Machine Learning Prediction of Treatment Response to Biological Disease-Modifying Antirheumatic Drugs in Rheumatoid Arthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Preprocessing
2.3. Response and Sustained Response Groups
2.4. Predictive Classification Models
2.5. Feature Importance and Interpretability
2.6. Model Selection
2.7. Software
3. Results
3.1. Patients Characteristics
3.1.1. bDMARDs Response Prediction
3.1.2. bDMARDs Sustained Response Prediction
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACR | American College Testing |
AdaBoost | Adaptive Boosting |
AUC-ROC | Area under the Receiver Operating Characteristic Curve |
bDMARDs | Biological Disease-Modifying Antirheumatic Drugs |
BMI | Body Mass Index |
CDAI | Clinical Disease Activity Index |
CCP | Cyclic Citrullinated Peptide Antibodies |
CRP | C-Reactive Protein |
csDMARDs | Conventional Disease-Modifying Antirheumatic Drugs |
DAS28-CRP | Disease Activity Score-28 using C-Reactive Protein |
DAS28-ESR | Disease Activity Score-28 using Erythrocyte Sedimentation Rate |
ESR | Erythrocyte Sedimentation Rate |
EULAR | European Alliance of Associations for Rheumatology |
HAQ | Health Assessment Questionnaire |
KNN | K-nearest Neighbors |
KOBIO | Korean College of Rheumatology Biologics and Targeted Therapy Registry |
LDA | Low Disease Activity |
ML | Machine Learning |
MICE | Multiple Imputations by Chained Equation |
NAO | Nearest Available Observation |
NSAIDs | Non-steroidal Anti-inflammatory Drugs |
RA | Rheumatoid Arthritis |
RF | Rheumatoid Factor |
RF (Model) | Random Forest |
SD | Standard Deviation |
SDAI | Simple Disease Activity Index |
SHAP | Shapley Additive Explanations |
SJC28 | Swollen Joint Count based on 28 joints |
SVM | Support Vector Machines |
TJC28 | Tender Joint Count based on 28 joints |
VAS | Visual Analogue Scales |
XGBoost | Extreme Gradient Boosting |
MCC | Matthews Correlation Coefficient |
Appendix A
Column | Percentage Missing (%) |
---|---|
Age (years) | 0.00 |
Gender | 0.00 |
Swollen Joint Count-28 (SJC28) | 1.76 |
Tender Joint Count-28 (TJC28) | 1.76 |
Body Mass Index (BMI) | 0.00 |
Visual Analog Scale (VAS) Activity (Physician) | 14.88 |
Visual Analog Scale (VAS) Activity (Patient) | 1.76 |
Visual Analog Scale (VAS) Pain | 14.18 |
Health Assessment Questionnaire (HAQ) Score | 1.77 |
Disease Activity Score in 28 Joints (DAS28-ESR) | 1.76 |
Disease Activity Score in 28 Joints (DAS28-CRP) | 2.26 |
C-Reactive Protein (CRP) (mg/L) | 0.00 |
Rheumatoid Factor (RF) | 0.00 |
Anti-Cyclic Citrullinated Peptide (CCP) | 0.00 |
Clinical Disease Activity Index (CDAI) | 14.88 |
Simple Disease Activity Index (SDAI) | 16.18 |
Erythrocyte Sedimentation Rate (ESR) (mm) | 1.76 |
Osteoarthritis | 0.00 |
Asthma | 0.00 |
Uveitis | 0.00 |
Hypertension | 0.00 |
Chronic Renal Insufficiency | 0.00 |
COPD | 0.00 |
Depression | 0.00 |
Diabetes | 0.00 |
Inflammatory Bowel Disease | 0.00 |
Fat Metabolism Disorder | 0.00 |
Gout | 0.00 |
Heart Attack | 0.00 |
Coronary Heart Disease | 0.00 |
Osteoporosis | 0.00 |
Periodontitis | 0.00 |
Thyroid Disease | 0.00 |
Thrombosis | 0.00 |
bDMARD | 0.00 |
tsDMARD | 0.00 |
csDMARD | 0.00 |
Prednisolone | 0.00 |
Non-Steroidal Anti-Inflammatory Drug (NSAID) | 0.00 |
bDMARD Intake Duration (days) | 0.00 |
Baseline Characteristics | Responders (n = 98) | Non-Responders (n = 56) | p-Value |
---|---|---|---|
Age (years) | 51.86 (13.95) | 56.29 (11.75) | 0.04696 |
Gender (Female)% | 67.35% | 82.14% | 1.00000 |
Body Mass Index (BMI) | 28.34 (17.26) | 27.24 (5.94) | 0.64452 |
Anti-Cyclic Citrullinated Peptide (CCP) | 211.68 (313.09) | 283.36 (528.09) | 0.29154 |
Clinical Disease Activity Index (CDAI) | 5.41 (6.47) | 16.41 (11.89) | 0.00000 |
C-Reactive Protein (CRP) (mg/L) | 0.32 (0.47) | 0.41 (0.5) | 0.24045 |
Health Assessment Questionnaire (HAQ) Score | 0.62 (0.66) | 0.94 (0.68) | 0.00000 |
Non-Steroidal Anti-Inflammatory Drug (NSAID) Usage% | 27.55% | 28.57% | 1.00000 |
Rheumatoid Factor (RF) | 71.72 (125.38) | 145.58 (267.65) | 0.02136 |
Simple Disease Activity Index (SDAI) | 6.72 (7.37) | 17.12 (11.63) | 0.00000 |
Swollen Joint Count-28 (SJC28) | 1.58 (3.47) | 3.62 (4.85) | 0.00283 |
Tender Joint Count-28 (TJC28) | 1.43 (2.84) | 6.79 (6.27) | 0.00000 |
Visual Analog Scale (VAS) Activity (Patient) | 20.68 (19.18) | 53.0 (22.0) | 0.00000 |
Visual Analog Scale (VAS) Activity (Physician) | 11.52 (13.24) | 32.95 (22.14) | 0.00000 |
Visual Analog Scale (VAS) Pain | 18.96 (18.04) | 43.45 (23.11) | 0.00000 |
Erythrocyte Sedimentation Rate (ESR) (mm) | 12.71 (9.74) | 25.12 (22.19) | 0.00000 |
Disease Activity Score in 28 Joints (DAS28-CRP) | 2.37 (0.86) | 3.97 (1.13) | 0.00000 |
Disease Activity Score in 28 Joints (DAS28-ESR) | 2.39 (1.04) | 4.38 (1.16) | 0.00000 |
Asthma % | 0.0% | 0.0% | 1.00000 |
Inflammatory Bowel Disease % | 0.0% | 0.0% | 1.00000 |
Prednisolone% | 28.57% | 55.36% | 1.00000 |
Chronic Renal Insufficiency % | 0.0% | 0.0% | 1.00000 |
Coronary Heart Disease% | 0.0% | 0.0% | 1.00000 |
Diabetes% | 0.0% | 0.0% | 1.00000 |
Fat Metabolism Disorder% | 0.0% | 0.0% | 1.00000 |
Gout% | 0.0% | 0.0% | 1.00000 |
Conventional Synthetic Disease-Modifying Antirheumatic Drugs (csDMARD) % | 65.31% | 69.64% | 1.00000 |
Sustained | Non-Sustained | ||
---|---|---|---|
Baseline Characteristics | Responders (n = 66) | Responders (n = 88) | p-Value |
Age (years) | 51.52 (14.13) | 55.87 (11.93) | 0.04352 |
Gender (Female)% | 62.35% | 85.51% | 1.00000 |
Body Mass Index (BMI) | 28.65 (18.43) | 27.07 (5.72) | 0.49349 |
Anti-Cyclic Citrullinated Peptide (CCP) | 245.25 (470.97) | 228.49 (306.47) | 0.79905 |
Clinical Disease Activity Index (CDAI) | 5.25 (5.89) | 14.53 (12.1) | 0.00000 |
C-Reactive Protein (CRP) (mg/L) | 0.34 (0.48) | 0.36 (0.48) | 0.78621 |
Health Assessment Questionnaire (HAQ) Score | 0.54 (0.58) | 1.35 (0.73) | 0.00000 |
Non-Steroidal Anti-Inflammatory Drug (NSAID) Usage% | 24.71% | 31.88% | 1.00000 |
Rheumatoid Factor (RF) | 59.5 (85.95) | 146.71 (264.27) | 0.00478 |
Simple Disease Activity Index (SDAI) | 6.37 (6.61) | 15.6 (11.92) | 0.00000 |
Swollen Joint Count-28 (SJC28) | 1.55 (3.47) | 3.28 (4.67) | 0.00948 |
Tender Joint Count-28 (TJC28) | 1.24 (2.3) | 6.01 (6.24) | 0.00000 |
Visual Analog Scale (VAS) Activity (Patient) | 20.18 (17.86) | 47.52 (25.52) | 0.00000 |
Visual Analog Scale (VAS) Activity (Physician) | 12.48 (14.99) | 27.73 (21.9) | 0.00000 |
Visual Analog Scale (VAS) Pain | 18.38 (17.07) | 39.55 (24.49) | 0.00000 |
Erythrocyte Sedimentation Rate (ESR) (mm) | 12.8 (10.85) | 22.67 (20.37) | 0.00018 |
Disease Activity Score in 28 Joints (DAS28-CRP) | 2.35 (0.78) | 3.69 (1.28) | 0.00000 |
Disease Activity Score in 28 Joints (DAS28-ESR) | 2.34 (0.99) | 4.06 (1.36) | 0.00000 |
Asthma % | 0.0% | 0.0% | 1.00000 |
Inflammatory Bowel Disease % | 0.0% | 0.0% | 1.00000 |
Prednisolone% | 29.41% | 49.28% | 1.00000 |
Chronic Renal Insufficiency % | 0.0% | 0.0% | 1.00000 |
Coronary Heart Disease % | 0.0% | 0.0% | 1.00000 |
Diabetes % | 0.0% | 0.0% | 1.00000 |
Fat Metabolism Disorder % | 0.0% | 0.0% | 1.00000 |
Gout % | 0.0% | 0.0% | 1.00000 |
Conventional Synthetic Disease-Modifying Antirheumatic Drugs (csDMARD) % | 63.53% | 71.01% | 1.00000 |
Classifier | Hyper-Parameter | Search Space | Response | Sustained |
---|---|---|---|---|
AdaBoost | n_estimators | [5, 10, 50, 100, 200] | 5 | 5 |
learning_rate | [0.01, 0.1, 1] | 0.01 | 0.01 | |
SVM | C | [0.1, 1, 10, 100, 1000] | 100 | 100 |
gamma | [, , , , , 0.1, 1] | |||
KNN | n_neighbors | [1, 3, 5, 7, 8, 10, 12] | 3, 6, 7, 8 | 3, 6, 7, 8 |
leaf_size | [1, 50] | 1 | 1 | |
XGBoost | n_estimators | [1, 10, 100, 200] | 10, 50, 100, 200 | 1, 10, 100, 100 |
min_child_weight | [1, 5, 10] | 1, 5 | 1, 5 | |
Random Forest | n_estimators | [1, 10, 100] | 10, 100 | 10, 100 |
max_features | [‘sqrt’, ‘log2’] | ‘sqrt’ | ‘sqrt’ | |
max_depth | [1, 2, 3, 4] | 1, 3, 4 | 1, 3, 4 |
References
- Firestein, G.S. Evolving concepts of rheumatoid arthritis. Nature 2003, 423, 356–361. [Google Scholar] [CrossRef]
- McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. [Google Scholar] [CrossRef]
- Alamanos, Y.; Drosos, A.A. Epidemiology of adult rheumatoid arthritis. Autoimmun. Rev. 2005, 4, 130–136. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; Van Vollenhoven, R.F.; De Wit, M.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020, 79, 685–699. [Google Scholar] [CrossRef]
- Smolen, J.S.; Breedveld, F.C.; Burmester, G.R.; Bykerk, V.; Dougados, M.; Emery, P.; Kvien, T.K.; Navarro-Compán, M.V.; Oliver, S.; Schoels, M.; et al. Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann. Rheum. Dis. 2016, 75, 3–15. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewé, R.B.M.; Bergstra, S.A.; Kerschbaumer, A.; Sepriano, A.; Aletaha, D.; Caporali, R.; Edwards, C.J.; Hyrich, K.L.; Pope, J.E.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann. Rheum. Dis. 2023, 82, 3–18. [Google Scholar] [CrossRef]
- Pierreisnard, A.; Issa, N.; Barnetche, T.; Richez, C.; Schaeverbeke, T. Meta-analysis of clinical and radiological efficacy of biologics in rheumatoid arthritis patients naive or inadequately responsive to methotrexate. Jt. Bone Spine 2013, 80, 386–392. [Google Scholar] [CrossRef]
- Combe, B.; Rincheval, N.; Benessiano, J.; Berenbaum, F.; Cantagrel, A.; Daurès, J.P.; Dougados, M.; Fardellone, P.; Fautrel, B.; Flipo, R.M.; et al. Five-year favorable outcome of patients with early rheumatoid arthritis in the 2000s: Data from the ESPOIR cohort. J. Rheumatol. 2013, 40, 1650–1657. [Google Scholar] [CrossRef]
- Kievit, W.; Adang, E.M.; Fransen, J.; Kuper, H.H.; Van De Laar, M.A.F.J.; Jansen, T.L.; De Gendt, C.M.A.; De Rooij, D.J.R.A.M.; Brus, H.L.M.; Van Oijen, P.C.M.; et al. The effectiveness and medication costs of three anti-tumour necrosis factor α agents in the treatment of rheumatoid arthritis from prospective clinical practice data. Ann. Rheum. Dis. 2008, 67, 1229–1234. [Google Scholar] [CrossRef] [PubMed]
- van der Heide, A.; Jacobs, J.W.G.; Bijlsma, J.W.J.; Heurkens, A.H.M.; van Booma-Frankfort, C.; van der Veen, M.J.; Haanen, H.C.M.; Hofman, D.M. The effectiveness of early treatment with “second-line” antirheumatic drugs: A randomized, controlled trial. Ann. Intern. Med. 1996, 124, 699–707. [Google Scholar] [CrossRef]
- Aletaha, D.; Kapral, T.; Smolen, J.S. Toxicity profiles of traditional disease modifying antirheumatic drugs for rheumatoid arthritis. Ann. Rheum. Dis. 2003, 62, 482–486. [Google Scholar] [CrossRef]
- Antoni, C.; Braun, J. Side effects of anti-TNF therapy: Current knowledge. Clin. Exp. Rheumatol. 2002, 20, S152–S157. [Google Scholar]
- De La Torre, I.; Valor, L.; Nieto, J.C.; Hernandez, D.; Martinez, L.; Gonzalez, C.M.; Monteagudo, I.; Longo, J.L.; Montoro, M.; Carreño, L. Anti-TNF treatments in rheumatoid arthritis: Economic impact of dosage modification. Expert Rev. Pharmacoecon. Outcomes Res. 2013, 13, 407–414. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, G.T.; Suh, Y.S.; Kim, H.O.; Lee, H.N.; Lee, S.G. The impact of the amendment of the Korean national health insurance reimbursement criteria for anti-tumor necrosis factor-α agents on treatment pattern, clinical response and persistence in patients with rheumatoid arthritis. J. Rheum. Dis. 2020, 27, 159–167. [Google Scholar] [CrossRef]
- Batticciotto, A.; Ravasio, R.; Riva, M.; Sarzi-Puttini, P. Efficacy and treatment costs of monotherapy with bDMARDs in the treatment of rheumatoid arthritis in patients intolerant to or inappropriate to continue treatment with methotrexate. Adv. Ther. 2016, 33, 1360–1373. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Wei, M.; Chu, C.-Q. Prediction of Treatment Response: Personalized Medicine in the Management of Rheumatoid Arthritis. Best Pract. Res. Clin. Rheumatol. 2022, 36, 101741. [Google Scholar] [CrossRef]
- Koo, B.S.; Eun, S.; Shin, K.; Yoon, H.; Hong, C.; Kim, D.H.; Hong, S.; Kim, Y.G.; Lee, C.K.; Yoo, B.; et al. Machine learning model for identifying important clinical features for predicting remission in patients with rheumatoid arthritis treated with biologics. Arthritis Res. Ther. 2021, 23, 178. [Google Scholar] [CrossRef]
- Lee, S.; Kang, S.; Eun, Y.; Won, H.H.; Kim, H.; Lee, J.; Koh, E.M.; Cha, H.S. Machine learning-based prediction model for responses of bDMARDs in patients with rheumatoid arthritis and ankylosing spondylitis. Arthritis Res. Ther. 2021, 23, 254. [Google Scholar] [CrossRef]
- Guan, Y.; Zhang, H.; Quang, D.; Wang, Z.; Parker, S.C.J.; Pappas, D.A.; Kremer, J.M.; Zhu, F. Machine learning to predict anti-tumor necrosis factor drug responses of rheumatoid arthritis patients by integrating clinical and genetic markers. Arthritis Rheumatol. 2019, 71, 1987–1996. [Google Scholar] [CrossRef]
- Tao, W.; Concepcion, A.N.; Vianen, M.; Marijnissen, A.C.A.; Lafeber, F.P.G.J.; Radstake, T.R.D.J.; Pandit, A. Multiomics and machine learning accurately predict clinical response to adalimumab and etanercept therapy in patients with rheumatoid arthritis. Arthritis Rheumatol. 2021, 73, 212–222. [Google Scholar] [CrossRef]
- Rivellese, F.; Surace, A.E.A.; Goldmann, K.; Sciacca, E.; Çubuk, C.; Giorli, G.; John, C.R.; Nerviani, A.; Fossati-Jimack, L.; Thorborn, G.; et al. Rituximab versus Tocilizumab in Rheumatoid Arthritis: Synovial Biopsy-Based Biomarker Analysis of the Phase 4 R4RA Randomized Trial. Nat. Med. 2022, 28, 1256–1268. [Google Scholar] [CrossRef]
- Yoosuf, N.; Maciejewski, M.; Ziemek, D.; Jelinsky, S.A.; Folkersen, L.; Müller, M.; Sahlström, P.; Vivar, N.; Catrina, A.; Berg, L.; et al. Early Prediction of Clinical Response to Anti-TNF Treatment Using Multi-Omics and Machine Learning in Rheumatoid Arthritis. Rheumatology 2022, 61, 1680–1689. [Google Scholar] [CrossRef]
- Kay, J.; Upchurch, K.S. ACR/EULAR 2010 rheumatoid arthritis classification criteria. Rheumatology 2012, 51, vi5–vi9. [Google Scholar] [CrossRef]
- England, B.R.; Sokolove, J.; Robinson, W.H.; Thiele, G.M.; Ganti, A.K.; Sayles, H.; Michaud, K.; Caplan, L.; Davis, L.A.; Cannon, G.W.; et al. Associations of circulating cytokines and chemokines with cancer mortality in men with rheumatoid arthritis. Arthritis Rheumatol. 2016, 68, 2394–2402. [Google Scholar] [CrossRef]
- Mongin, D.; Lauper, K.; Turesson, C.; Hetland, M.L.; Kristianslund, E.K.; Kvien, T.K.; Santos, M.J.; Pavelka, K.; Iannone, F.; Finckh, A.; et al. Imputing Missing Data of Function and Disease Activity in Rheumatoid Arthritis Registers: What is the Best Technique? RMD Open 2019, 5, e000994. [Google Scholar] [CrossRef]
- Jakobsen, J.C.; Gluud, C.; Wetterslev, J.; Winkel, P. When and How Should Multiple Imputation Be Used for Handling Missing Data in Randomised Clinical Trials: A Practical Guide with Flowcharts. BMC Med. Res. Methodol. 2017, 17, 162. [Google Scholar] [CrossRef]
- van Buuren, S. Flexible Imputation of Missing Data; CRC Press: Boca Raton, FL, USA, 2018; Available online: https://stefvanbuuren.name/fimd/ (accessed on 26 June 2024).
- Hayati Rezvan, P.; Lee, K.J.; Simpson, J.A. The Rise of Multiple Imputation: A Review of the Reporting and Implementation of the Method in Medical Research. BMC Med. Res. Methodol. 2015, 15, 30. [Google Scholar] [CrossRef]
- Felson, D.T.; Smolen, J.S.; Wells, G.; Zhang, B.; Van Tuyl, L.H.D.; Funovits, J.; Aletaha, D.; Allaart, C.F.; Bathon, J.; Bombardieri, S.; et al. American College of Rheumatology/European League Against Rheumatism provisional definition of remission in rheumatoid arthritis for clinical trials. Arthritis Rheumatol. 2011, 63, 573–586. [Google Scholar] [CrossRef]
- Studenic, P.; Aletaha, D.; de Wit, M.; Stamm, T.A.; Alasti, F.; Lacaille, D.; Smolen, J.S.; Felson, D.T. American College of Rheumatology/EULAR remission criteria for rheumatoid arthritis: 2022 revision. Ann. Rheum. Dis. 2023, 82, 74–80. [Google Scholar] [CrossRef]
- Durgesh, K.S.; Lekha, B. Data classification using support vector machine. J. Theor. Appl. Inf. Technol. 2010, 12, 1–7. [Google Scholar]
- Liaw, A.; Wiener, M. randomForest: Breiman and Cutler’s random forests for classification and regression. R Package Version 2015, 4, 14. [Google Scholar]
- Zhang, L.; Zhan, C. Machine learning in rock facies classification: An application of XGBoost. In Proceedings of the International Geophysical Conference, Qingdao, China, 17–20 April 2017; Society of Exploration Geophysicists and Chinese Petroleum Society: Qingdao, China, 2017; pp. 1371–1374. [Google Scholar]
- Lodha, S.K.; Fitzpatrick, D.M.; Helmbold, D.P. Aerial lidar data classification using adaboost. In Proceedings of the Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007), Montreal, QC, Canada, 21–23 August 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 435–442. [Google Scholar]
- Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [Google Scholar] [CrossRef]
- Chen, R.-C.; Dewi, C.; Huang, S.-W.; Caraka, R.E. Selecting critical features for data classification based on machine learning methods. J. Big Data 2020, 7, 52. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774. [Google Scholar]
- Shapley, L.S. A Value for N-Person Games; Princeton University Press: Princeton, NJ, USA, 1953. [Google Scholar]
- Cawley, G.C.; Talbot, N.L.C. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res. 2010, 11, 2079–2107. [Google Scholar]
- Scheda, R.; Diciotti, S. Explanations of Machine Learning Models in Repeated Nested Cross-Validation: An Application in Age Prediction Using Brain Complexity Features. Appl. Sci. 2022, 12, 6681. [Google Scholar] [CrossRef]
- Zhong, Y.; He, J.; Chalise, P. Nested and repeated cross validation for classification model with high-dimensional data. Rev. Colomb. Estad. 2020, 43, 103–125. [Google Scholar] [CrossRef]
Classifier | Accuracy | AUC-ROC | F1 Score | MCC |
---|---|---|---|---|
AdaBoost | 0.808 (0.070) | 0.849 (0.060) | 0.872 (0.063) | 0.686 (0.114) |
SVM | 0.812 (0.046) | 0.848 (0.034) | 0.851 (0.048) | 0.490 (0.121) |
KNN | 0.766 (0.059) | 0.827 (0.081) | 0.821 (0.043) | 0.366 (0.135) |
XGBoost | 0.851 (0.044) | 0.910 (0.040) | 0.878 (0.053) | 0.714 (0.179) |
Random Forest | 0.852 (0.033) | 0.908 (0.065) | 0.846 (0.071) | 0.640 (0.103) |
Classifier | Accuracy | AUC-ROC | F1 Score | MCC |
---|---|---|---|---|
AdaBoost | 0.856 (0.045) | 0.842 (0.073) | 0.759 (0.047) | 0.680 (0.142) |
SVM | 0.773 (0.054) | 0.828 (0.034) | 0.755 (0.065) | 0.395 (0.202) |
KNN | 0.701 (0.105) | 0.813 (0.040) | 0.660 (0.097) | 0.203 (0.105) |
XGBoost | 0.748 (0.091) | 0.817 (0.080) | 0.689 (0.124) | 0.489 (0.227) |
Random Forest | 0.780 (0.054) | 0.810 (0.081) | 0.719 (0.100) | 0.542 (0.215) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salehi, F.; Lopera Gonzalez, L.I.; Bayat, S.; Kleyer, A.; Zanca, D.; Brost, A.; Schett, G.; Eskofier, B.M. Machine Learning Prediction of Treatment Response to Biological Disease-Modifying Antirheumatic Drugs in Rheumatoid Arthritis. J. Clin. Med. 2024, 13, 3890. https://doi.org/10.3390/jcm13133890
Salehi F, Lopera Gonzalez LI, Bayat S, Kleyer A, Zanca D, Brost A, Schett G, Eskofier BM. Machine Learning Prediction of Treatment Response to Biological Disease-Modifying Antirheumatic Drugs in Rheumatoid Arthritis. Journal of Clinical Medicine. 2024; 13(13):3890. https://doi.org/10.3390/jcm13133890
Chicago/Turabian StyleSalehi, Fatemeh, Luis I. Lopera Gonzalez, Sara Bayat, Arnd Kleyer, Dario Zanca, Alexander Brost, Georg Schett, and Bjoern M. Eskofier. 2024. "Machine Learning Prediction of Treatment Response to Biological Disease-Modifying Antirheumatic Drugs in Rheumatoid Arthritis" Journal of Clinical Medicine 13, no. 13: 3890. https://doi.org/10.3390/jcm13133890
APA StyleSalehi, F., Lopera Gonzalez, L. I., Bayat, S., Kleyer, A., Zanca, D., Brost, A., Schett, G., & Eskofier, B. M. (2024). Machine Learning Prediction of Treatment Response to Biological Disease-Modifying Antirheumatic Drugs in Rheumatoid Arthritis. Journal of Clinical Medicine, 13(13), 3890. https://doi.org/10.3390/jcm13133890