Patterns of Left Ventricular Remodelling in Children and Young Patients with Hypertrophic Cardiomyopathy
Abstract
:1. Introduction
2. Methods
2.1. Eligibility Criteria
2.2. Data Collection
2.3. Clinical Investigations
2.4. Genetic Testing and Variant Classification
2.5. Left Ventricular Remodelling
2.6. Statistical Analysis
3. Results
3.1. Enrolment and Baseline Characteristics
3.2. Left Ventricular Remodelling
3.3. Left Ventricular Remodelling According to Age at Presentation
3.4. Risk Factors for LV Remodelling during Follow-Up
4. Discussion
4.1. Clinical Implications
4.2. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. 2023 ESC Guidelines for the Management of Cardiomyopathies: Developed by the task force on the management of cardiomyopathies of the European So-ciety of Cardiology (ESC). Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Law, Y.M.; Asante-Korang, A.; Austin, E.D.; Dipchand, A.I.; Everitt, M.D.; Hsu, D.T.; Lin, K.Y.; Price, J.F.; Wilkinson, J.D.; et al. Cardiomyopathy in Children: Classification and Diagnosis: A Scientific Statement from the American Heart Association. Circulation 2019, 140, e9–e68. [Google Scholar] [CrossRef]
- Maron, B.J.; Desai, M.Y.; Nishimura, R.A.; Spirito, P.; Rakowski, H.; Towbin, J.A.; Rowin, E.J.; Maron, M.S.; Sherrid, M.V. Diagnosis and Evaluation of Hypertrophic Cardiomyopathy: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 79, 372–389. [Google Scholar] [CrossRef]
- Mariani, M.V.; Pierucci, N.; Fanisio, F.; Laviola, D.; Silvetti, G.; Piro, A.; La Fazia, V.M.; Chimenti, C.; Rebecchi, M.; Drago, F.; et al. Inherited Arrhythmias in the Pediatric Population: An Updated Overview. Medicina 2024, 60, 94. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, M.B.; Russo, D.; Limite, L.R.; Canepa, M.; Tini, G.; Casenghi, M.; Francia, P.; Adduci, C.; Pagannone, E.; Magrì, D.; et al. Long-Term Left Ventricular Remodeling of Patients With Hypertrophic Cardiomyopathy. Am. J. Cardiol. 2018, 122, 1924–1931. [Google Scholar] [CrossRef] [PubMed]
- Monda, E.; Prosnitz, A.; Aiello, R.; Lioncino, M.; Norrish, G.; Caiazza, M.; Drago, F.; Beattie, M.; Tartaglia, M.; Russo, M.G.; et al. Natural History of Hypertrophic Cardiomyopathy in Noonan Syndrome With Multiple Lentigines. Circ. Genom. Precis. Med. 2023, 16, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Stegeman, R.; Paauw, N.D.; de Graaf, R.; van Loon, R.L.E.; Termote, J.U.M.; Breur, J.M.P.J. The etiology of cardiac hypertrophy in infants. Sci. Rep. 2021, 19, 10626. [Google Scholar] [CrossRef]
- Rauen, K.A. The RASopathies. Annu. Rev. Genom. Hum. Genet. 2013, 14, 355–369. [Google Scholar] [CrossRef]
- Chen, H.; Li, X.; Liu, X.; Wang, J.; Zhang, Z.; Wu, J.; Huang, M.; Guo, Y.; Li, F.; Wang, X.; et al. Clinical and mutation profile of pediatric patients with RASopathy-associated hypertrophic cardiomyopathy: Results from a Chinese cohort. Orphanet J. Rare Dis. 2019, 14, 29. [Google Scholar] [CrossRef]
- Ommen, S.R.; Mital, S.; Burke, M.A.; Day, S.M.; Deswal, A.; Elliott, P.; Evanovich, L.L.; Hung, J.; Joglar, J.A.; Kantor, P.; et al. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2020, 142, e558–e631. [Google Scholar] [CrossRef]
- Pieroni, M.; Ciabatti, M.; Saletti, E.; Tavanti, V.; Santangeli, P.; Martinese, L.; Liistro, F.; Olivotto, I.; Bolognese, L. Beyond Sarcomeric Hypertrophic Cardiomyopathy: How to Diagnose and Manage Phenocopies. Curr. Cardiol. Rep. 2022, 24, 1567–1585. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef]
- D’Argenio, V.; Frisso, G.; Precone, V.; Boccia, A.; Fienga, A.; Pacileo, G.; Limongelli, G.; Paolella, G.; Calabrò, R.; Salvatore, F. DNA sequence capture and next-generation sequencing for the molecular diagnosis of genetic cardiomyopathies. J. Mol. Diagn. 2014, 16, 32–44. [Google Scholar] [CrossRef]
- Himelman, R.B.; Cassidy, M.M.; Landzberg, J.S.; Schiller, N.B. Reproducibility of Quantitative Two-Dimensional Echocardiography. Am. Heart J. 1988, 115, 425–431. [Google Scholar] [CrossRef]
- Haycock, G.B.; Schwartz, G.J.; Wisotsky, D.H. Geometric Method for Measuring Body Surface Area: A Height-Weight Formula Validated in Infants, Children, and Adults. J. Pediatr. 1978, 93, 62–66. [Google Scholar] [CrossRef]
- Lopez, L.; Colan, S.; Stylianou, M.; Granger, S.; Trachtenberg, F.; Frommelt, P.; Pearson, G.; Camarda, J.; Cnota, J.; Cohen, M.; et al. Relationship of Echocardiographic Z Scores Adjusted for Body Surface Area to Age, Sex, Race, and Ethnicity: The Pediatric Heart Network Normal Echocardiogram Database. Circ. Cardiovasc. Imaging 2017, 10, e006979. [Google Scholar] [CrossRef]
- Monda, E.; Rubino, M.; Lioncino, M.; Di Fraia, F.; Pacileo, R.; Verrillo, F.; Cirillo, A.; Caiazza, M.; Fusco, A.; Esposito, A.; et al. Hypertrophic Cardiomyopathy in Children: Pathophysiology, Diagnosis, and Treatment of Non-Sarcomeric Causes. Front. Pediatr. 2021, 9, 632293. [Google Scholar] [CrossRef]
- Brodehl, A.; Ebbinghaus, H.; Deutsch, M.A.; Gummert, J.; Gärtner, A.; Ratnavadivel, S.; Milting, H. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. Int. J. Mol. Sci. 2019, 20, 4381. [Google Scholar] [CrossRef]
- Norrish, G.; Field, E.; Mcleod, K.; Ilina, M.; Stuart, G.; Bhole, V.; Uzun, O.; Brown, E.; Daubeney, P.E.F.; Lota, A.; et al. Clinical Presentation and Survival of Childhood Hypertrophic Cardiomyopathy: A Retrospective Study in United Kingdom. Eur. Heart J. 2019, 40, 986–993. [Google Scholar] [CrossRef]
- Harris, K.M.; Spirito, P.; Maron, M.S.; Zenovich, A.G.; Formisano, F.; Lesser, J.R.; Mackey-Bojack, S.; Manning, W.J.; Udelson, J.E.; Maron, B.J. Prevalence, Clinical Profile, and Significance of Left Ventricular Remodeling in the End-Stage Phase of Hypertrophic Cardiomyopathy. Circulation 2006, 114, 216–225. [Google Scholar] [CrossRef]
- Limongelli, G.; Adorisio, R.; Baggio, C.; Bauce, B.; Biagini, E.; Castelletti, S.; Favilli, S.; Imazio, M.; Lioncino, M.; Merlo, M.; et al. Diagnosis and Management of Rare Cardiomyopathies in Adult and Paediatric Patients. A Position Paper of the Italian Society of Cardiology (SIC) and Italian Society of Paediatric Cardiology (SICP). Int. J. Cardiol. 2022, 357, 55–71. [Google Scholar] [CrossRef]
- Biagini, E.; Coccolo, F.; Ferlito, M.; Perugini, E.; Rocchi, G.; Bacchi-Reggiani, L.; Lofiego, C.; Boriani, G.; Prandstraller, D.; Picchio, F.M.; et al. Dilated-Hypokinetic Evolution of Hypertrophic Cardiomyopathy: Prevalence, Incidence, Risk Factors, and Prognostic Implications in Pediatric and Adult Patients. J. Am. Coll. Cardiol. 2005, 46, 1543–1550. [Google Scholar] [CrossRef]
- Abou Alaiwi, S.; Roston, T.M.; Marstrand, P.; Claggett, B.L.; Parikh, V.N.; Helms, A.S.; Ingles, J.; Lampert, R.; Lakdawala, N.K.; Michels, M.; et al. Left Ventricular Systolic Dysfunction in Patients Diagnosed With Hypertrophic Cardiomyopathy During Childhood: Insights From the SHaRe Registry. Circulation 2023, 148, 394–404. [Google Scholar] [CrossRef]
- Musumeci, B.; Tini, G.; Biagini, E.; Merlo, M.; Calore, C.; Ammirati, E.; Zampieri, M.; Russo, D.; Grilli, G.; Santolamazza, C.; et al. Clinical Characteristics and Outcome of End Stage Hypertrophic Cardiomyopathy: Role of Age and Heart Failure Phenotypes. Int. J. Cardiol. 2024, 400, 131784. [Google Scholar] [CrossRef]
- Norrish, G.; Jager, J.; Field, E.; Quinn, E.; Fell, H.; Lord, E.; Cicerchia, M.N.; Ochoa, J.P.; Cervi, E.; Elliott, P.M.; et al. Yield of Clinical Screening for Hypertrophic Cardiomyopathy in Child First-Degree Relatives. Circulation 2019, 140, 184–192. [Google Scholar] [CrossRef]
- Monda, E.; Bakalakos, A.; Rubino, M.; Verrillo, F.; Diana, G.; De Michele, G.; Altobelli, I.; Lioncino, M.; Perna, A.; Falco, L.; et al. Targeted Therapies in Pediatric and Adult Patients with Hypertrophic Heart Disease: From Molecular Pathophysiology to Personalized Medicine. Circ. Heart Fail. 2023, 16, E010687. [Google Scholar] [CrossRef]
- Robinson, P.; Liu, X.; Sparrow, A.; Patel, S.; Zhang, Y.-H.; Casadei, B.; Watkins, H.; Redwood, C. Hypertrophic Cardiomyopathy Mutations Increase Myofilament Ca2+ Buffering, Alter Intracellular Ca2+ Handling, and Stimulate Ca2+-Dependent Signaling. J. Biol. Chem. 2018, 293, 10487–10499. [Google Scholar] [CrossRef]
- Davis, J.; Davis, L.C.; Correll, R.N.; Makarewich, C.A.; Schwanekamp, J.A.; Moussavi-Harami, F.; Wang, D.; York, A.J.; Wu, H.; Houser, S.R.; et al. A Tension-Based Model Distinguishes Hypertrophic versus Dilated Cardiomyopathy. Cell 2016, 165, 1147–1159. [Google Scholar] [CrossRef]
- Desai, M.Y.; Owens, A.; Wolski, K.; Geske, J.B.; Saberi, S.; Wang, A.; Sherrid, M.; Cremer, P.C.; Lakdawala, N.K.; Tower-Rader, A.; et al. Mavacamten in Patients With Hypertrophic Cardiomyopathy Referred for Septal Reduction: Week 56 Results From the VALOR-HCM Randomized Clinical Trial. JAMA Cardiol. 2023, 8, 968–977. [Google Scholar] [CrossRef]
- Rader, F.; Oręziak, A.; Choudhury, L.; Saberi, S.; Fermin, D.; Wheeler, M.T.; Abraham, T.P.; Garcia-Pavia, P.; Zwas, D.R.; Masri, A.; et al. Mavacamten Treatment for Symptomatic Obstructive Hypertrophic Cardiomyopathy: Interim Results From the MAVA-LTE Study, EXPLORER-LTE Cohort. JACC Heart Fail. 2024, 12, 164–177. [Google Scholar] [CrossRef]
- Bertero, E.; Chiti, C.; Schiavo, M.A.; Tini, G.; Costa, P.; Todiere, G.; Mabritto, B.; Dei, L.-L.; Giannattasio, A.; Mariani, D.; et al. Real-World Candidacy to Mavacamten in a Contemporary Hypertrophic Obstructive Cardiomyopathy Population. Eur. J. Heart Fail. 2023, 26, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Ammirati, E.; Contri, R.; Coppini, R.; Cecchi, F.; Frigerio, M.; Olivotto, I. Pharmacological treatment of hypertrophic cardiomyopathy: Current practice and novel perspectives. Eur. J. Heart Fail. 2016, 18, 1106–1118. [Google Scholar] [CrossRef] [PubMed]
- Green, E.M.; Wakimoto, H.; Anderson, R.L.; Evanchik, M.J.; Gorham, J.M.; Harrison, B.C.; Henze, M.; Kawas, R.; Oslob, J.D.; Rodriguez, H.M.; et al. A Small-Molecule Inhibitor of Sarcomere Contractility Suppresses Hypertrophic Cardiomyopathy in Mice. Science 2016, 351, 617–621. [Google Scholar] [CrossRef] [PubMed]
Clinical Features | Study Cohort (n = 53) |
---|---|
Age at Baseline, years | 8.8 ± 5.5 |
Male | 36 (67.9) |
Family History of HCM | 26 (49.1) |
Family History of SCD | 18 (34.0) |
Tested for Sarcomeric Variants | 38 (71.7) |
P/LP Variants in Sarcomeric Genes | |
MYBPC3 | 6 (11.3) |
MYH7 | 12 (22.6) |
TNNT2 | 3 (5.6) |
TPM1 | 2 (3.8) |
Sarcomeric Negative | 15 (28.3) |
Double P/LP Variants in Sarcomeric Genes | 12 (22.6) |
NYHA Class | |
I | 42 (79.2) |
II | 11 (20.8) |
Abnormal ECG | 45 (84.9) |
MLVWT, mm | 16.9 ± 5.9 |
MLVWT, z-score | 9.1 ± 4.7 |
LVEF, % | 65.7 ± 10.1 |
Follow-Up | 9.4 ± 4.7 |
Hypokinetic End-Stage Evolution | 13 (24.5) |
MLVWT Thickening | 16 (30.2) |
MLVWT Thinning | 3 (5.7) |
No LV Remodelling | 21 (39.6) |
Variant | Number of Patients |
---|---|
MYPBC3: c.1112C>G (p.Pro371Arg) | 1 |
MYBPC3: c.2717T>G (p.Val906Gly) | 1 |
MYBPC3: c.1483C>G (p.Arg495Gly) | 1 |
MYBPC3: c.2306-2A>G | 1 |
MYBPC3: c.1855G>A (p.Glu619Lys) | 1 |
MYBPC3: c.927-9G>A | 1 |
MYH7: c.2155C>T (p.Arg719Trp) | 1 |
MYH7: c.2146G>C (p.Gly716Arg) | 1 |
MYH7: c.1615A>T (p.Met539Leu) | 3 |
MYH7: c.999+55C>G | 1 |
MYH7: c.4182C>T (p.Ala1394=) | 1 |
MYH7: c.2155C>T (p.Arg719Trp) | 2 |
MYH7: c.4954G>T (p.Asp1652Tyr) | 1 |
MYH7: c.1357C>T (p.Arg453Cys) | 2 |
TNNT2: c.320A>T (p.Lys107Met) | 2 |
TNNT2: c.283G>A (p.Val95Met) | 1 |
TPM1: c.523G>A (p.Asp175Asn) | 1 |
TPM1: c.172G>C (p.Asp58His) | 1 |
Clinical Features | Infants (n = 8) | Children (n = 21) | Adolescents (n = 24) | p-Value |
---|---|---|---|---|
Age at Baseline, years | 0.2 ± 0.1 | 6.7 ± 3.0 | 13.6 ± 2.2 | <0.001 |
Males | 4 (50.0) | 17 (80.9) | 15 (62.5) | 0.208 |
Family History of HCM | 5 (62.5) | 10 (47.6) | 11 (45.8) | 0.706 |
Family History of SCD | 3 (37.5) | 3 (14.3) | 12 (50.0) | 0.040 |
Tested for Sarcomeric Variants | 6 (75.0) | 14 (66.7) | 18 (75.0) | 0.805 |
P/LP Variants in Sarcomeric Genes | ||||
MYBPC3 | 1 (12.5) | 2 (9.5) | 3 (12.5) | 0.981 |
MYH7 | 1 (12.5) | 5 (23.8) | 6 (25.0) | 0.686 |
TNNT2 | 0 (0.0) | 1 (4.8) | 2 (8.3) | 0.677 |
TPM1 | 0 (0.0) | 1 (4.8) | 1 (4.2) | 0.804 |
Sarcomeric Negative | 4 (50.0) | 5 (23.8) | 6 (25.0) | 0.329 |
Double P/LP Variants in Sarcomeric Genes | 1 (12.5) | 6 (28.6) | 5 (20.8) | 0.524 |
NYHA Class | 0.003 | |||
I | 8 (100.0) | 20 (95.2) | 14 (58.3) | |
II | 0 (0.0) | 1 (4.8) | 10 (41.7) | |
Abnormal ECG | 6 (75.0) | 16 (76.2) | 23 (95.8) | 0.225 |
MLVWT, mm | 13.5 ± 5.6 | 15.5 ± 5.5 | 19.2 ± 5.9 | 0.080 |
MLVWT, z-score | 9.9 ± 2.0 | 7.6 ± 3.6 | 10.1 ± 5.8 | 0.567 |
LVEF, % | 62.8 ± 4.3 | 67.3 ± 4.2 | 66.9 ± 4.3 | 0.316 |
Follow-Up | 9.8 ± 5.0 | 8.8 ± 4.8 | 9.7 ± 4.7 | 0.787 |
Hypokinetic End-Stage Evolution | 0 (0.0) | 6 (28.6) | 7 (29.2) | 0.216 |
MLVWT Thickening | 0 (0.0) | 8 (38.1) | 8 (33.3) | 0.123 |
MLVWT Thinning | 2 (25.0) | 1 (4.7) | 0 (0.0) | 0.029 |
No LV Remodelling | 6 (75.0) | 6 (28.6) | 9 (37.5) | 0.071 |
Clinical Features | No LV Remodelling (n = 21) | MLVWT Thickening (n = 16) | MLVWT Thinning (n = 3) | Hypokinetic End-Stage Evolution (n = 13) | p-Value |
---|---|---|---|---|---|
Age at Baseline, years | 7.0 ± 5.7 | 10.2 ± 4.8 | 3.0 ± 5.2 | 11.3 ± 4.1 | 0.021 |
Males | 11 (52.4) | 15 (93.7) | 2 (66.7) | 8 (61.5) | 0.058 |
Family History of HCM | 10 (47.6) | 9 (56.2) | 1 (33.3) | 6 (46.2) | 0.876 |
Family History of SCD | 8 (38.1) | 3 (18.7) | 1 (33.3) | 6 (46.2) | 0.445 |
Tested for Sarcomeric Variants | 14 (66.7) | 10 (62.5) | 2 (66.7) | 12 (92.3) | 0.297 |
P/LP Variants in Sarcomeric Genes | |||||
MYBPC3 | 3 (14.3) | 2 (12.5) | 1 (33.3) | 0 (0.0) | 0.214 |
MYH7 | 2 (9.5) | 3 (18.7) | 0 (0.0) | 7 (53.8) | 0.077 |
TNNT2 | 0 (0.0) | 0 (0.0) | 0 (0.0) | 3 (23.1) | 0.070 |
TPM1 | 1 (4.8) | 1 (6.2) | 0 (0.0) | 0 (0.0) | 0.723 |
Sarcomeric Negative | 8 (38.1) | 4 (25.0) | 1 (33.3) | 2 (15.4) | 0.209 |
Double P/LP Variants in Sarcomeric Genes | 1 (4.8) | 3 (18.7) | 1 (33.3) | 7 (53.8) | 0.156 |
NYHA Class | 0.054 | ||||
I | 19 (90.5) | 14 (87.5) | 2 (66.7) | 7 (53.8) | |
II | 2 (9.5) | 2 (12.5) | 1 (33.3) | 6 (46.1) | |
Abnormal ECG | 19 (90.5) | 13 (81.2) | 2 (66.7) | 11 (84.6) | 0.489 |
MLVWT, mm | 15.6 ± 5.9 | 14.7 ± 5.3 | 16.7 ± 6.4 | 21.6 ± 21.6 | 0.006 |
MLVWT, z-score | 8.8 ± 4.4 | 7.1 ± 3.9 | 12.0 ± 2.6 | 11.2 ± 5.4 | 0.072 |
LVEF, % | 64.4 ± 15.2 | 67.8 ± 4.4 | 65.7 ± 5.1 | 65.2 ± 4.2 | 0.815 |
Follow-Up | 8.5 ± 5.0 | 10.5 ± 4.3 | 10.0 ± 4.3 | 9.3 ± 5.1 | 0.639 |
Clinical Parameters | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
OR (95%CI) | p-Value | OR (95%CI) | p-Value | |
Age, per 1 year | 1.13 (0.99–1.30) | 0.066 | - | - |
Male Sex | 0.69 (0.19–2.53) | 0.571 | - | - |
P/LP Variants in Sarcomeric Genes | 5.00 (0.91–27.42) | 0.064 | - | - |
P/LP Variants in MYH7 | 5.88 (1.30–26.51) | 0.021 | 5.14 (0.92–28.59) | 0.061 |
NYHA Class II | 6.00 (1.42–25.27) | 0.015 | 3.09 (0.55–17.36) | 0.199 |
MLVWT, per 1 mm | 1.22 (1.07–1.40) | 0.003 | 1.17 (1.01–1.36) | 0.043 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monda, E.; Caiazza, M.; Cirillo, C.; Rubino, M.; Verrillo, F.; Palmiero, G.; Diana, G.; Cirillo, A.; Fusco, A.; Guarnaccia, N.; et al. Patterns of Left Ventricular Remodelling in Children and Young Patients with Hypertrophic Cardiomyopathy. J. Clin. Med. 2024, 13, 3937. https://doi.org/10.3390/jcm13133937
Monda E, Caiazza M, Cirillo C, Rubino M, Verrillo F, Palmiero G, Diana G, Cirillo A, Fusco A, Guarnaccia N, et al. Patterns of Left Ventricular Remodelling in Children and Young Patients with Hypertrophic Cardiomyopathy. Journal of Clinical Medicine. 2024; 13(13):3937. https://doi.org/10.3390/jcm13133937
Chicago/Turabian StyleMonda, Emanuele, Martina Caiazza, Chiara Cirillo, Marta Rubino, Federica Verrillo, Giuseppe Palmiero, Gaetano Diana, Annapaola Cirillo, Adelaide Fusco, Natale Guarnaccia, and et al. 2024. "Patterns of Left Ventricular Remodelling in Children and Young Patients with Hypertrophic Cardiomyopathy" Journal of Clinical Medicine 13, no. 13: 3937. https://doi.org/10.3390/jcm13133937
APA StyleMonda, E., Caiazza, M., Cirillo, C., Rubino, M., Verrillo, F., Palmiero, G., Diana, G., Cirillo, A., Fusco, A., Guarnaccia, N., Buono, P., Frisso, G., Calabrò, P., Russo, M. G., & Limongelli, G. (2024). Patterns of Left Ventricular Remodelling in Children and Young Patients with Hypertrophic Cardiomyopathy. Journal of Clinical Medicine, 13(13), 3937. https://doi.org/10.3390/jcm13133937