of complex aortic aneurysms based on aneurysm extent. J. Vasc. Surg. 2024; On line ahead of print. [Google Scholar] [CrossRef]
- Eagleton, M.J.; Shah, S.; Petkosevek, D.; Mastracci, T.M.; Greenberg, R.K. Hypogastric and subclavian artery patency affects onset and recovery of spinal cord ischemia associated with aortic endografting. J. Vasc. Surg. 2014, 59, 89–94. [Google Scholar] [CrossRef]
- Sobel, J.D.; Vartanian, S.M.; Gasper, W.J.; Hiramoto, J.S.; Chuter, T.A.M.; Reilly, L.M. Lower extremity weakness after endovascular aneurysm repair with multibranched thoracoabdominal stent grafts. J. Vasc. Surg. 2015, 61, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Wanhainen, A.; Van Herzeele, I.; Bastos Goncalves, F.; Montoya, S.B.; Berard, X.; Boyle, J.R.; D’oria, M.; Prendes, C.F.; Karkos, C.; Kazimiercazk, A. Editor’s Choice-European Society for Vascular Surgery (ESVS) 2024 Clinical Practice Guidelines on the Management of Abdominal Aorto-Iliac Artery Aneurysms. Eur. J. Vasc. Endovasc. Surg. 2024, 67, 192–331. [Google Scholar] [CrossRef] [PubMed]
- Writing Group Members; Hiratzka, L.F.; Bakris, G.L.; Beckman, J.A.; Bersin, R.M.; Carr, V.F.; Casey, D.E. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with Thoracic Aortic Disease: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. J. Am. Coll. Cardiol. 2010, 55, 27–129. [Google Scholar] [CrossRef]
- Kakinohana, M. What should we do against delayed onset paraplegia following TEVAR? J. Anesth. 2014, 28, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Willie-Permor, D.; Zarrintan, S.; Dakour-Aridi, H.; Ramirez, J.L.; Iannuzzi, J.C.; Naazie, I.; Malas, M.B. Anemia is associated with higher mortality and morbidity after thoracic endovascular aortic repair. J. Vasc. Surg. 2023, 77, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Willie-Permor, D.; Real, M.; Zarrintan, S.; Gaffey, A.C.; Malas, M.B. Perioperative Blood Transfusion Is Associated with Worse 30-Day Mortality and Complications After Thoracic Endovascular Aortic Repair. Ann. Vasc. Surg. 2024, 101, 15–22. [Google Scholar] [CrossRef]
- Chang, C.K.; Chuter, T.A.M.; Reilly, L.M.; Ota, M.K.; Furtado, A.; Bucci, M.; Wintermark, M.; Hiramoto, J.S. Spinal arterial anatomy and risk factors for lower extremity weakness following endovascular thoracoabdominal aortic aneurysm repair with branched stent-grafts. J. Endovasc. Ther. 2008, 15, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Hiramoto, J.S.; Hoffman, M.; Gasper, W.; Reilly, L.; Chuter, T. Strict Control of Blood Glucose With an Intravenous Insulin Infusion Decreases the Risk of Post-operative Lower Extremity Weakness After Complex Endovascular Aortic Aneurysm Repair. Eur. J. Vasc. Endovasc. Surg. 2019, 58, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Hiramoto, J.S.; Elahi, F.M.; Gasper, W.; Reilly, L.M.; Chuter, T.A.; Goetzl, E.J. Acute Insulin Resistance and Rapid Alterations in Neuronal Derived Blood Exosome Concentration After Branched Endovascular Aortic Aneurysm Repair. Eur. J. Vasc. Endovasc. Surg. 2020, 59, 457–463. [Google Scholar] [CrossRef]
- Makaloski, V.; Widenka, H.; Schönhoff, F.; Spanos, K.; Wyss, T.R.; Schmidli, J. Efficacy and Safety of Heparinization before Deployment of Endograft for Blunt Traumatic Aortic Injury in Severely Injured Patients. Ann. Vasc. Surg. 2021, 75, 341–348. [Google Scholar] [CrossRef]
- Ito, K.; Sasaki, K.; Ono, M.; Suzuki, T.; Sakamoto, K.; Okamoto, H.; Katori, N.; Momose, N.; Araki, Y.; Tojo, K. Investigation of real-world heparin resistance and anticoagulation management prior to cardiopulmonary bypass: Report from a nationwide survey by the Japanese Association for Thoracic Surgery heparin resistance working group. Gen. Thorac. Cardiovasc. Surg. 2024, 72, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Snieciski, R.M.; Bennett-Guerrero, E.; Shore-Lesserson, L. Anticoagulation Management and Heparin Resistance During Cardiopulmonary Bypass: A Survey of Society of Cardiovascular Anesthesiologists Members. Anesth. Analg. 2019, 129, e41–e44. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.-F.; Wang, E.-H.; Yu, W.-H.; Dong, X.-Q.; Du, Q.; Yang, D.-B.; Wang, H.; Jiang, L.; Du, Y.F. The prognostic value of plasma thrombospondin-1 concentrations after aneurysmal subarachnoid hemorrhage. Clin. Chim. Acta 2015, 448, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Ye, Z.-N.; Liu, J.-P.; Zhang, Z.-H.; Zhou, C.-H.; Wang, Y.; Hang, C.H. Elevated cerebrospinal fluid levels of thrombospondin-1 correlate with adverse clinical outcome in patients with aneurysmal subarachnoid hemorrhage. J. Neurol. Sci. 2016, 369, 126–130. [Google Scholar] [CrossRef]
- Wang, X.; Chen, W.; Liu, W.; Wu, J.; Shao, Y.; Zhang, X. The role of thrombospondin-1 and transforming growth factors-beta after spinal cord injury in the rat. J. Clin. Neurosci. 2009, 16, 818–821. [Google Scholar] [CrossRef]
Pre-Operative Characteristics (n; %, Mean ± Standard Deviation, Median, IQR) | SCI Cohort (51 Patients) |
---|---|
Age (years) | 69.8 ± 6.2 |
Male | 20 (39.2%) |
CAD | 10 (19.6%) |
Myocardial infarction | 3 (5.9%) |
Heart failure | 1 (1.9%) |
CABG | 1 (1.9%) |
PCI | 4 (7.8%) |
Hypertension | 27 (52.9%) |
Dyslipidemia | 6 (11.8%) |
Tobacco use | 17 (33.3%) |
-Active tobacco use | 10 (19.6%) |
COPD | 10 (19.6%) |
Diabetes | 7 (13.7%) |
Chronic renal disease | 14 (27.5%) |
-Dialysis | 1 (1.9%) |
Stroke | 5 (9.8%) |
Peripheral arterial disease | 4 (7.8%) |
Any previous aortic repair | 30 (58.8%) |
-Abdominal aorta | 14 (27.5%) |
-Thoracic aorta | 21 (41.2%) |
ASA score | 3 (IQR 0, range 1–4) |
ASA score ≥ 3 | 33 (64.7%) |
ASA score 4 | 5 (9.8%) |
Intra-Operative Parameters | SCI Cohort (51 Patients) | Grade 1 & 2 (37 Patients) | Grade 3 (14 Patients) | p Value |
---|---|---|---|---|
Hgb max (mg/dL) | 11.2 ± 1.5 | 11.4 ± 1.9 | 10.9 ± 2.3 | 0.56 |
Hgb min (mg/dL) | 9.4 ± 1.6 | 9.6 ± 2.0 | 9.4 ± 1.3 | 0.31 |
Hgb mean (mg/dL) | 10.4 ± 1.6 | 10.6 ± 1.8 | 10.5 ± 1.5 | 0.31 |
Patients needing transfusion | 24 (47.0%) | 13 (35.1%) | 11 (78.6%) | 0.005 |
Transfused volume of RBC (mL) | 490 ± 760 | 305 ± 442 | 974 ± 2156 | 0.32 |
Volume input (no blood products; mL) | 4167 ± 1380 | 3793 ± 1146 | 5392 ± 3556 | 0.32 |
Glucose max (mg/dL) | 187 ± 69 | 194 ± 126 | 165 ± 89 | 0.47 |
Glucose min (mg/dL) | 129 ± 36 | 133 ± 44 | 113 ± 27 | 0.22 |
Glucose mean (mg/dL) | 143 ± 39 | 149 ± 45 | 123 ± 42 | 0.21 |
Lactate max (mmol/L) | 2.3 ± 1.7 | 2.4 ± 2.2 | 2.0 ± 1.8 | 0.32 |
Lactate min (mmol/L) | 0.9 ± 0.4 | 1.0 ± 0.5 | 0.7 ± 0.2 | 0.06 |
Lactate mean (mmol/L) | 1.4 ± 0.8 | 1.5 ± 1.0 | 1.3 ± 0.7 | 0.06 |
ACT max (s) | 315 ± 32 | 309 ± 38 | 332 ± 57 | 0.03 |
ACT min (s) | 223 ± 28 | 231 ± 28 | 200 ± 59 | 0.005 |
ACT mean (s) | 268 ± 19 | 268 ± 25 | 268 ± 17 | 0.82 |
Administrated UFH (IU) | 14,250 ± 5170 | 13,657 ± 5066 | 17,846 ± 9785 | 0.05 |
Systolic pressure max (mmHg) | 149 ± 11 | 146 ± 10 | 158 ± 29 | 0.07 |
Systolic pressure min (mmHg) | 96 ± 8 | 99 ± 6 | 88 ± 19 | 0.02 |
Systolic pressure mean (mmHg) | 119 ± 6 | 119 ± 7 | 119 ± 9 | 0.98 |
Early Post-Operative Parameters | SCI Cohort (51 Patients) | Early SCI (37 Patients) | Late SCI Group (14 Patients) | p Value |
---|---|---|---|---|
Hgb 24 h (mg/dL) | 10.3 ± 0.9 | 10.2 ± 1.0 | 10.6 ± 1.5 | 0.37 |
Hgb 48 h (mg/dL) | 9.4 ± 0.8 | 9.3 ± 0.9 | 9.7 ± 1.6 | 0.32 |
Patients needing transfusion | 23 (45.1%) | 21 (56.8%) | 2 (14.3%) | 0.006 |
Glucose 24 h (mg/dL) | 136 ± 19 | 138 ± 23 | 130 ± 22 | 0.66 |
Glucose 48 h (mg/dL) | 132 ± 18 | 133 ± 22 | 130 ± 28 | 0.88 |
Creatinine 24 h (mg/dL) | 1.5 ± 0.5 | 1.5 ± 0.5 | 1.3 ± 0.9 | 0.07 |
Creatinine 48 h (mg/dL) | 1.6 ± 0.7 | 1.7 ± 0.8 | 1.3 ± 0.9 | 0.03 |
Intra-Operative Parameters | SCI Group (23 Patients) | Non-SCI Group (23 Patients) | p |
---|---|---|---|
Hgb max (mg/dL) | 11.2 ± 1.7 | 11.7 ± 1.8 | 0.76 |
Hgb min (mg/dL) | 9.5 ± 1.8 | 9.9 ± 1.9 | 0.88 |
Hgb mean (mg/dL) | 10.4 ± 1.5 | 10.7 ± 1.8 | 0.61 |
Transfused volume of RBC (mL) | 528 ± 293 | 155 ± 126 | 0.09 |
Volume input (mL) | 4030 ± 1430 | 3020 ± 1130 | 0.009 |
Glucose max (mg/dL) | 186 ± 107 | 138 ± 47 | 0.01 |
Glucose min (mg/dL) | 130 ± 38 | 112 ± 23 | 0.04 |
Glucose mean (mg/dL) | 150 ± 46 | 122 ± 30 | 0.005 |
Lactate max (mmol/L) | 2.4 ± 1.9 | 1.2 ± 0.8 | 0.43 |
Lactate min (mmol/L) | 1.0 ± 0.5 | 0.7 ± 0.2 | 0.57 |
Lactate mean (mmol/L) | 1.6 ± 1.0 | 0.9 ± 0.5 | 0.25 |
ACT max (s) | 304 ± 51 | 320 ± 32 | 0.43 |
ACT min (s) | 219 ± 42 | 248 ± 25 | 0.01 |
ACT mean (s) | 259 ± 31 | 288 ± 28 | 0.001 |
Administrated UFH (IU) | 12,400 ± 7030 | 11,300 ± 3880 | 0.50 |
Systolic pressure max (mmHg) | 152 ± 20 | 146 ± 17 | 0.47 |
Systolic pressure min (mmHg) | 95 ± 8 | 96 ± 12 | 0.56 |
Systolic pressure mean (mmHg) | 119 ± 9 | 121 ± 11 | 0.50 |
Early Post-Operative Parameters | SCI Group (23 Patients) | Non-SCI Group (23 Patients) | p |
Hgb 24 h (mg/dL) | 10.4 ± 0.9 | 10.1 ± 1.2 | 0.86 |
Hgb 48 h (mg/dL) | 9.5 ± 1.1 | 9.1 ± 1.4 | 0.66 |
Patients needing transfusion | 12 (52.2%) | 1 (4.3%) | <0.001 |
Glucose 24 h (mg/dL) | 142 ± 30 | 118 ± 26 | 0.004 |
Glucose 48 h (mg/dL) | 140 ± 29 | 112 ± 20 | <0.001 |
Creatinine 24 h (mg/dL) | 1.5 ± 0.8 | 1.1 ± 0.5 | 0.37 |
Creatinine 48 h (mg/dL) | 1.7 ± 1.1 | 1.1 ± 0.5 | 0.75 |
Early post-operative Parameters | Late SCI group (7 patients) | Non-SCI group (7 patients) | p |
Hgb 24 h (mg/dL) | 10.4 ± 1.9 | 10.7 ± 1.8 | 0.63 |
Hgb 48 h (mg/dL) | 9.3 ± 2.0 | 8.5 ± 3.0 | 0.52 |
Patients needing transfusion | 2 (28.6%) | 0 (0.0%) | 0.13 |
Glucose 24 h (mg/dL) | 134 ± 37 | 116 ± 39 | 0.18 |
Glucose 48 h (mg/dL) | 136 ± 50 | 118 ± 53 | 0.18 |
Creatinine 24 h (mg/dL) | 1.6 ± 1.2 | 1.5 ± 1.0 | 0.92 |
Creatinine 48 h (mg/dL) | 1.2 ± 0.9 | 1.3 ± 1.0 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doering, A.; Nana, P.; Torrealba, J.I.; Panuccio, G.; Trepte, C.; Chindris, V.; Kölbel, T. Intra- and Early Post-Operative Factors Affecting Spinal Cord Ischemia in Patients Undergoing Fenestrated and Branched Endovascular Aortic Repair. J. Clin. Med. 2024, 13, 3978. https://doi.org/10.3390/jcm13133978
Doering A, Nana P, Torrealba JI, Panuccio G, Trepte C, Chindris V, Kölbel T. Intra- and Early Post-Operative Factors Affecting Spinal Cord Ischemia in Patients Undergoing Fenestrated and Branched Endovascular Aortic Repair. Journal of Clinical Medicine. 2024; 13(13):3978. https://doi.org/10.3390/jcm13133978
Chicago/Turabian StyleDoering, Allegra, Petroula Nana, José I. Torrealba, Giuseppe Panuccio, Constantin Trepte, Viorel Chindris, and Tilo Kölbel. 2024. "Intra- and Early Post-Operative Factors Affecting Spinal Cord Ischemia in Patients Undergoing Fenestrated and Branched Endovascular Aortic Repair" Journal of Clinical Medicine 13, no. 13: 3978. https://doi.org/10.3390/jcm13133978
APA StyleDoering, A., Nana, P., Torrealba, J. I., Panuccio, G., Trepte, C., Chindris, V., & Kölbel, T. (2024). Intra- and Early Post-Operative Factors Affecting Spinal Cord Ischemia in Patients Undergoing Fenestrated and Branched Endovascular Aortic Repair. Journal of Clinical Medicine, 13(13), 3978. https://doi.org/10.3390/jcm13133978