CRP, Fibrinogen, White Blood Cells, and Blood Cell Indices as Prognostic Biomarkers of Future COPD Exacerbation Frequency: The TIE Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting and Participants
2.2. Data Collection
2.3. Variables
2.3.1. Outcome—Exacerbations
2.3.2. Exacerbation History
2.3.3. Smoking
2.3.4. Anthropometrics
2.3.5. Symptoms
2.3.6. Spirometry, Lung Function
2.3.7. Inhalational Drug Use
2.3.8. Comorbidities
2.3.9. Biomarkers of Systemic Inflammation
2.4. Statistical Analysis
3. Results
3.1. Bivariable Analyses
3.2. Multivariable Analyses
3.3. Interactions and Stratified Analyses
3.4. Sensitivity Analyses
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Details on Laboratory Equipment
References
- Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease Report. 2023. Available online: https://goldcopd.org/2023-gold-report-2/ (accessed on 4 May 2024).
- Miravitlles, M.; Ferrer, M.; Pont, À.; Zalacain, R.; Alvarez-Sala, J.L.; Masa, F.; Verea, H.; Murio, C.; Ros, F.; Vidal, R.; et al. Effect of exacerbations on quality of life in patients with chronic obstructive pulmonary disease: A 2 year follow up study. Thorax 2004, 59, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Dransfield, M.T.; Kunisaki, K.M.; Strand, M.J.; Anzueto, A.; Bhatt, S.P.; Bowler, R.P.; Criner, G.J.; Curtis, J.L.; Hanania, N.A.; Nath, H.; et al. Acute Exacerbations and Lung Function Loss in Smokers with and without Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2017, 195, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Soler-Cataluña, J.J.; Martínez-García, M.Á.; Roman Sánchez, P.; Salcedo, E.; Navarro, M.; Ochando, R. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax 2005, 60, 925–931. [Google Scholar] [CrossRef]
- Bouhuis, D.; Giezeman, M.; Hasselgren, M.; Janson, C.; Kisiel, M.A.; Lisspers, K.; Montgomery, S.; Nager, A.; Sandelowsky, H.; Ställberg, B.; et al. Factors Associated with the Non-Exacerbator Phenotype of Chronic Obstructive Pulmonary Disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2023, 18, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Hurst, J.R.; Vestbo, J.; Anzueto, A.; Locantore, N.; Müllerova, H.; Tal-Singer, R.; Miller, B.; Lomas, D.A.; Agustí, A.; Macnee, W.; et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N. Engl. J. Med. 2010, 363, 1128–1138. [Google Scholar] [CrossRef] [PubMed]
- Hurst, J.R.; Han, M.K.; Singh, B.; Sharma, S.; Kaur, G.; De Nigris, E.; Holmgren, U.; Siddiqui, M.K. Prognostic risk factors for moderate-to-severe exacerbations in patients with chronic obstructive pulmonary disease: A systematic literature review. Respir. Res. 2022, 23, 213. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2016, 138, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Celli, B.R.; Fabbri, L.M.; Aaron, S.D.; Agustí, A.; Brook, R.; Criner, G.J.; Franssen, F.M.E.; Humbert, M.; Hurst, J.R.; O’Donnell, D.; et al. An Updated Definition and Severity Classification of Chronic Obstructive Pulmonary Disease Exacerbations: The Rome Proposal. Am. J. Respir. Crit. Care Med. 2021, 204, 1251–1258. [Google Scholar] [CrossRef]
- Agustí, A.; Edwards, L.D.; Rennard, S.I.; MacNee, W.; Tal-Singer, R.; Miller, B.E.; Vestbo, J.; Lomas, D.A.; Calverley, P.M.; Wouters, E.; et al. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: A novel phenotype. PLoS ONE 2012, 7, e37483. [Google Scholar] [CrossRef]
- Thomsen, M.; Ingebrigtsen, T.S.; Marott, J.L.; Dahl, M.; Lange, P.; Vestbo, J.; Nordestgaard, B.G. Inflammatory biomarkers and exacerbations in chronic obstructive pulmonary disease. JAMA 2013, 309, 2353–2361. [Google Scholar] [CrossRef]
- Mannino, D.M.; Tal-Singer, R.; Lomas, D.A.; Vestbo, J.; Graham Barr, R.; Tetzlaff, K.; Lowings, M.; Rennard, S.I.; Snyder, J.; Goldman, M.; et al. Plasma Fibrinogen as a Biomarker for Mortality and Hospitalized Exacerbations in People with COPD. Chronic Obstr. Pulm. Dis. 2015, 2, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Pascual-González, Y.; López-Sánchez, M.; Dorca, J.; Santos, S. Defining the role of neutrophil-to-lymphocyte ratio in COPD: A systematic literature review. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 3651–3662. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ge, H.; Feng, X.; Hang, J.; Zhang, F.; Jin, X.; Bao, H.; Zhou, M.; Han, F.; Li, S.; et al. The Combination of Hemogram Indexes to Predict Exacerbation in Stable Chronic Obstructive Pulmonary Disease. Front. Med. 2020, 7, 572435. [Google Scholar] [CrossRef] [PubMed]
- Hosseninia, S.; Ghobadi, H.; Garjani, K.; Hosseini, S.A.H.; Aslani, M.R. Aggregate index of systemic inflammation (AISI) in admission as a reliable predictor of mortality in COPD patients with COVID-19. BMC Pulm. Med. 2023, 23, 107. [Google Scholar] [CrossRef]
- Ellingsen, J.; Janson, C.; Bröms, K.; Lisspers, K.; Ställberg, B.; Högman, M.; Malinovschi, A. Neutrophil-to-lymphocyte ratio, blood eosinophils and COPD exacerbations: A cohort study. ERJ Open Res. 2021, 7, 00471–02021. [Google Scholar] [CrossRef] [PubMed]
- Högman, M.; Sulku, J.; Ställberg, B.; Janson, C.; Bröms, K.; Hedenström, H.; Lisspers, K.; Malinovschi, A. 2017 Global Initiative for Chronic Obstructive Lung Disease reclassifies half of COPD subjects to lower risk group. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Burge, S.; Wedzicha, J.A. COPD exacerbations: Definitions and classifications. Eur. Respir. J. 2003, 21, 46S–53S. [Google Scholar] [CrossRef] [PubMed]
- Wageck, B.; Cox, N.S.; Holland, A.E. Recovery Following Acute Exacerbations of Chronic Obstructive Pulmonary Disease—A Review. COPD 2019, 16, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.W.; Harding, G.; Berry, P.; Wiklund, I.; Chen, W.-H.; Kline Leidy, N. Development and first validation of the COPD Assessment Test. Eur. Respir. J. 2009, 34, 648–654. [Google Scholar] [CrossRef]
- Hedenström, H.; Malmberg, P.; Agarwal, K. Reference values for lung function tests in females. Regression equations with smoking variables. Bull. Eur. Physiopathol. Respir. 1985, 21, 551–557. [Google Scholar]
- Hedenström, H.; Malmberg, P.; Fridriksson, H.V. Reference values for lung function tests in men: Regression equations with smoking variables. Ups. J. Med. Sci. 1986, 91, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Semenzato, U.; Biondini, D.; Bazzan, E.; Tiné, M.; Balestro, E.; Buldini, B.; Carizzo, S.J.; Cubero, P.; Marin-Oto, M.; Casara, A.; et al. Low-Blood Lymphocyte Number and Lymphocyte Decline as Key Factors in COPD Outcomes: A Longitudinal Cohort Study. Respiration 2021, 100, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Gartlehner, G.; Hansen, R.A.; Carson, S.S.; Lohr, K.N. Efficacy and safety of inhaled corticosteroids in patients with COPD: A systematic review and meta-analysis of health outcomes. Ann. Fam. Med. 2006, 4, 253–262. [Google Scholar] [CrossRef]
- Long, S.J.; Freese, J. Regression Models for Categorical Dependent Variables Using Stata; 3rd ed.; Stata Press: College Station, TX, USA, 2014. [Google Scholar]
- Husebø, G.R.; Bakke, P.S.; Aanerud, M.; Hardie, J.A.; Ueland, T.; Grønseth, R.; Persson, L.J.; Aukrust, P.; Eagan, T.M. Predictors of exacerbations in chronic obstructive pulmonary disease—Results from the Bergen COPD cohort study. PLoS ONE 2014, 9, e109721. [Google Scholar] [CrossRef] [PubMed]
- Keene, J.D.; Jacobson, S.; Kechris, K.; Kinney, G.L.; Foreman, M.G.; Doerschuk, C.M.; Make, B.J.; Curtis, J.L.; Rennard, S.I.; Barr, R.G.; et al. Biomarkers Predictive of Exacerbations in the SPIROMICS and COPDGene Cohorts. Am. J. Respir. Crit. Care Med. 2017, 195, 473–481. [Google Scholar] [CrossRef]
- Dahl, M.; Vestbo, J.; Lange, P.; Bojesen, S.E.; Tybjærg-Hansen, A.; Nordestgaard, B.G. C-reactive Protein As a Predictor of Prognosis in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2007, 175, 250–255. [Google Scholar] [CrossRef]
- Dahl, M.; Vestbo, J.; Zacho, J.; Lange, P.; Tybjærg-Hansen, A.; Nordestgaard, B.G. C reactive protein and chronic obstructive pulmonary disease: A Mendelian randomisation approach. Thorax 2011, 66, 197–204. [Google Scholar] [CrossRef]
- Celli, B.R.; Anderson, J.A.; Brook, R.; Calverley, P.; Cowans, N.J.; Crim, C.; Dixon, I.; Kim, V.; Martinez, F.J.; Morris, A.; et al. Serum biomarkers and outcomes in patients with moderate COPD: A substudy of the randomised SUMMIT trial. BMJ Open Respir. Res. 2019, 6, e000431. [Google Scholar] [CrossRef] [PubMed]
- Fermont, J.M.; Masconi, K.L.; Jensen, M.T.; Ferrari, R.; Di Lorenzo, V.A.P.; Marott, J.M.; Schuetz, P.; Watz, H.; Waschki, B.; Müllerova, H.; et al. Biomarkers and clinical outcomes in COPD: A systematic review and meta-analysis. Thorax 2019, 74, 439–446. [Google Scholar] [CrossRef]
- Kim, T.H.; Oh, D.K.; Oh, Y.-M.; Lee, S.W.; Lee, S.D.; Lee, J.S. Fibrinogen as a potential biomarker for clinical phenotype in patients with chronic obstructive pulmonary disease. J. Thorac. Dis. 2018, 10, 5260–5268. [Google Scholar] [CrossRef]
- Singh, D.; Criner, G.J.; Dransfield, M.T.; Halpin, D.M.G.; Han, M.K.; Lange, P.; Lettis, S.; Lipson, D.A.; Mannino, D.; Martin, N.; et al. InforMing the PAthway of COPD Treatment (IMPACT) trial: Fibrinogen levels predict risk of moderate or severe exacerbations. Respir. Res. 2021, 22, 130. [Google Scholar] [CrossRef] [PubMed]
- Engström, G.; Segelstorm, N.; Ekberg-Aronsson, M.; Nilsson, P.M.; Lindgärde, F.; Löfdahl, C.-G. Plasma markers of inflammation and incidence of hospitalisations for COPD: Results from a population-based cohort study. Thorax 2009, 64, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Groenewegen, K.H.; Postma, D.S.; Hop, W.C.; Wielders, P.L.; Schlosser, N.J.; Wouters, E.F.; Group, C.S. Increased systemic inflammation is a risk factor for COPD exacerbations. Chest 2008, 133, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Müllerova, H.; Maselli, D.J.; Locantore, N.; Vestbo, J.; Hurst, J.R.; Wedzicha, J.A.; Bakke, P.; Agusti, A.; Anzueto, A. Hospitalized Exacerbations of COPD: Risk Factors and Outcomes in the ECLIPSE Cohort. Chest 2015, 147, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Yoon, E.C.; Koo, S.-M.; Park, H.Y.; Kim, H.C.; Kim, W.J.; Kim, K.U.; Jung, K.-S.; Yoo, K.H.; Yoon, H.K.; Yoon, H.-Y. Predictive Role of White Blood Cell Differential Count for the Development of Acute Exacerbation in Korean Chronic Obstructive Pulmonary Disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2024, 19, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, A.; Paliogiannis, P.; Sotgiu, E.; Mellino, S.; Fois, A.G.; Carru, C.; Mangoni, A.A. Platelet Count and Platelet Indices in Patients with Stable and Acute Exacerbation of Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. COPD 2021, 18, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Benz, E.; Wijnant, S.R.A.; Trajanoska, K.; Arinze, J.T.; de Roos, E.W.; de Ridder, M.; Williams, R.; van Rooij, F.; Verhamme, K.M.C.; Ikram, M.A.; et al. Sarcopenia, systemic immune-inflammation index and all-cause mortality in middle-aged and older people with COPD and asthma: A population-based study. ERJ Open Res. 2022, 8, 00628-02021. [Google Scholar] [CrossRef]
- Zemans, R.L.; Jacobson, S.; Keene, J.; Kechris, K.; Miller, B.E.; Tal-Singer, R.; Bowler, R.P. Multiple biomarkers predict disease severity, progression and mortality in COPD. Respir. Res. 2017, 18, 117. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Wang, Y.; Shen, N.; Wang, Q.; Chai, L.; Wang, J.; Zhang, Q.; Chen, Y.; Liu, J.; Li, D.; et al. Nomograms for Predicting Coexisting Cardiovascular Disease and Prognosis in Chronic Obstructive Pulmonary Disease: A Study Based on NHANES Data. Can. Respir. J. 2022, 2022, 5618376. [Google Scholar] [CrossRef]
- Adibi, A.; Sin, D.D.; Safari, A.; Johnson, K.M.; Aaron, S.D.; FitzGerald, J.M.; Sadatsafavi, M. The Acute COPD Exacerbation Prediction Tool (ACCEPT): A modelling study. Lancet Respir. Med. 2020, 8, 1013–1021. [Google Scholar] [CrossRef]
Total Cohort | ≥ 1 AECOPD the Year before Baseline | ||
---|---|---|---|
n = 571 | No, n = 405 (71%) | Yes, n = 166 (29%) | |
Age | 69 ± 8 | 69 ± 8 | 69 ± 7 |
Female sex | 334 (58%) | 226 (56%) | 108 (65%) |
Smoking history | |||
Current smoker | 166 (29%) | 115 (29%) | 51 (31%) |
Ex-smoker | 394 (69%) | 283 (70%) | 111 (67%) |
Never-smoker | 9 (2%) | 5 (1%) | 4 (2%) |
BMI, kg/m2 | 26 (23–30) | 27 (23–30) | 26 (23–30) |
CAT score | 13 ± 7 | 12 ± 7 | 15 ± 9 |
CAT ≥ 10 | 354 (62%) | 238 (59%) | 116 (70%) |
mMRC score | 1 (1–3) | 1 (1–2) | 2 (1–3) |
mMRC ≥ 2 | 253 (44%) | 152 (38%) | 101 (61%) |
FEV1, % † | 57 ± 18 | 59 ± 17 | 50 ± 18 |
GOLD grade | |||
1 (FEV1 ≥ 80% †) | 57 (10%) | 48 (12%) | 9 (5%) |
2 (50% † ≤ FEV1 < 80% †) | 314 (55%) | 234 (58%) | 80 (48%) |
3 (30% † ≤ FEV1 < 50% †) | 155 (27%) | 103 (25%) | 52 (31%) |
4 (FEV1 < 30% †) | 45 (8%) | 20 (5%) | 25 (15%) |
ICS, current use | 388 (70%) | 244 (62%) | 144 (89%) |
LABA, current use | 364 (65%) | 229 (57%) | 135 (83%) |
LAMA, current use | 402 (71%) | 265 (66%) | 137 (84%) |
Asthma | 190 (34%) | 124 (31%) | 66 (40%) |
Heart failure | 29 (5%) | 14 (3%) | 15 (9%) |
CRP, mg/L | 2.5 (1.2–4.9) | 2.4 (1.2–4.7) | 2.8 (1.1–5.8) |
CRP ≥ 5 mg/L | 136 (24%) | 87 (22%) | 49 (30%) |
Fibrinogen, g/L | 3.6 (3.1–4.0) | 3.5 (3.0–3.9) | 3.7 (3.3–4.3) |
Fibrinogen ≥ 3.5 g/L | 301 (55%) | 197 (52%) | 104 (63%) |
WBC, ×109 cells/L | 7.6 (6.5–9.0) | 7.4 (6.4–8.7) | 8.3 (7.1–9.5) |
WBC > 9 ×109 cells/L | 137 (24%) | 83 (21%) | 54 (33%) |
Platelets, ×109 cells/L | 267 ± 69 | 265 ± 66 | 274 ± 74 |
Platelets > 350 × 109 cells/L | 60 (11%) | 36 (9%) | 24 (15%) |
Neutrophils, ×109 cells/L | 4.7 (3.7–5.7) | 4.5 (3.5–5.4) | 5.2 (4.1–6.3) |
Neutrophils > 5.4 × 109 cells/L | 167 (30%) | 98 (25%) | 69 (42%) |
Lymphocytes, ×109 cells/L | 2.0 (1.6–2.4) | 2.0 (1.6–2.5) | 2.0 (1.5–2.4) |
Lymphocytes ≥ 1.8 × 109 cells/L | 359 (64%) | 257 (65%) | 102 (62%) |
Monocytes, ×109 cells/L | 0.6 (0.5–0.7) | 0.6 (0.5–0.7) | 0.6 (0.5–0.8) |
Monocytes > 0.8 ×109 cells/L | 85 (15%) | 53 (13%) | 32 (20%) |
PLR | 131 (103–169) | 129 (103–168) | 138 (108–172) |
PLR ≥ 169.1 | 135 (25%) | 93 (24%) | 42 (26%) |
SII | 596 (420–856) | 559 (405–777) | 708 (485–974) |
SII ≥ 856 | 136 (25%) | 76 (20%) | 60 (38%) |
SIRI | 1.4 (1.0–2.0) | 1.3 (0.9–1.8) | 1.8 (1.2–2.3) |
SIRI ≥ 2.024 | 140 (25%) | 74 (19%) | 66 (40%) |
AISI | 362 (245–534) | 336 (220–479) | 472 (283–676) |
AISI ≥ 533.7 | 135 (25%) | 72 (19%) | 63 (39%) |
AECOPDs/Years | Total Cohort | ≥ 1 AECOPD the Year before Baseline | |
---|---|---|---|
n = 571 | No, n = 405 | Yes, n = 166 | |
None | 309 (54%) | 265 (65%) | 44 (27%) |
> 0, < 1 | 138 (24%) | 92 (23%) | 46 (28%) |
≥ 1, < 2 | 67 (12%) | 33 (8%) | 34 (20%) |
≥ 2 | 57 (10%) | 15 (4%) | 42 (25%) |
Biomarker | n | OR | 95% CI |
---|---|---|---|
CRP, per 1 mg/L | 565 | 1.02 | 0.99–1.04 |
CRP ≥ 5 mg/L | 565 | 1.86 | 1.29–2.67 |
Fibrinogen, per 1 g/L | 545 | 1.59 | 1.26–2.00 |
Fibrinogen ≥ 3.5 g/L | 545 | 2.01 | 1.45–2.79 |
WBC, per 1 ×109 cells/L | 568 | 1.16 | 1.08–1.24 |
WBC > 9 ×109 cells/L | 568 | 2.18 | 1.52–3.13 |
Platelets, per 100 ×109 cells/L | 547 | 1.36 | 1.07–1.71 |
Platelets > 350 ×109 cells/L | 547 | 1.42 | 0.86–2.37 |
Neutrophils, per 1 × 109 cells/L | 564 | 1.23 | 1.12–1.36 |
Neutrophils > 5.4 ×109 cells/L | 564 | 1.92 | 1.36–2.71 |
Lymphocytes, per 1 × 109 cells/L | 562 | 0.90 | 0.73–1.11 |
Lymphocytes ≥ 1.8 × 109 cells/L | 562 | 0.96 | 0.69–1.33 |
Monocytes, per 0.1 × 109 cells/L | 562 | 1.10 | 1.03–1.18 |
Monocytes > 0.8 × 109 cells/L | 562 | 1.81 | 1.17–2.81 |
PLR, per 100 units | 541 | 1.32 | 1.02–1.71 |
PLR ≥ 169.1 | 541 | 1.20 | 0.83–1.73 |
SII, per 100 units | 541 | 1.08 | 1.04–1.12 |
SII ≥ 856 | 541 | 1.52 | 1.05–2.19 |
SIRI, per 1 unit | 562 | 1.28 | 1.12–1.47 |
SIRI ≥ 2.024 | 562 | 1.76 | 1.23–2.52 |
AISI, per 100 units | 541 | 1.09 | 1.04–1.14 |
AISI ≥ 533.7 | 541 | 2.03 | 1.40–2.92 |
Biomarker | n | aOR | 95% CI |
---|---|---|---|
CRP, per 1 mg/L | 548 | 1.00 | 0.97–1.03 |
CRP ≥ 5 mg/L | 548 | 1.64 | 1.08–2.49 |
Fibrinogen, per 1 g/L | 528 | 1.13 | 0.87–1.47 |
Fibrinogen ≥ 3.5 g/L | 528 | 1.55 | 1.07–2.24 |
WBC, per 1 × 109 cells/L | 551 | 1.07 | 0.99–1.15 |
WBC > 9 × 109 cells/L | 551 | 1.65 | 1.10–2.47 |
Platelets, per 100 × 109 cells/L | 530 | 1.26 | 0.97–1.64 |
Platelets > 350 × 109 cells/L | 530 | 1.17 | 0.67–2.03 |
Neutrophils, per 1 × 109 cells/L | 547 | 1.03 | 0.92–1.15 |
Neutrophils > 5.4 × 109 cells/L | 547 | 1.17 | 0.79–1.72 |
Lymphocytes, per 1 × 109 cells/L | 545 | 1.00 | 0.78–1.26 |
Lymphocytes ≥ 1.8 × 109 cells/L | 545 | 1.15 | 0.80–1.67 |
Monocytes, per 0.1 × 109 cells/L | 545 | 1.03 | 0.95–1.11 |
Monocytes > 0.8 × 109 cells/L | 545 | 1.59 | 0.99–2.56 |
PLR, per 100 units | 524 | 1.10 | 0.82–1.46 |
PLR ≥ 169.1 | 524 | 0.88 | 0.58–1.33 |
SII, per 100 units | 524 | 1.03 | 0.99–1.07 |
SII ≥ 856 | 524 | 0.81 | 0.53–1.23 |
SIRI | 545 | 1.05 | 0.90–1.22 |
SIRI ≥ 2.024 | 545 | 0.80 | 0.53–1.21 |
AISI, per 100 units | 524 | 1.03 | 0.99–1.07 |
AISI ≥ 533 | 524 | 1.01 | 0.66–1.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ellingsen, J.; Janson, C.; Bröms, K.; Hårdstedt, M.; Högman, M.; Lisspers, K.; Palm, A.; Ställberg, B.; Malinovschi, A. CRP, Fibrinogen, White Blood Cells, and Blood Cell Indices as Prognostic Biomarkers of Future COPD Exacerbation Frequency: The TIE Cohort Study. J. Clin. Med. 2024, 13, 3855. https://doi.org/10.3390/jcm13133855
Ellingsen J, Janson C, Bröms K, Hårdstedt M, Högman M, Lisspers K, Palm A, Ställberg B, Malinovschi A. CRP, Fibrinogen, White Blood Cells, and Blood Cell Indices as Prognostic Biomarkers of Future COPD Exacerbation Frequency: The TIE Cohort Study. Journal of Clinical Medicine. 2024; 13(13):3855. https://doi.org/10.3390/jcm13133855
Chicago/Turabian StyleEllingsen, Jens, Christer Janson, Kristina Bröms, Maria Hårdstedt, Marieann Högman, Karin Lisspers, Andreas Palm, Björn Ställberg, and Andrei Malinovschi. 2024. "CRP, Fibrinogen, White Blood Cells, and Blood Cell Indices as Prognostic Biomarkers of Future COPD Exacerbation Frequency: The TIE Cohort Study" Journal of Clinical Medicine 13, no. 13: 3855. https://doi.org/10.3390/jcm13133855
APA StyleEllingsen, J., Janson, C., Bröms, K., Hårdstedt, M., Högman, M., Lisspers, K., Palm, A., Ställberg, B., & Malinovschi, A. (2024). CRP, Fibrinogen, White Blood Cells, and Blood Cell Indices as Prognostic Biomarkers of Future COPD Exacerbation Frequency: The TIE Cohort Study. Journal of Clinical Medicine, 13(13), 3855. https://doi.org/10.3390/jcm13133855