Non-Motor Symptoms in Primary Familial Brain Calcification
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nicolas, G.; Charbonnier, C.; Campion, D.; Veltman, J.A. Estimation of minimal disease prevalence from population genomic data: Application to primary familial brain calcification. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2018, 177, 68–74. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Shi, L.; Ren, J.; Patti, M.; Wang, T.; de Oliveira, J.R.M.; Sobrido, M.-J.; Quintáns, B.; Baquero, M.; et al. Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat. Genet. 2012, 44, 254–256. [Google Scholar] [CrossRef]
- Keller, A.; Westenberger, A.; Sobrido, M.J.; García-Murias, M.; Domingo, A.; Sears, R.L.; Lemos, R.R.; Ordoñez-Ugalde, A.; Nicolas, G.; Cunha, J.E.G.d.; et al. Mutations in the gene encoding PDGF-B cause brain calcifications in humans and mice. Nat. Genet. 2013, 45, 1077–1082. [Google Scholar] [CrossRef]
- Nicolas, G.; Pottier, C.; Maltête, D.; Coutant, S.; Rovelet-Lecrux, A.; Legallic, S.; Rousseau, S.; Vaschalde, Y.; Guyant-Maréchal, L.; Augustin, J.; et al. Mutation of the PDGFRB gene as a cause of idiopathic basal ganglia calcification. Neurology 2013, 80, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Legati, A.; Giovannini, D.; Nicolas, G.; López-Sánchez, U.; Quintáns, B.; Oliveira, J.R.M.; Sears, R.L.; Ramos, E.M.; Spiteri, E.; Sobrido, M.-J.; et al. Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export. Nat. Genet. 2015, 47, 579–581. [Google Scholar] [CrossRef]
- Yao, X.-P.; Cheng, X.; Wang, C.; Zhao, M.; Guo, X.-X.; Su, H.-Z.; Lai, L.-L.; Zou, X.-H.; Chen, X.-J.; Zhao, Y.; et al. Biallelic Mutations in MYORG Cause Autosomal Recessive Primary Familial Brain Calcification. Neuron 2018, 98, 1116–1123.e5. [Google Scholar] [CrossRef]
- Cen, Z.; Chen, Y.; Chen, S.; Wang, H.; Yang, D.; Zhang, H.; Wu, H.; Wang, L.; Tang, S.; Ye, J.; et al. Biallelic loss-of-function mutations in JAM2 cause primary familial brain calcification. Brain 2020, 143, 491–502. [Google Scholar] [CrossRef]
- Zhao, M.; Su, H.-Z.; Zeng, Y.-H.; Sun, Y.; Guo, X.-X.; Li, Y.-L.; Wang, C.; Zhao, Z.-Y.; Huang, X.-J.; Lin, K.-J.; et al. Loss of function of CMPK2 causes mitochondria deficiency and brain calcification. Cell Discov. 2022, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Chelban, V.; Aksnes, H.; Maroofian, R.; LaMonica, L.C.; Seabra, L.; Siggervåg, A.; Devic, P.; Shamseldin, H.E.; Vandrovcova, J.; Murphy, D.; et al. Biallelic NAA60 variants with impaired n-terminal acetylation capacity cause autosomal recessive primary familial brain calcifications. Nat. Commun. 2024, 15, 2269. [Google Scholar] [CrossRef] [PubMed]
- Donzuso, G.; Mostile, G.; Nicoletti, A.; Zappia, M. Basal ganglia calcifications (Fahr’s syndrome): Related conditions and clinical features. Neurol Sci 2019, 40, 2251–2263. [Google Scholar] [CrossRef]
- Carecchio, M.; Mainardi, M.; Bonato, G. The clinical and genetic spectrum of primary familial brain calcification. J. Neurol. 2023, 270, 3270–3277. [Google Scholar] [CrossRef]
- Monfrini, E.; Arienti, F.; Rinchetti, P.; Lotti, F.; Riboldi, G.M. Brain Calcifications: Genetic, Molecular, and Clinical Aspects. Int. J. Mol. Sci. 2023, 24, 8995. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-Y.; Ho, C.-J.; Lu, Y.-T.; Lin, C.-H.; Lan, M.-Y.; Tsai, M.-H. The Genetics of Primary Familial Brain Calcification: A Literature Review. Int. J. Mol. Sci. 2023, 24, 10886. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, G.; Pottier, C.; Charbonnier, C.; Guyant-Maréchal, L.; Le Ber, I.; Pariente, J.; Labauge, P.; Ayrignac, X.; Defebvre, L.; Maltête, D.; et al. Phenotypic spectrum of probable and genetically-confirmed idiopathic basal ganglia calcification. Brain 2013, 136 Pt 11, 3395–3407. [Google Scholar] [CrossRef]
- Balck, A.; Schaake, S.; Kuhnke, N.S.; Domingo, A.; Madoev, H.; Margolesky, J.; Dobricic, V.; Alvarez-Fischer, D.; Laabs, B.; Kasten, M.; et al. Genotype-Phenotype Relations in Primary Familial Brain Calcification: Systematic MDSGene Review. Mov. Disord. 2021, 36, 2468–2480. [Google Scholar] [CrossRef]
- Grangeon, L.; Wallon, D.; Charbonnier, C.; Quenez, O.; Richard, A.-C.; Rousseau, S.; Budowski, C.; Lebouvier, T.; Corbille, A.-G.; Vidailhet, M.; et al. Biallelic MYORG mutation carriers exhibit primary brain calcification with a distinct phenotype. Brain 2019, 142, 1573–1586. [Google Scholar] [CrossRef] [PubMed]
- Chelban, V.; Carecchio, M.; Rea, G.; Bowirrat, A.; Kirmani, S.; Magistrelli, L.; Efthymiou, S.; Schottlaender, L.; Vandrovcova, J.; Salpietro, V.; et al. MYORG-related disease is associated with central pontine calcifications and atypical parkinsonism. Neurol. Genet. 2020, 6, e399. [Google Scholar] [CrossRef]
- Tadic, V.; Westenberger, A.; Domingo, A.; Alvarez-Fischer, D.; Klein, C.; Kasten, M. Primary familial brain calcification with known gene mutations: A systematic review and challenges of phenotypic characterization. JAMA Neurol. 2015, 72, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, G.; Charbonnier, C.; de Lemos, R.R.; Richard, A.; Guillin, O.; Wallon, D.; Legati, A.; Geschwind, D.; Coppola, G.; Frebourg, T.; et al. Brain calcification process and phenotypes according to age and sex: Lessons from SLC20A2, PDGFB, and PDGFRB mutation carriers. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015, 168, 586–594. [Google Scholar] [CrossRef]
- Mathijssen, G.; van Valen, E.; de Jong, P.A.; Golüke, N.M.S.; van Maren, E.A.; Snijders, B.M.G.; Brilstra, E.H.; Ruigrok, Y.M.; Bakker, S.; Goto, R.W.; et al. The Association between Intracranial Calcifications and Symptoms in Patients with Primary Familial Brain Calcification. J. Clin. Med. 2024, 13, 828. [Google Scholar] [CrossRef]
- Golüke, N.M.; Meijer, E.; van Maren, E.A.; de Jonghe, A.; Emmelot-Vonk, M.H.; van Valen, E.; de Jong, P.A.; Koek, H.L. Amount and Distribution of Intracranial Calcification in Symptomatic and Asymptomatic Primary Familial Brain Calcification. Neurol. Clin. Pract. 2023, 13, e200163. [Google Scholar] [CrossRef]
- Batla, A.; Tai, X.Y.; Schottlaender, L.; Erro, R.; Balint, B.; Bhatia, K.P. Deconstructing Fahr’s disease/syndrome of brain calcification in the era of new genes. Park. Relat. Disord. 2017, 37, 1–10. [Google Scholar] [CrossRef]
- Kurita, H.; Ozawa, K.; Yamada, M.; Inden, M.; Hirata, K.; Hozumi, I. EEvaluation of headaches in primary brain calcification in Japan. Neurol. Clin. Neurosci. 2021, 9, 459–465. [Google Scholar] [CrossRef]
- Takeuchi, T.; Muraoka, K.; Yamada, M.; Nishio, Y.; Hozumi, I. Living with idiopathic basal ganglia calcification 3: A qualitative study describing the lives and illness of people diagnosed with a rare neurological disease. Springerplus 2016, 5, 1713. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Aoyagi, H.; Kuwako, Y.; Hozumi, I. Living with primary brain calcification with PDGFB variants: A qualitative study. PLoS ONE 2022, 17, e0275227. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Martin, P. The importance of non-motor disturbances to quality of life in Parkinson’s disease. J. Neurol. Sci. 2011, 310, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Titova, N.; Qamar, M.A.; Chaudhuri, K.R. The Nonmotor Features of Parkinson’s Disease. Int. Rev. Neurobiol. 2017, 132, 33–54. [Google Scholar] [CrossRef]
- Duncan, G.W.; Khoo, T.K.; Yarnall, A.J.; O’Brien, J.T.; Coleman, S.Y.; Brooks, D.J.; Barker, R.A. Health-related quality of life in early Parkinson’s disease: The impact of nonmotor symptoms. Mov. Disord. 2014, 29, 195–202. [Google Scholar] [CrossRef]
- Balestrino, R.; Martinez-Martin, P. Neuropsychiatric symptoms, behavioural disorders, and quality of life in Parkinson’s disease. J. Neurol. Sci. 2017, 373, 173–178. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Litvan, I.; Goldman, J.G.; Tröster, A.I.; Schmand, B.A.; Weintraub, D.; Petersen, R.C.; Mollenhauer, B.; Adler, C.H.; Marder, K.; Williams-Gray, C.H.; et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov. Disord. 2012, 27, 349–356. [Google Scholar] [CrossRef]
- Dubois, B.; Feldman, H.H.; Jacova, C.; DeKosky, S.T.; Barberger-Gateau, P.; Cummings, J.L.; Delacourte, A.; Galasko, D.; Gauthier, S.; Jicha, G.A.; et al. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007, 6, 734–746. [Google Scholar] [CrossRef] [PubMed]
- Sletten, D.M.; Suarez, G.A.; Low, P.A.; Mandrekar, J.; Singer, W. COMPASS 31: A refined and abbreviated Composite Autonomic Symptom Score. Mayo Clin. Proc. 2012, 87, 1196–1201. [Google Scholar] [CrossRef]
- Kim, Y.; Seok, J.M.; Park, J.; Kim, K.H.; Min, J.H.; Cho, J.W.; Park, S.; Kim, H.J.; Kim, B.J.; Youn, J. The composite autonomic symptom scale 31 is a useful screening tool for patients with Parkinsonism. PLoS ONE 2017, 12, e0180744. [Google Scholar] [CrossRef]
- Foschi, M.; Giannini, G.; Merli, E.; Mancinelli, L.; Zenesini, C.; Viti, B.; Guaraldi, P.; Cortelli, P.; Lugaresi, A. Frequency and characteristics of dysautonomic symptoms in multiple sclerosis: A cross-sectional double-center study with the validated Italian version of the Composite Autonomic Symptom Score-31. Neurol. Sci. 2021, 42, 1395–1403. [Google Scholar] [CrossRef] [PubMed]
- Treister, R.; O’Neil, K.; Downs, H.M.; Oaklander, A.L. Validation of the composite autonomic symptom scale 31 (COMPASS-31) in patients with and without small fiber polyneuropathy. Eur. J. Neurol. 2015, 22, 1124–1130. [Google Scholar] [CrossRef]
- Greco, C.; Di Gennaro, F.; D’Amato, C.; Morganti, R.; Corradini, D.; Sun, A.; Longo, S.; Lauro, D.; Pierangeli, G.; Cortelli, P.; et al. Validation of the Composite Autonomic Symptom Score 31 (COMPASS 31) for the assessment of symptoms of autonomic neuropathy in people with diabetes. Diabet. Med. 2017, 34, 834–838. [Google Scholar] [CrossRef]
- Singtokum, N.; Amornvit, J.; Kerr, S.; Chokesuwattanaskul, R. Syncope with autonomic dysfunction assessed with the Thai-COMPASS 31 questionnaire. Heliyon 2023, 9, e17035. [Google Scholar] [CrossRef]
- Andretta, S.; Bonato, G.; Mainardi, M.; Salviati, L.; Antonini, A.; Carecchio, M. Symptomatic brain calcifications in two patients with JAM2 monoallelic variants. Mov. Disord. 2022, 37 (Suppl. S2), S379–S380. Available online: https://www.mdsabstracts.org/abstract/symptomatic-brain-calcifications-in-two-patients-with-jam2-monoallelic-variants/ (accessed on 5 June 2024).
- de Brouwer, E.J.; Golüke, N.M.; Claus, J.J.; Staekenborg, S.S.; Emmelot-Vonk, M.H.; A de Jong, P.; Koek, H.L.; De Jonghe, A. Basal ganglia calcifications: No association with cognitive function. J. Neuroradiol. 2023, 50, 266–270. [Google Scholar] [CrossRef]
- Chen, S.; Cen, Z.; Fu, F.; Chen, Y.; Chen, X.; Yang, D.; Wang, H.; Wu, H.; Zheng, X.; Xie, F.; et al. Underestimated disease prevalence and severe phenotypes in patients with biallelic variants: A cohort study of primary familial brain calcification from China. Park. Relat. Disord. 2019, 64, 211–219. [Google Scholar] [CrossRef]
- Garon, M.; Carecchio, M.; Weis, L.; Pistonesi, F.; Mainardi, M.; Bonato, G.; Salviati, L.; Antonini, A.; Biundo, R. Cognitive profiling in a cohort of Primary Familial Brain Calcification (PFBC) patients. Mov. Disord. 2021, 36 (Suppl. S1), S93. Available online: https://www.mdsabstracts.org/abstract/cognitive-profiling-in-a-cohort-of-primary-familial-brain-calcification-pfbc-patients/ (accessed on 5 June 2024).
- Reijnders, J.S.; Ehrt, U.; Weber, W.E.; Aarsland, D.; Leentjens, A.F. A systematic review of prevalence studies of depression in Parkinson’s disease. Mov. Disord. 2008, 23, 183–313. [Google Scholar] [CrossRef] [PubMed]
- De Cock, V.C.; Vidailhet, M.; Arnulf, I. Sleep disturbances in patients with parkinsonism. Nat. Clin. Pract. Neurol. 2008, 4, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Manyam, B.V.; Walters, A.S.; Narla, K.R. Bilateral striopallidodentate calcinosis: Clinical characteristics of patients seen in a registry. Mov. Disord. 2001, 16, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Stocchi, F.; Torti, M. Constipation in Parkinson’s Disease. Int. Rev. Neurobiol. 2017, 134, 811–826. [Google Scholar] [CrossRef] [PubMed]
Total | SLC20A2 | MYORG | PDGFB-PDGFRB | Negative Genetic Test | |
---|---|---|---|---|---|
Number of subjects | 50 | 10 | 8 | 4 | 25 |
Males | 21 (42%) | 3 (30%) | 5 (62.5%) | 1 (25%) | 10 (40%) |
Females | 29 (58%) | 7 (70%) | 3 (37.5%) | 3 (75%) | 15 (60%) |
Age at evaluation (y, mean ± s.d) | 60.9 ± 14.6 | 60.3 ± 14.7 | 59.1 ± 8.8 | 52.2 ± 15.6 | 63.2 ± 15.8 |
Symptomatic (motor) | 34 (68%) | 6 (60%) | 8 (100%) | 1 (25%) | 18 (72%) |
Symptomatic (cognitive) | 28 (56%) | 5 (50%) | 6 (75%) | 1 (25%) | 15 (60%) |
Age at onset (y, mean ± s.d) | 52.9 ± 13.8 | 51.3 ± 17 | 52.8 ± 8.8 | 45.7 ± 10.9 | 54.8 ± 14.5 |
Parkinsonism | 28 (56%) | 4 (40%) | 6 (75%) | 1 (25%) | 15 (60%) |
Ataxia/cerebellar features | 12 (24%) | 2 (20%) | 5 (62.5%) | 1 (25%) | 4 (16%) |
Dysarthria/speech disturbances | 14 (28%) | 2 (20%) | 6 (75%) | 1 (25%) | 6 (24%) |
Falls | 16 (32%) | 2 (20%) | 4 (50%) | 1 (25%) | 9 (36%) |
Cohort (50) | SLC20A2 (10) | MYORG (8) | PDGFB-PDGFRB (4) | Negative Genetic Test (25) | Motor Symptoms (34) | Absence of Motor Symptoms (16) | Cognitive Deficits (28) | No Cognitive Deficits (22) | |
---|---|---|---|---|---|---|---|---|---|
Cognitive deficits: -subjective -MCI -dementia | 28 (56%) 2 (4%) 22 (44%) 4 (8%) | 5 (50%) 0 (0%) 4 (40%) 1 (10%) | 6 (75%) 0 (0%) 5 (62.5%) 1 (12.5%) | 1 (25%) 1 (25%) 0 (0%) 0 (0%) | 15 (60%) 1 (4%) 12 (48%) 2 (8%) | 25(73.5%) 2 (5.8%) 20(58.8%) 4 (11.7%) | 3 (18.7%) 0 (0%) 2 (12.5%) 0 (0%) | 28 (100%) 2 (7%) 22(78.5%) 4 (14.3%) | 0 (0%) 0 (0%) 0 (0%) 0 (0%) |
Domain -Memory -Executive -Visuospatial -Language -Attention | 13 (26%) 17 (34%) 21 (42%) 19 (38%) 18 (36%) | 4 (40%) 2 (20%) 6 (60%) 2 (20%) 2 (20%) | 3 (37.5%) 6 (75%) 5 (62.5%) 5 (62.5%) 4 (50%) | 0 (0%) 0 (0%) 0 (0%) 1 (25%) 1 (25%) | 6 (24%) 8 (32%) 9 (36%) 10 (40%) 8 (32%) | 12(35.3%) 17 (50%) 18 (53%) 17 (50%) 16 (47%) | 2 (12.5%) 0 (0%) 3 (18.7%) 2 (12.5%) 0 (0%) | 12(42.8%) 15(53.5%) 19(67.8%) 15(53.5%) 15(53.5%) | 2 (9%) 2 (9%) 2 (9%) 4 (18%) 1 (4.5%) |
MMSE (mean ± s.d.) | 25.6 ± 5 | 25.6 ± 5 | 24.3 ± 4.9 | 27.3 ± 3.1 | 25.3 ± 5.8 | 24 ± 5.9 | 27.9 ± 2 | 23.5 ± 5.7 | 28.5 ± 3 |
MoCA (mean ± s.d.) | 21.5 ± 5.5 | 22.1 ± 5.7 | 20.3 ± 5.2 | 22.8 ± 2.3 | 21.4 ± 6.4 | 19.1 ± 5.5 | 25.1 ± 2.9 | 18.8 ± 5.6 | 25.1 ± 2.7 |
Neuropsychiatric: Anxiety/depression Psychosis/OCD Hallucinations | 31 (62%) 5 (10%) 6 (12%) | 7 (70%) 0 (0%) 1 (10%) | 7 (87.5%) 1 (12.5%) 1 (12.5%) | 3 (75%) 0 (0%) 0 (0%) | 11 (44%) 4 (16%) 4 (16%) | 22(64.7%) 5 (14.7%) 6 (17.6%) | 9 (56.2%) 0 (0%) 0 (0%) | 18(64.3%) 5 (17.8%) 6 (21.4%) | 13 (59%) 0 (0%) 0 (0%) |
Headache | 13 (26%) | 4 (40%) | 0 (0%) | 2 (50%) | 6 (24%) | 7 (20.5%) | 6 (37.5%) | 5 (17.8%) | 8 (36.3%) |
Sleep Disturbances—RBD | 17 (34%) 5 (10%) | 4 (40%) 2 (20%) | 3 (37.5%) 1 (12.5%) | 1 (25%) 0 (0%) | 7 (28%) 2 (8%) | 13(38.2%) 4 (11.7%) | 4 (25%) 1 (6.25%) | 12(42.8%) 4 (14.3%) | 5 (22.7%) 1 (4.5%) |
Constipation | 16 (32%) | 4 (40%) | 4 (50%) | 1 (25%) | 6 (24%) | 15 (44%) | 1 (6.25%) | 13(46.4%) | 3 (13.6%) |
Genitourinary disturbances | 17(34%) | 4 (40%) | 5 (62.5%) | 1 (25%) | 6 (24%) | 16 (47%) | 1 (6.25%) | 17(60.7%) | 0 (0%) |
Hyposmia | 7 (14%) | 2 (20%) | 0 (0%) | 0 (0%) | 4 (16%) | 6 (17.6%) | 1 (6.25%) | 5 (17.8%) | 2 (9%) |
Orthostatic intolerance | 3 (6%) | 1 (10%) | 0 (0%) | 0 (0%) | 1 (4%) | 3 (8.8%) | 0 (0%) | 2 (7%) | 0 (0%) |
ADL (mean ± s.d.) | 5.2 ± 1.5 | 5.2 ± 1.6 | 5.2 ± 1.1 | 5.5 ± 1 | 5 ±1.8 | 4.7 ± 1.7 | 5.9 ± 0.25 | 4.6 ± 1.7 | 6 ± 0 |
IADL (mean ± s.d.) | 6 ± 2.1 | 7.2 ± 2.2 | 6 ± 1.1 | 6.2 ± 2 | 5.7 ± 2.5 | 5.1 ± 2.1 | 7.6 ± 1 | 5.2 ± 2 | 7.2 ± 1 |
Domain (Maximal Possible Score) | Orthostatic Intolerance (Max 40) | Vasomotor (Max 5) | Secretomotor (Max 15) | Gastrointestinal (Max 25) | Bladder (Max 10) | Pupillomotor (Max 5) | Total (Max 100) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group (n. of Patients) | Mean Score | % s. > 0 | Mean Score | % s. > 0 | Mean Score | % s. > 0 | Mean Score | % s. > 0 | Mean Score | % s. > 0 | Mean Score | % s. > 0 | Mean Score | % s. > 0 | % s. > 13.5 |
Cohort (50) | 8 ± 7.8 | 44% | 0.5 ± 1.2 | 16% | 3.3 ± 2.9 | 56% | 5.7 ± 4.5 | 80% | 2 ± 1.8 | 64% | 1.2 ± 1.3 | 54% | 20.6 ± 15 | 90% | 64% |
Negative (25) | 8.2 ± 10.1 | 44% | 0.7 ± 1.2 | 20% | 3.5 ± 3 | 60% | 6.1 ± 4.5 | 84% | 1.5 ± 2 | 52% | 1 ± 1.2 | 48% | 20.9 ± 15 | 88% | 64% |
SLC20A2 (10) | 6.4 ± 6 | 40% | 0.2 ± 0.9 | 10% | 3.2 ± 3 | 50% | 6.2 ± 5 | 90% | 1.4 ± 1.4 | 60% | 0.9 ± 1.2 | 40% | 18.4 ± 13 | 90% | 60% |
MYORG (8) | 8 ± 12 | 37.5% | 0.4 ± 1.1 | 12.5% | 2.9 ± 3 | 50% | 5.1 ± 5 | 62.5% | 3.9 ± 2.3 | 100% | 1.8 ± 1.4 | 87.5% | 22.2 ± 18 | 100% | 62.5% |
PDGFB-PDGFRB (4) | 12 ± 10 | 75% | 0 ± 0 | 0% | 3.2 ± 2.7 | 75% | 4.7 ± 4 | 75% | 2.8 ± 1.9 | 75% | 1.9 ± 1.7 | 75% | 24.6 ± 15 | 100% | 100% |
Parkinsonism (28) | 6.4 ± 10 | 32.1% | 0.7 ± 1 | 21.4% | 3.1 ± 3 | 53.6% | 5.6 ± 4.5 | 78.6% | 2.5 ± 2.4 | 75% | 1.1 ± 1.4 | 46.4% | 19.5 ± 16 | 89.3% | 57.2% |
No parkinso-nism (22) | 10 ± 9 | 59.1% | 0.3 ± 0.8 | 9.1% | 3.5 ± 3.2 | 59.1% | 5.7 ± 4.8 | 81.8% | 1.2 ± 1.5 | 50% | 1.3 ± 1.2 | 63.6% | 20 ± 14 | 81.8% | 63.6% |
Cognitive deficits (28) | 7.9 ± 10.5 | 39.3% | 0.8 ± 1.4 | 25% | 3.5 ± 3.2 | 60.7% | 6.5 ± 4.4 | 85.7% | 2.5 ± 2.3 | 78.6% | 1.2 ± 1.4 | 53.6% | 22.4 ± 15 | 92.9% | 64.2% |
Normal cognitive tests (22) | 8.2 ± 8 | 50% | 0.2 ± 0.7 | 4.5% | 3 ± 3.3 | 50% | 4.6 ± 4.7 | 72.7% | 1.2 ± 1.5 | 45.5% | 1.1 ± 1.2 | 54.5% | 17.1 ± 14 | 81.8% | 59% |
PD controls (18) | 8.4 ± 10 | 42.9% | 0.3 ± 0.9 | 14.3% | 4.7 ± 4.1 | 76.2% | 4.8 ± 3.5 | 85.7% | 2.2 ± 1.9 | 76.2% | 1.4 ± 1.2 | 71.4% | 20.2 ± 18 | 100% | 42% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonato, G.; Cimino, P.; Pistonesi, F.; Salviati, L.; Bertolin, C.; Carecchio, M. Non-Motor Symptoms in Primary Familial Brain Calcification. J. Clin. Med. 2024, 13, 3873. https://doi.org/10.3390/jcm13133873
Bonato G, Cimino P, Pistonesi F, Salviati L, Bertolin C, Carecchio M. Non-Motor Symptoms in Primary Familial Brain Calcification. Journal of Clinical Medicine. 2024; 13(13):3873. https://doi.org/10.3390/jcm13133873
Chicago/Turabian StyleBonato, Giulia, Paola Cimino, Francesca Pistonesi, Leonardo Salviati, Cinzia Bertolin, and Miryam Carecchio. 2024. "Non-Motor Symptoms in Primary Familial Brain Calcification" Journal of Clinical Medicine 13, no. 13: 3873. https://doi.org/10.3390/jcm13133873
APA StyleBonato, G., Cimino, P., Pistonesi, F., Salviati, L., Bertolin, C., & Carecchio, M. (2024). Non-Motor Symptoms in Primary Familial Brain Calcification. Journal of Clinical Medicine, 13(13), 3873. https://doi.org/10.3390/jcm13133873