Effect of Laterality in Microsurgery: Comparative Study of an Expert and a Novice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Microsurgical Suture Protocol
2.3. Assessment Tools
2.3.1. Force-Sensing Microsurgical Needle Holder
2.3.2. State-Trait Anxiety Inventory (STAI) Questionnaire
2.3.3. Heart Rate Variability (HRV) Measurement Using Polar H10
2.3.4. Microsurgical Anastomosis Rating Scale
2.4. Statistical Analysis
3. Results
3.1. Time
3.2. Force
3.3. Anxiety
3.4. Heart Rate Variability
3.5. Suture Quality
3.6. Microsurgeons vs. Students
3.7. Students vs. Students
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Kovel, C.G.F.; Carrión-Castillo, A.; Francks, C. A large-scale population study of early life factors influencing left-handedness. Sci. Rep. 2019, 9, 584. [Google Scholar] [CrossRef] [PubMed]
- Edlin, J.M.; Leppanen, M.L.; Fain, R.J.; Hackländer, R.P.; Hanaver-Torrez, S.D.; Lyle, K.B. On the use (and misuse?) of the Edinburgh Handedness Inventory. Brain Cogn. 2015, 94, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Uzoigwe, O.F. The dangers of ambidexterity: The origins of handedness. Med. Hypotheses 2013, 81, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Marcori, A.J.; Okazaki, V.H.A. A historical, systematic review of handedness origins. Laterality 2020, 25, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.; Ghanem, A.M.; Myers, S.R. Assessment of microsurgery competency-where are we now? Assessment of Microsurgery Competency. Microsurgery 2013, 33, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Tchantchaleishvili, V.; Myers, P.O. Hand Laterality and Acquired Ambidexterity in Surgical Training. Ann. Surg. 2016, 264, e18–e19. [Google Scholar] [CrossRef] [PubMed]
- Yaman, O.; Acaroğlu, E. Role of surgeon handedness in transpedicular screw insertion. Acta. Orthop. Traumatol. Turc. 2014, 48, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Yang, M.; Ong, A.; Guo, R.; Chen, J.; Wang, Y.; Chai, W. A Surgeon’s handedness in direct anterior approach-hip replacement. BMC Musculoskelet. Disord. 2020, 21, 516. [Google Scholar] [CrossRef] [PubMed]
- Pennington, N.; Redmond, A.; Stewart, T.; Stone, M. The impact of surgeon handedness in total hip replacement. Ann. R. Coll. Surg. Engl. 2014, 96, 437–441. [Google Scholar] [CrossRef]
- Song, X.; Ni, M.; Li, H.; Li, X.; Li, X.; Fu, J.; Chen, J. Is the cup orientation different in bilateral total hip arthroplasty with right-handed surgeons using posterolateral approach? J. Orthop. Surg. Res. 2018, 13, 123. [Google Scholar] [CrossRef]
- Mehta, S.; Lotke, P.A. Impact of surgeon handedness and laterality on outcomes of total knee arthroplasties: Should right-handed surgeons do only right TKAs? Am. J. Orthop. 2007, 36, 530–533. [Google Scholar]
- Patel, A.N.; Swanson, N.A.; Varma, S. Ambidexterity in dermatological surgery. Br. J. Dermatol. 2014, 170, 978–980. [Google Scholar] [CrossRef] [PubMed]
- Tchantchaleishvili, V.; Myers, P.O. Left-Handedness—A Handicap for Training in Surgery? J. Surg. Educ. 2010, 67, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Deora, H.; Tripathi, M.; Yagnick, N.S.; Deora, S.; Mohindra, S.; Batish, A. Changing Hands: Why Being Ambidextrous Is a Trait That Needs to Be Acquired and Nurtured in Neurosurgery. World. Neurosurg. 2019, 122, 487–490. [Google Scholar] [CrossRef]
- Savetsky, I.L.; Cammarata, M.J.; Kantar, R.S.; Diaz-Siso, J.R.; Avashia, Y.J.; Rohrich, R.J.; Saadeh, P.B. The Left-handed Plastic Surgery Trainee: Perspectives and Recommendations. Plast. Reconstr. Surg. Glob. Open. 2020, 8, e2686. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, L.A.; Okazaki, V.H.A. Shift of manual preference by lateralized practice generalizes to related motor tasks. Exp. Brain. Res. 2007, 183, 417–423. [Google Scholar] [CrossRef]
- Philip, B.A.; Frey, S.H. Increased functional connectivity between cortical hand areas and praxis network associated with training-related improvements in non-dominant hand precision drawing. Neuropsychologia 2016, 87, 157–168. [Google Scholar] [CrossRef]
- Nieboer, T.E.; Sari, V.; Kluivers, K.B.; Weinans, M.J.; Vierhout, M.E.; Stegeman, D.F. A randomized trial of training the non-dominant upper extremity to enhance laparoscopic performance. Minim. Invasive Ther. Allied Technol. 2012, 21, 259–264. [Google Scholar] [CrossRef]
- Walz, A.D.; Doppl, K.; Kaza, E.; Roschka, S.; Platz, T.; Lotze, M. Changes in cortical, cerebellar and basal ganglia representation after comprehensive long term unilateral hand motor training. Behav. Brain Res. 2015, 278, 393–403. [Google Scholar] [CrossRef]
- Chase, C.; Seidler, R. Degree of handedness affects intermanual transfer of skill learning. Exp. Brain Res. 2008, 190, 317–328. [Google Scholar] [CrossRef]
- Tang, J.B.; Giddins, G. Why and how to report surgeons’ levels of expertise. J. Hand Surg. Eur. Vol. 2016, 41, 365–366. [Google Scholar] [CrossRef] [PubMed]
- Hino, A. Training in microvascular surgery using a chicken wing artery. Neurosurgery 2003, 52, 1495–1497. [Google Scholar] [CrossRef] [PubMed]
- Buncke, H.J., Jr.; Schultz, W.P. The suture repair of one millimeter vessels. In Micro-Vascular Surgery; Peardon Donaghy, R.M., Yasargil, M.G., Eds.; CV Mosby Co.: St. Louis, MO, USA, 1967; pp. 24–35. [Google Scholar]
- Durand, S.; Nogueira, A.; Lattion, J. Force-sensing microsurgical needle holder. Microsurgery 2022, 42, 201–202. [Google Scholar] [CrossRef] [PubMed]
- Julian, L.J. Measures of anxiety: State-Trait Anxiety Inventory (STAI), Beck Anxiety Inventory (BAI), and Hospital Anxiety and Depression Scale-Anxiety (HADS-A). Arthritis Care Res. (Hoboken). 2011, 63 (Suppl. 11), S467–S472. [Google Scholar] [CrossRef]
- Rajendra Acharya, U.; Paul Joseph, K.; Kannathal, N.; Lim, C.M.; Suri, J.S. Heart rate variability: A review. Med. Biol. Eng. Comput. 2006, 44, 1031–1051. [Google Scholar] [CrossRef]
- Grantcharov, P.D.; Boillat, T.; Elkabany, S.; Wac, K.; Rivas, H. Acute mental stress and surgical performance: Acute mental stress and surgical performance. BJS Open 2019, 3, 119–125. [Google Scholar] [CrossRef]
- Sztajzel, J. Heart rate variability: A noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med. Wkly. 2004, 134, 514–522. [Google Scholar] [CrossRef]
- Kim, H.G.; Cheon, E.J.; Bai, D.S.; Lee, Y.H.; Koo, B.H. Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investig. 2018, 15, 235–245. [Google Scholar] [CrossRef]
- Gilgen-Ammann, R.; Schweizer, T.; Wyss, T. RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. Eur. J. Appl. Physiol. 2019, 119, 1525–1532. [Google Scholar] [CrossRef]
- Plews, D.J.; Scott, B.; Altini, M.; Wood, M.; Kilding, A.E.; Laursen, P.B. Comparison of Heart- Rate-Variability Recording With Smartphone Photoplethysmography, Polar H7 Chest Strap, and Electrocardiography. Int. J. Sports Physiol. Perform. 2017, 12, 1324–1328. [Google Scholar] [CrossRef]
- Stogowski, P.; Fliciński, F.; Białek, J.; Dąbrowski, F.; Piotrowski, M.; Mazurek, T. Microsurgical anastomosis rating scale (MARS10): A final product scoring system for initial microsurgical training. Plast. Surg. 2021, 29, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Cortellini, L.; Nogueira, A.; Christen, T.; Lattion, J.; Durand, S. Relaxation and performance during microsurgical learning. Pastic Surgery 2023, 22925503231184267. [Google Scholar] [CrossRef]
- Gavira, N.; Benayoun, M.; Hamel, Q.; Fournier, H.D.; Bigorre, N. Learning, teaching, and training in microsurgery: A systematic review. Hand. Surg. Rehabil. 2022, 41, 296–304. [Google Scholar] [CrossRef]
- Smith, J.C. The psychology of relaxation. In Principles and Practice of Stress Management, 3rd ed.; The Guilford Press: New York, NY, USA, 2007; pp. 38–52. [Google Scholar]
- Arora, S.; Sevdalis, N.; Nestel, D.; Woloshynowych, M.; Darzi, A.; Kneebone, R. The impact of stress on surgical performance: A systematic review of the literature. Surgery 2010, 147, 318–330. [Google Scholar] [CrossRef]
- Arora, S.; Tierney, T.; Sevdalis, N.; Aggarwal, R.; Nestel, D.; Woloshynowych, M.; Darzi, A.; Kneebone, R. The Imperial Stress Assessment Tool (ISAT): A feasible, reliable and valid approach to measuring stress in the operating room. World J. Surg. 2010, 34, 1756–1763. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Jie, W.W.J.; Sun, M.T.; Casson, R.; Selva, D.; Chan, W. Overcoming the impact of physiologic tremors in ophthalmology. Graefes Arch. Clin. Exp. Ophthalmol. 2022, 260, 3723–3736. [Google Scholar] [CrossRef] [PubMed]
- Brunt, L.M.; Warner, B.W. Commentary on Hand Laterality and Acquired Ambidexterity in Surgical Training. Ann. Surg. 2016, 264, e20. [Google Scholar] [CrossRef]
- Makay, O.; Icoz, G.; Ersin, S. Surgeon’s view on the limitations of left-handedness during endoscopic surgery. J. Lap. Adv. Surg. Technol. 2008, 18, 217–221. [Google Scholar] [CrossRef]
- Sainburg, R.L. Handedness: Differential specializations for control of trajectory and position. Exerc. Sport Sci. Rev. 2005, 33, 206–213. [Google Scholar] [CrossRef]
- Park, J.; Williams, O.; Waqar, S.; Modi, N.; Kersey, T.; Sleep, T. Safety of nondominant hand ophthalmic surgery. J. Cataract. Refract. Surg. 2012, 38, 2112–2116. [Google Scholar] [CrossRef]
- Gurnani, B.; Kaur, K.; Porwal, A. Analyzing various surgical steps necessitating ambidexterity in ophthalmology. Indian J. Ophthalmol. 2022, 70, 4461–4462. [Google Scholar] [CrossRef] [PubMed]
- Hofstad, E.F.; Våpenstad, C.; Bø, L.E.; Langø, T.; Kuhry, E.; Mårvik, R. Psychomotor skills assessment by motion analysis in minimally invasive surgery on an animal organ. Minim. Invasive Ther. Allied Technol. 2017, 26, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Choussein, S.; Srouji, S.S.; Farland, L.V.; Wietsma, A.; Missmer, S.A.; Hollis, M.; Yu, R.N.; Pozner, C.N.; Gargiulo, A.R. Robotic assistance confers ambidexterity to laparoscopic surgeons. J. Minim. Invasive Gynecol. 2018, 25, 76–83. [Google Scholar] [CrossRef] [PubMed]
Participants | Males | Females | Age (y) | Mean Time (s) | Mean Force (N) | Mean Anxiety (STAI) | Mean HRV R-R int (ms) | Mean Suture Quality (Mars 10) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DH | NDH | DH | NDH | DH | NDH | DH | NDH | DH | NDH | ||||
Microsurgeon | 7 | 3 | 45.1 | 148.9 | 192.7 | 3.7 | 6.4 | 30.1 | 34.4 | 33.4 | 29.9 | 7.8 | 7.2 |
Student | 10 | 10 | 26.2 | 531.5 | 541.9 | 8.0 | 6.9 | 39.3 | 39.2 | 35.4 | 32.7 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guttmann, C.; Timoteo, A.D.; Durand, S. Effect of Laterality in Microsurgery: Comparative Study of an Expert and a Novice. J. Clin. Med. 2024, 13, 3894. https://doi.org/10.3390/jcm13133894
Guttmann C, Timoteo AD, Durand S. Effect of Laterality in Microsurgery: Comparative Study of an Expert and a Novice. Journal of Clinical Medicine. 2024; 13(13):3894. https://doi.org/10.3390/jcm13133894
Chicago/Turabian StyleGuttmann, Célia, Agata Durdzinska Timoteo, and Sébastien Durand. 2024. "Effect of Laterality in Microsurgery: Comparative Study of an Expert and a Novice" Journal of Clinical Medicine 13, no. 13: 3894. https://doi.org/10.3390/jcm13133894
APA StyleGuttmann, C., Timoteo, A. D., & Durand, S. (2024). Effect of Laterality in Microsurgery: Comparative Study of an Expert and a Novice. Journal of Clinical Medicine, 13(13), 3894. https://doi.org/10.3390/jcm13133894