Do Decision Support Tools Decrease the Prevalence of Hospital-Acquired Venous Thromboembolisms When Compared to Clinical Judgement? A Single-Center Pre–Post Study
Abstract
:1. Introduction
2. Methods
- Patient cohort
- DST design
- Outcomes evaluated
- Data collection
- Survey
- Statistical analysis
- p > 0.05: statistically insignificant;
- p < 0.05: statistically significant.
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Question | Answers |
How satisfied are you with the new DST? |
|
How has the DST changed your workflow? |
|
Has it changed your prescription patterns? |
|
Do you think it reduced the overall incidence of VTE events? |
|
Do you think it reduces overall VTE associated outcomes? |
|
Which system do you prefer? |
|
DST: decision support tools; VTE: venous thromboembolisms. |
References
- Assareh, H.; Chen, J.; Ou, L.; Hillman, K.; Flabouris, A. Incidences and variations of hospital acquired venous thromboembolism in Australian hospitals: A population-based study. BMC Health Serv. Res. 2016, 16, 511. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, M.; Chan, N.; Bhagirath, V.; Ginsberg, J. Prevention of Venous Thromboembolism in 2020 and Beyond. J. Clin. Med. 2020, 9, 2467. [Google Scholar] [CrossRef] [PubMed]
- Neeman, E.; Liu, V.; Mishra, P.; Thai, K.K.; Xu, J.; Clancy, H.A.; Schlessinger, D.; Liu, R. Trends and Risk Factors for Venous Thromboembolism among Hospitalized Medical Patients. JAMA Netw. Open 2022, 5, e2240373. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.; Deitelzweig, S.; Bucior, I.; Lin, J.; Lingohr-Smith, M.; Menges, B.; Neuman, W.R. Frequency of hospital readmissions for venous thromboembolism and associated hospital costs and length of stay among acute medically ill patients in the US. J. Med. Econ. 2019, 22, 1119–1125. [Google Scholar] [CrossRef] [PubMed]
- Mahan, C.E.; Borrego, M.E.; Woersching, A.L.; Federici, R.; Downey, R.; Tiongson, J.; Bieniarz, M.C.; Cavanaugh, B.J.; Spyropoulos, A.C. Venous thromboembolism: Annualised United States models for total, hospital-acquired and preventable costs utilising long-term attack rates. Thromb. Haemost. 2012, 108, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Barco, S.; Woersching, A.L.; Spyropoulos, A.C.; Piovella, F.; Mahan, C.E. European Union-28: An annualised cost-of-illness model for venous thromboembolism. Thromb. Haemost. 2016, 115, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, R.; Sukul, D.; Nuliyalu, U.; Gulseren, B.; A Engler, T.; Arntson, E.; Zlotnick, H.; Dimick, J.B.; Ryan, A.M. Changes in hospital safety following penalties in the US Hospital Acquired Condition Reduction Program: Retrospective cohort study. BMJ 2019, 366, l4109. [Google Scholar] [CrossRef] [PubMed]
- Haut, E.R.; Lau, B.D.; Kraus, P.S.; Hobson, D.B.; Maheshwari, B.; Pronovost, P.J.; Streiff, M.B. Preventability of Hospital-Acquired Venous Thromboembolism. JAMA Surg. 2015, 150, 912–915. [Google Scholar] [CrossRef]
- Raskob, G.E.; Spyropoulos, A.C.; Zrubek, J.; Ageno, W.; Albers, G.; Elliott, C.G.; Halperin, J.; Haskell, L.; Hiatt, W.R.; Maynard, G.A.; et al. The MARINER trial of rivaroxaban after hospital discharge for medical patients at high risk of VTE. Thromb. Haemost. 2016, 115, 1240–1248. [Google Scholar] [CrossRef]
- Henke, P.K.; Kahn, S.R.; Pannucci, C.J.; Secemksy, E.A.; Evans, N.S.; Khorana, A.A.; Creager, M.A.; Pradhan, A.D.; On behalf of the American Heart Association Advocacy Coordinating Committee. Call to Action to Prevent Venous Thromboembolism in Hospitalized Patients: A Policy Statement From the American Heart Association. Circulation 2020, 141, e914–e931. [Google Scholar] [CrossRef]
- Pandor, A.; Tonkins, M.; Goodacre, S.; Sworn, K.; Clowes, M.; Griffin, X.L.; Holland, M.; Hunt, B.J.; de Wit, K.; Horner, D. Risk assessment models for venous thromboembolism in hospitalised adult patients: A systematic review. BMJ Open 2021, 11, e045672. [Google Scholar] [CrossRef]
- Gibson, C.M.; Spyropoulos, A.C.; Cohen, A.T.; Hull, R.D.; Goldhaber, S.Z.; Yusen, R.D.; Hernandez, A.F.; Korjian, S.; Daaboul, Y.; Gold, A.; et al. The IMPROVEDD VTE Risk Score: Incorporation of D-Dimer into the IMPROVE Score to Improve Venous Thromboembolism Risk Stratification. TH Open 2017, 1, e56–e65. [Google Scholar] [CrossRef] [PubMed]
- Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An overview of clinical decision support systems: Benefits, risks, and strategies for success. NPJ Digit. Med. 2020, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Skeik, N.; Westergard, E. Recommendations for VTE Prophylaxis in Medically Ill Patients. Ann. Vasc. Dis. 2020, 13, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Smythe, M.A.; Koerber, J.M.; Roberts, A.; Hoffman, J.L.; Batke, J. Hospital Acquired Venous Thromboembolism: A Preventability Assessment. Hosp. Pharm. 2023, 59, 183–187. [Google Scholar] [CrossRef]
- Wilson, S.; Chen, X.; Cronin, M.; Dengler, N.; Enker, P.; Krauss, E.S.; Laberko, L.; Lobastov, K.; Obi, A.T.; Powell, C.A.; et al. Thrombosis prophylaxis in surgical patients using the Caprini Risk Score. Curr. Probl. Surg. 2022, 59, 101221. [Google Scholar] [CrossRef]
- Rowswell, H.R.; Nokes, T.J.C. Significant reduction in hospital-acquired thrombosis: Impact of national risk assessment and real-time feedback. Open Heart 2017, 4, e000653. [Google Scholar] [CrossRef]
- George, B.; Gonzales, S.; Patel, K.; Petit, S.; Franck, A.J.; Franck, J.B. Impact of a Clinical Decision-Support Tool on Venous Thromboembolism Prophylaxis in Acutely Ill Medical Patients. J. Pharm. Technol. 2020, 36, 141–147. [Google Scholar] [CrossRef]
- Moss, S.R.; Martinez, K.A.; Nathan, C.; Pfoh, E.R.; Rothberg, M.B. Physicians’ Views on Utilization of an Electronic Health Record–Embedded Calculator to Assess Risk for Venous Thromboembolism among Medical Inpatients: A Qualitative Study. TH Open 2022, 6, e33–e39. [Google Scholar] [CrossRef]
- Al-Tawfiq, J.; Saadeh, B.M. Improving adherence to venous thromoembolism prophylaxis using multiple interventions. Ann. Thorac. Med. 2011, 6, 82–84. [Google Scholar] [CrossRef]
- Nana, M.; Shute, C.; Williams, R.; Kokwaro, F.; Riddick, K.; Lane, H. Multidisciplinary, patient-centred approach to improving compliance with venous thromboembolism (VTE) prophylaxis in a district general hospital. BMJ Open Qual. 2020, 9, e000680. [Google Scholar] [CrossRef] [PubMed]
- Lam, B.D.; Dodge, L.E.; Datta, S.; Rosovsky, R.P.; Robertson, W.; Lake, L.; Reyes, N.; Adamski, A.; Abe, K.; Panoff, S.; et al. Venous thromboembolism prophylaxis for hospitalized adult patients: A survey of US health care providers on attitudes and practices. Res. Pr. Thromb. Haemost. 2023, 7, 102168. [Google Scholar] [CrossRef] [PubMed]
- Wells, C.; Loshak, H. Standardized Hospital Order Sets in Acute Care: A Review of Clinical Evidence, Cost-Effectiveness, and Guidelines. CADTH Rapid Response Report: Summary with Critical Appraisal. 25 July 2019. pp. 1–8. Available online: https://www.ncbi.nlm.nih.gov/books/NBK546326/ (accessed on 11 May 2024).
- O’Connor, C.; Adhikari, N.K.; DeCaire, K.; Friedrich, J.O. Medical admission order sets to improve deep vein thrombosis prophylaxis rates and other outcomes. J. Hosp. Med. 2009, 4, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Akl, E.A.; Crowther, M.; Gutterman, D.D.; Schuünemann, H.J.; American College of Chest Physicians Antithrombotic Therapy and Prevention of Thrombosis Panel. Executive summary: Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012, 141, 7S–47S. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M.; Strobe Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. PLoS Med. 2007, 4, e297. [Google Scholar] [CrossRef] [PubMed]
- Obi, A.T.; Pannucci, C.J.; Nackashi, A.; Abdullah, N.; Alvarez, R.; Bahl, V.; Wakefield, T.W.; Henke, P.K. Validation of the Caprini Venous Thromboembolism Risk Assessment Model in Critically Ill Surgical Patients. JAMA Surg. 2015, 150, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Barbar, S.; Noventa, F.; Rossetto, V.; Ferrari, A.; Brandolin, B.; Perlati, M.; DE Bon, E.; Tormene, D.; Pagnan, A.; Prandoni, P. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: The Padua Prediction Score. J. Thromb. Haemost. 2010, 8, 2450–2457. [Google Scholar] [CrossRef] [PubMed]
- Schünemann, H.J.; Cushman, M.; Burnett, A.E.; Kahn, S.R.; Beyer-Westendorf, J.; Spencer, F.A.; Rezende, S.M.; Zakai, N.A.; Bauer, K.A.; Dentali, F.; et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: Prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv. 2018, 2, 3198–3225. [Google Scholar] [CrossRef] [PubMed]
- Tsaftaridis, N.; Goldin, M.; Spyropoulos, A.C. System-Wide Thromboprophylaxis Interventions for Hospitalized Patients at Risk of Venous Thromboembolism: Focus on Cross-Platform Clinical Decision Support. J. Clin. Med. 2024, 13, 2133. [Google Scholar] [CrossRef]
- Baugh, C.W.; Cash, R.E.; Meguerdichian, D.; Dunham, L.; Stump, T.; Stevens, R.; Reust, A.; White, B.; Dutta, S. An Electronic Medical Record Intervention to Increase Pharmacologic Prophylaxis for Venous Thromboembolism in Emergency Department Observation Patients. Ann. Emerg. Med. 2023, 83, 24–34. [Google Scholar] [CrossRef]
- Mitchell, J.D.; Collen, J.F.; Petteys, S.; Holley, A.B. A simple reminder system improves venous thromboembolism prophylaxis rates and reduces thrombotic events for hospitalized patients. J. Thromb. Haemost. 2011, 10, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Gallier, S.; Topham, A.; Nightingale, P.; Garrick, M.; Woolhouse, I.; Berry, M.A.; Pankhurst, T.; Sapey, E.; Ball, S. Electronic prescribing systems as tools to improve patient care: A learning health systems approach to increase guideline concordant prescribing for venous thromboembolism prevention. BMC Med. Inform. Decis. Mak. 2022, 22, 121. [Google Scholar] [CrossRef] [PubMed]
- Spyropoulos, A.C.; Goldin, M.; Koulas, I.; Solomon, J.; Qiu, M.; Ngu, S.; Smith, K.; Leung, T.; Ochani, K.; Malik, F.; et al. Universal EHRs Clinical Decision Support for Thromboprophylaxis in Medical In-patients: A Cluster Randomized Trial. JACC Adv. 2023, 2, 100597. [Google Scholar] [CrossRef] [PubMed]
- Richie, C.D.; Castle, J.T.; Davis, G.A.; Bobadilla, J.L.; He, Q.; Moore, M.B.; Kellenbarger, T.A.; Xenos, E.S. Modes of Failure in Venous Thromboembolism Prophylaxis. Angiology 2022, 73, 712–715. [Google Scholar] [CrossRef] [PubMed]
- Koren, O.; Hourri, A.; Elias, M.; Saliba, W.; Goldstein, L. Failure to Validate Padua Score’s Ability to Predict the Risk of Venous Thromboembolism in Medical Patients. Clin. Ther. 2017, 39, e59. [Google Scholar] [CrossRef]
- Drozdinsky, G.; Zusman, O.; Kushnir, S.; Leibovici, L.; Gafter-Gvili, A. The effect of obligatory Padua prediction scoring in hospitalized medically ill patients: A retrospective cohort study. PLoS ONE 2024, 19, e0292661. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, Y.; Jiao, X.; Liu, J.; Wang, W.; Kuang, T.; Gong, J.; Li, J.; Yang, Y. Padua prediction score may be inappropriate for VTE risk assessment in hospitalized patients with acute respiratory conditions: A Chinese single-center cohort study. IJC Hear. Vasc. 2023, 49, 101301. [Google Scholar] [CrossRef] [PubMed]
- Mehta, Y.M.; Bhave, A.M. A review of venous thromboembolism risk assessment models for different patient populations: What we know and don’t! Medicine 2023, 102, e32398. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.S.; Lloyd, J.F.; Aston, V.T.; Woller, S.C.; Tripp, J.S.; Elliott, C.G.; Stevens, S.M. Computer surveillance of patients at high risk for and with venous thromboembolism. In AMIA Annual Symposium Proceedings; American Medical Informatics Association: Bethesda, MD, USA, 2010; Volume 2010, pp. 217–221. [Google Scholar]
- Wang, Q.; Yuan, L.; Ding, X.; Zhou, Z. Prediction and Diagnosis of Venous Thromboembolism Using Artificial Intelligence Approaches: A Systematic Review and Meta-Analysis. Clin. Appl. Thromb. 2021, 27. [Google Scholar] [CrossRef]
- Lin, F.Y.; Dunning, A.M.; Narula, J.; Shaw, L.J.; Gransar, H.; Berman, D.S.; Min, J.K. Impact of an Automated Multimodality Point-of-Order Decision Support Tool on Rates of Appropriate Testing and Clinical Decision Making for Individuals With Suspected Coronary Artery Disease. J. Am. Coll. Cardiol. 2013, 62, 308–316. [Google Scholar] [CrossRef]
- Henshall, C.; Cipriani, A.; Ruvolo, D.; Macdonald, O.; Wolters, L.; Koychev, I. Implementing a digital clinical decision support tool for side effects of antipsychotics: A focus group study. Evid.-Based Ment. Health 2019, 22, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Weiner, S.J.; Schwartz, A.; Weaver, F.; Galanter, W.; Olender, S.; Kochendorfer, K.; Binns-Calvey, A.; Saini, R.; Iqbal, S.; Diaz, M.; et al. Effect of Electronic Health Record Clinical Decision Support on Contextualization of Care A Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e2238231. [Google Scholar] [CrossRef] [PubMed]
- Alexiuk, M.; Elgubtan, H.; Tangri, N. Clinical Decision Support Tools in the Electronic Medical Record. Kidney Int. Rep. 2024, 9, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Abboud, J.; Rahman, A.A.; Kahale, L.; Dempster, M.; Adair, P. Prevention of health care associated venous thromboembolism through implementing VTE prevention clinical practice guidelines in hospitalized medical patients: A systematic review and meta-analysis. Implement. Sci. 2020, 15, 49. [Google Scholar] [CrossRef] [PubMed]
- Elias, P.; Peterson, E.; Wachter, B.; Ward, C.; Poon, E.; Navar, A.M. Evaluating the Impact of Interruptive Alerts within a Health System: Use, Response Time, and Cumulative Time Burden. Appl. Clin. Inform. 2019, 10, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Khairat, S.; Marc, D.; Crosby, W.; Al Sanousi, A. Reasons For Physicians Not Adopting Clinical Decision Support Systems: Critical Analysis. JMIR Public Health Surveill. 2018, 6, e24–e34. [Google Scholar] [CrossRef] [PubMed]
- A Harle, C.; Apathy, N.C.; Cook, R.L.; Danielson, E.C.; DiIulio, J.; Downs, S.M.; Hurley, R.W.; Mamlin, B.W.; Militello, L.G.; Anders, S. Information Needs and Requirements for Decision Support in Primary Care: An Analysis of Chronic Pain Care. In AMIA Annual Symposium Proceedings; American Medical Informatics Association: Bethesda, MD, USA, 2018; Volume 2018, pp. 527–534. [Google Scholar]
- Grosse, S.D.; Nelson, R.E.; Nyarko, K.A.; Richardson, L.C.; Raskob, G.E. The economic burden of incident venous thromboembolism in the United States: A review of estimated attributable healthcare costs. Thromb. Res. 2015, 137, 3–10. [Google Scholar] [CrossRef]
- Fernandez, M.M.; Hogue, S.L.; Preblick, R.; Kwong, W.J. Review of the cost of venous thromboembolism. Clin. Outcomes Res. 2015, 7, 451–462. [Google Scholar] [CrossRef]
- Bui, M.H.; Le, Q.C.; Duong, D.H.; Nguyen, T.S.; Tran, B.G.; Duong, T.D.; Tran, T.H.; Nguyen, H.C.; Kieu, T.T.M.; Nguyen, H.H.; et al. Economic burden of venous thromboembolism in surgical patients: A propensity score analysis from the national claims database in Vietnam. PLoS ONE 2020, 15, e0231411. [Google Scholar] [CrossRef]
- Radhakrishnan, N. Anticoagulation in the prevention and treatment of venous thromboembolism. In Genesis, Pathophysiology and Management of Venous and Lymphatic Disorders; Academic Press: Cambridge, MA, USA, 2022; pp. 317–371. [Google Scholar] [CrossRef]
- Hamadi, H.; Borkar, S.R.M.; Moody, L.; Tafili, A.B.; Wilkes, J.S.B.; Franco, P.M.; McCaughey, D.P.; Spaulding, A. Hospital-Acquired Conditions Reduction Program, Patient Safety, and Magnet Designation in the United States. J. Patient Saf. 2020, 17, e1814–e1820. [Google Scholar] [CrossRef]
- Lau, B.D.; Streiff, M.B.; Pronovost, P.J.; Haut, E.R. Venous Thromboembolism Quality Measures Fail to Accurately Measure Quality. J. Am. Coll. Cardiol. 2018, 137, 1278–1284. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Li, Y.; Wu, M.; Ren, W.; Ji, C.; Miao, H.; Han, Y. Seasonal variation in the frequency of venous thromboembolism: An updated result of a meta-analysis and systemic review. Phlebol. J. Venous Dis. 2020, 35, 480–494. [Google Scholar] [CrossRef] [PubMed]
Month | Cases | Discharges | Incidence per 1000 Discharges |
---|---|---|---|
September 2022 | 24 | 3897 | 6.2 |
October 2022 | 29 | 3933 | 7.4 |
November 2022 | 16 | 3772 | 4.2 |
December 2022 | 17 | 4082 | 4.2 |
January 2023 | 13 | 4078 | 3.2 |
February 2023 | 15 | 3689 | 4.1 |
March 2023 | 19 | 4085 | 4.7 |
April 2023 | 8 | 3808 | 2.1 |
May 2023 | 13 | 3931 | 3.3 |
Implementation of decision support tool | |||
June 2023 | 19 | 4097 | 4.6 |
July 2023 | 19 | 4141 | 4.6 |
August 2023 | 17 | 4148 | 4.1 |
September 2023 | 14 | 3977 | 3.5 |
October 2023 | 20 | 4045 | 4.9 |
November 2023 | 17 | 3955 | 4.3 |
December 2023 | 13 | 4067 | 3.2 |
January 2024 | 31 | 4802 | 6.5 |
February 2024 | 18 | 4417 | 4.1 |
Month | All-Cause Median LOS (IQR) | HA-VTE Median LOS (IQR) |
---|---|---|
September 2022 | 4 (5) | 14 (10) |
October 2022 | 4 (5) | 14 (17) |
November 2022 | 4 (5) | 12 (9) |
December 2022 | 4 (4) | 18 (23) |
January 2023 | 4 (6) | 14 (23) |
February 2023 | 5 (5) | 17 (16) |
March 2023 | 4 (6) | 15 (12) |
April 2023 | 4 (4) | 12 (11) |
May 2023 | 4 (5) | 26 (20) |
Implementation of decision support tool | ||
June 2023 | 4 (4) | 13 (11) |
July 2023 | 4 (3) | 18 (26) |
August 2023 | 4 (5) | 16 (26) |
September 2023 | 4 (5) | 15 (17) |
October 2023 | 4 (4) | 14 (8) |
November 2023 | 4 (5) | 15 (25) |
December 2023 | 4 (5) | 15 (7) |
January 2024 | 4 (5) | 19 (25) |
February 2024 | 4 (4) | 18 (24) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulelah, M.; Haider, O.; McAuliffe, M.; Al-Faris, L.; Paadam, J.; Medarametla, V.; Kleppel, R.; Joshi, K. Do Decision Support Tools Decrease the Prevalence of Hospital-Acquired Venous Thromboembolisms When Compared to Clinical Judgement? A Single-Center Pre–Post Study. J. Clin. Med. 2024, 13, 3854. https://doi.org/10.3390/jcm13133854
Abdulelah M, Haider O, McAuliffe M, Al-Faris L, Paadam J, Medarametla V, Kleppel R, Joshi K. Do Decision Support Tools Decrease the Prevalence of Hospital-Acquired Venous Thromboembolisms When Compared to Clinical Judgement? A Single-Center Pre–Post Study. Journal of Clinical Medicine. 2024; 13(13):3854. https://doi.org/10.3390/jcm13133854
Chicago/Turabian StyleAbdulelah, Mohammad, Omar Haider, Matthew McAuliffe, Leen Al-Faris, Jasmine Paadam, Venkatrao Medarametla, Reva Kleppel, and Kirti Joshi. 2024. "Do Decision Support Tools Decrease the Prevalence of Hospital-Acquired Venous Thromboembolisms When Compared to Clinical Judgement? A Single-Center Pre–Post Study" Journal of Clinical Medicine 13, no. 13: 3854. https://doi.org/10.3390/jcm13133854
APA StyleAbdulelah, M., Haider, O., McAuliffe, M., Al-Faris, L., Paadam, J., Medarametla, V., Kleppel, R., & Joshi, K. (2024). Do Decision Support Tools Decrease the Prevalence of Hospital-Acquired Venous Thromboembolisms When Compared to Clinical Judgement? A Single-Center Pre–Post Study. Journal of Clinical Medicine, 13(13), 3854. https://doi.org/10.3390/jcm13133854