Surgical Outcomes of Adults with Spinal Caries from 1992 to 2019: A Single-Center Study-Risk Factors for the Progression of Kyphosis after Anterior Spinal Fixation Reveal Cases Needing Additional Posterior Instrumentation
Abstract
:1. Background
2. Subjects and Methods
2.1. Indication for Surgery
2.2. Selection of Surgical Method and Surgical Procedure
2.3. Survey Items
2.4. Analysis Contents
- Mean and standard deviation and number of the above items in all cases
- Number of improvements in paraplegia
- Comparison of two groups of Group A and Group B for the above items
- Comparison of two groups of Group A + B and Group C for the above items
- Comparison of bone fusion rate or remaining rate of postoperative osteosclerosis area among the three groups of Group A, Group B, and Group C
- Factors influencing kyphosis progression after ASF in Group A + B were analyzed using linear regression analysis with OLS.
2.5. Statistical Analysis
3. Results
3.1. Pre- and Postoperative Status of All Patients in this Study
3.2. Comparison among the Three Groups in Various Pre- and Post-Operative Factors
3.3. Bone Fusion Rates for Anterior Fusion and Anterior-Posterior Surgery
3.4. Postoperative Progression of Kyphosis Deformity in Anterior Fusion and Anterior-Posterior Surgery
4. Discussions
4.1. Patient Background and Course of Treatment in this Study
4.2. Spinal Cord Paralysis in Spinal Tuberculosis
4.3. Importance and Complications of ASF in Spinal Caries
4.4. Determining the Extent of the Anterior Scraping
4.5. Methods for Determining Bone Fusion and the Rate of Bone Fusion after Spinal Caries Surgery
4.6. Risk Factors for Kyphosis Progression after ASF and Cases Requiring Posterior Instrumentation
5. Conclusions
Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Reports. Executive Summary Page 2. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports (accessed on 22 June 2023).
- Lagerweij, M.D.; van Loveren, C. Declining Caries Trends: Are We Satisfied? Curr. Oral. Health Rep. 2015, 2, 212–217. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garg, R.K.; Somvanshi, D.S. Spinal tuberculosis: A review. J. Spinal Cord. Med. 2011, 34, 440–454. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khanna, K.; Sabharwal, S. Spinal tuberculosis: A comprehensive review for the modern spine surgeon. Spine J. 2019, 19, 1858–1870. [Google Scholar] [CrossRef] [PubMed]
- Tuli, S.M. Historical aspects of Pott’s disease (spinal tuberculosis) management. Eur. Spine J. 2013, 22 (Suppl. 4), 529–538. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ito, H.; Tsuchiya, J.; Asami, G. A new radical operation for Pott’s disease. Report of ten cases. J. Bone Jt. Surg. Br. 1934, 16, 499–515. [Google Scholar]
- Hodgson, A.R.; Stock, F.E.; Fang, H.S.; Ong, G.B. Anterior spinal fusion. The operative approach and pathological findings in 412 patients with Pott’s disease of the spine. Br. J. Surg. 1960, 48, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Demirel, M.; Akgul, T.; Pehlivanoglu, T.; Karademir, G.; Bayram, S.; Dikici, F.; Sar, C. Posterior Approach Alone Versus Combined Anterior and Posterior Approach in the Management of Vertebral Tuberculosis. Turk. Neurosurg. 2019, 29, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.J.; Yun, Y.H.; Moon, S.H.; Riew, K.D. Posterior instrumentation using compressive laminar hooks and anterior interbody arthrodesis for the treatment of tuberculosis of the lower lumbar spine. Spine 2004, 29, E275–E279. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Yang, K.; Ye, Y.; Huang, W.; Liu, W.; Luo, J. Single Posterior Approach versus Combined Anterior and Posterior Approach in the Treatment of Spinal Tuberculosis: A Meta-Analysis. World Neurosurg. 2021, 147, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.S.; Phan, K.; Karim, R.; Jonayed, S.A.; Munir, H.K.; Chakraborty, S.; Alam, T. Surgery for spinal tuberculosis: A multi-center experience of 582 cases. J. Spine Surg. 2015, 1, 65–71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, W.; Lyu, J.; Liu, X.; Luo, F.; Hou, T.; Zhou, Q.; Li, Z.; Chen, Y.; Li, L.T.; Zheng, Y.; et al. Surgical Treatment of Thoracic Spinal Tuberculosis: A Multicenter Retrospective Study. World Neurosurg. 2018, 110, e842–e850. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.J.; Zhang, H.Q.; Tang, M.X.; Gao, Q.L.; Zhou, Z.H.; Yin, X.H. Comparison of Three Surgical Approaches for Thoracic Spinal Tuberculosis in Adult: Minimum 5-Year Follow Up. Spine 2017, 42, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Frankel, H.L.; Hancock, D.O.; Hyslop, G.; Melzak, J.; Michaelis, L.S.; Ungar, G.H.; Vernon, J.D.; Walsh, J.J. The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. Spinal Cord. 1969, 7, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Dimar, J.R.; Glassman, S.D.; Burkus, K.J.; Carreon, L.Y. Clinical outcomes and fusion success at 2 years of single-level instrumented posterolateral fusions with recombinant human bone morphogenetic protein-2/compression resistant matrix versus iliac crest bone graft. Spine 2006, 31, 2534–2539, discussion 2540. [Google Scholar] [CrossRef] [PubMed]
- Coley, B.D. Caffey’s Pediatric Diagnostic Imaging, 12th ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013; p. 1429. ISBN 978-1455753604. [Google Scholar]
- Goh, S.; Price, R.I.; Leedman, P.J.; Singer, K.P. A comparison of three methods for measuring thoracic kyphosis: Implications for clinical studies. Rheumatology 2000, 39, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Wu, W.J.; Yang, S.; Wang, D.G.; Zhang, Q.; Liu, X.; Hou, T.Y.; Luo, F.; Zhang, Z.H.; Xu, J.Z. Surgical treatment of thoracolumbar spinal tuberculosis-a multicentre, retrospective, case-control study. J. Orthop. Surg. Res. 2019, 14, 233. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shanmuganathan, R.; Ramachandran, K.; Shetty, A.P.; Kanna, R.M. Active tuberculosis of spine: Current updates. N. Am. Spine Soc. J. 2023, 16, 100267. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Desai, S.S. Early diagnosis of spinal tuberculosis by MRI. J. Bone Jt. Surg. Br. 1994, 76, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Otani, K.; Manzoku, S.; Shibasaki, K.; Nomachi, S. A follow-up study of radical operation. In 463 cases with spinal tuberculosis. Iryou 1976, 30, 310–316. (In Japanese) [Google Scholar]
- Izawa, K. Histological analysis of bone destruction in spinal tuberculosis. Kekkaku 2015, 90, 415–420. (In Japanese) [Google Scholar]
- Akcali, O.; Kiray, A.; Ergur, I.; Tetik, S.; Alici, E. Thoracic duct variations may complicate the anterior spine procedures. Eur. Spine J. 2006, 15, 1347–1351. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jennin, F.; Bousson, V.; Parlier, C.; Jomaah, N.; Khanine, V.; Laredo, J.D. Bony sequestrum: A radiologic review. Skeletal Radiol. 2011, 40, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Hanson, M.B.; Fenger, I. Healiong in Bone Tuberculosis. Home Radiol. 1930, 15, 374–376. [Google Scholar] [CrossRef]
- Kanayama, M.; Hashimoto, T.; Shigenobu, K.; Yamane, S.; Bauer, T.W.; Togawa, D. A prospective randomized study of posterolateral lumbar fusion using osteogenic protein-1 (OP-1) versus local autograft with ceramic bone substitute: Emphasis of surgical exploration and histologic assessment. Spine 2006, 31, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Burkus, J.K.; Gornet, M.F.; Dickman, C.A.; Zdeblick, T.A. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J. Spinal Disord. Tech. 2002, 15, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Faundez, A.A.; Schwender, J.D.; Safriel, Y.; Gilbert, T.J.; Mehbod, A.A.; Denis, F.; Transfeldt, E.E.; Wroblewski, J.M. Clinical and radiological outcome of anterior-posterior fusion versus transforaminal lumbar interbody fusion for symptomatic disc degeneration: A retrospective comparative study of 133 patients. Eur. Spine J. 2009, 18, 203–211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Laheri, V.J.; Badhe, N.P.; Dewnany, G.T. Single stage decompression, anterior interbody fusion and posterior instrumentation for tuberculous kyphosis of the dorso-lumbar spine. Spinal Cord. 2001, 39, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Fukuta, S.; Miyamoto, K.; Masuda, T.; Hosoe, H.; Kodama, H.; Nishimoto, H.; Sakaeda, H.; Shimizu, K. Two-stage (posterior and anterior) surgical treatment using posterior spinal instrumentation for pyogenic and tuberculotic spondylitis. Spine 2003, 28, E302–E308. [Google Scholar] [CrossRef] [PubMed]
N | 134 | |
Age | 63 ± 17 | |
Male/Female | 78/56 | |
Affected vertebra | Thoracic (T1–T10) | 34 |
Thoracolumbar (T11–L2) | 55 | |
Lumbar (L3–L5) | 38 | |
Lumbosacral (L5/S) | 7 | |
Preoperative Frankel classification | A | 4 |
B | 2 | |
C | 17 | |
D | 44 | |
E | 66 | |
Postoperative Frankel classification | A | 3 |
B | 3 | |
C | 10 | |
D | 28 | |
E | 88 | |
Anti-TB drug | 4 types | 87 |
3 types | 43 | |
Other | 4 | |
Operation time (min) | 244 ± 72 | |
Blood loss (mL) | 573 ± 509 | |
Bone graft | Iliac bone | 104 |
Fibula bone | 30 | |
Number of intervertebral space of ASF | 1.6 ± 0.8 | |
Correction angle (°) | 4.5 ± 7 | |
Kyphotic angle (°) | Preoperative | 6.6 ± 14.6 |
Immediately after op | 2 ± 15.3 | |
Postoperative 3 M | 7 ± 16.6 | |
Postoperative 6 M | 8.4 ± 17.6 | |
Postoperative 1 Y | 9.5 ± 16.7 | |
Final follow-up | 10.4 ± 17.3 | |
Progress of kyphotic angle (°) | Postoperative 3 M—immediately after op | 4.9 ± 7.9 |
Postoperative 6 M—immediately after op | 7.3 ± 8.5 | |
Postoperative 1 Y—immediately after op | 8 ± 8.9 | |
Postoperative final follow-up—immediately after op | 8.7 ± 9.3 | |
Bone fusion rate (%) | 83.2 | |
Remaining osteosclerotic areas after op (%) | 6.8 | |
Posttreatment | Body cast | 16 |
Hard corset | 111 | |
Soft corset | 13 | |
None | 6 | |
Complications | 36 | |
Postoperative walking ability | Free hand | 55 |
T-cane | 48 | |
Silver car | 17 | |
Wheelchair | 10 | |
Final follow-up year (years) | 2.7 ± 2.3 |
A | B | p Value | ||
---|---|---|---|---|
N | 100 | 15 | ||
Age | 61 ± 16 | 67 ± 10 | n.s. | |
Male/Female | 62/38 | 6/9 | n.s. | |
Affected vertebra | Thoracic (T1–T10) | 27 | 2 | n.s. |
Thoracolumbar (T11–L2) | 41 | 6 | n.s. | |
Lumbar (L3–L5) | 28 | 5 | n.s. | |
Lumbosacral (L5/S) | 4 | 2 | n.s. | |
Preoperative Frankel classification | A | 2 | 1 | n.s. |
B | 2 | 0 | n.s. | |
C | 17 | 0 | n.s. | |
D | 29 | 6 | n.s. | |
E | 50 | 8 | n.s. | |
Postoperative Frankel classification | A | 2 | 1 | n.s. |
B | 2 | 0 | n.s. | |
C | 10 | 0 | n.s. | |
D | 19 | 3 | n.s. | |
E | 67 | 11 | n.s. | |
Anti-TB drug | 4 types | 66 | 8 | n.s. |
3 types | 31 | 6 | n.s. | |
Other | 2 | 0 | n.s. | |
Operation time (min) | 224 ± 62 | 236 ± 50 | n.s. | |
Blood loss (mL) | 625 ± 584 | 359 ± 255 | n.s. | |
Bone graft | Iliac bone | 77 | 9 | n.s. |
Fibula bone | 23 | 6 | n.s. | |
Number of intervertebral space of ASF | 1.6 ± 0.7 | 1.8 ± 1 | n.s. | |
Correction angle (°) | 5.2 ± 7.1 | 4.3 ± 6.4 | n.s. | |
Kyphotic angle (°) | Preoperative | 6.44 ± 14.8 | 10.3 ± 16.1 | n.s. |
Immediately after op | 1.3 ± 15.2 | 5.9 ± 14.5 | n.s. | |
Postoperative 3 M | 5.8 ± 16.1 | 15.9 ± 18 | n.s. | |
Postoperative 6 M | 8.2 ± 16.8 | 16.9 ± 21 | n.s. | |
Postoperative 1 Y | 10.2 ± 16.4 | 13.2 ± 17.8 | n.s. | |
Final follow-up | 10.2 ± 16.7 | 17.2 ± 19.5 | n.s. | |
Progress of kyphotic angle (°) | Postoperative 3 M—immediately after op | 4.7 ± 8 | 8.5 ± 9.8 | n.s. |
Postoperative 6 M—immediately after op | 7.8 ± 8.2 | 10.9 ± 10.5 | n.s. | |
Postoperative 1 Y—immediately after op | 9.6 ± 8.8 | 5.5 ± 10.2 | n.s. | |
Final follow-up—immediately after op | 9.5 ± 9.5 | 10.7 ± 9.6 | n.s. | |
Posttreatment | Body cast | 16 | 0 | n.s. |
Hard corset | 83 | 14 | n.s. | |
Soft corset | 13 | 0 | n.s. | |
None | 5 | 0 | n.s. | |
Complications | 29 | 3 | n.s. | |
Postoperative walking ability | Free hand | 39 | 8 | n.s. |
T-cane | 38 | 5 | n.s. | |
Silver car | 14 | 1 | n.s. | |
Wheelchair | 9 | 1 | n.s. | |
Final follow-up year (years) | 2.6 ± 2.2 | 3.3 ± 2.9 | n.s. |
A + B | C | p Value | ||
---|---|---|---|---|
N | 115 | 19 | ||
Age | 61.8 ± 16.2 | 69.8 ± 17 | n.s. | |
Male/Female | 68/47 | 10/9 | n.s. | |
Affected vertebra | Thoracic (T1–T10) | 29 | 5 | n.s. |
Thoracolumbar (T11–L2) | 47 | 8 | n.s. | |
Lumbar (L3–L5) | 33 | 5 | n.s. | |
Lumbosacral (L5/S) | 6 | 1 | n.s. | |
Preoperative Frankel classification | A | 3 | 1 | n.s. |
B | 2 | 0 | n.s. | |
C | 17 | 0 | n.s. | |
D | 35 | 9 | n.s. | |
E | 58 | 8 | n.s. | |
Postoperative Frankel classification | A | 3 | 0 | n.s. |
B | 2 | 1 | n.s. | |
C | 10 | 0 | n.s. | |
D | 22 | 6 | n.s. | |
E | 78 | 10 | n.s. | |
Anti-TB drug | 4 types | 74 | 13 | n.s. |
3 types | 37 | 5 | n.s. | |
Other | 3 | 1 | n.s. | |
Operation time (min) | 226 ± 60 | 310 ± 77 | <0.01 | |
Blood loss (mL) | 590 ± 558 | 525 ± 368 | n.s. | |
Bone graft | Iliac bone | 86 | 18 | n.s. |
Fibula bone | 29 | 1 | n.s. | |
Number of intervertebral space of ASF | 1.7 ± 0.8 | 1.6 ± 0.8 | n.s. | |
Correction angle (°) | 5 ± 7 | 1.6 ± 6.7 | n.s. | |
Kyphotic angle (°) | Preoperative | 6.9 ± 15 | 4.4 ± 12.2 | n.s. |
Immediately after op | 1.9 ± 15.1 | 2.8 ± 16.2 | n.s. | |
Postoperative 3 M | 7.1 ± 16.7 | 6.1 ± 16.2 | n.s. | |
Postoperative 6 M | 9.4 ± 17.7 | 1.9 ± 15.4 | n.s. | |
Postoperative 1 Y | 10.6 ± 16.6 | 3.2 ± 15.3 | n.s. | |
Postoperative final follow-up | 11.1 ± 17.2 | 6.1 ± 16.8 | n.s. | |
Progress of kyphotic angle (°) | Postoperative 3 M—immediately after op | 5 ± 8.1 | 2.9 ± 3.7 | n.s. |
Postoperative 6 M—immediately after operation | 8.2 ± 8.7 | 1.2 ± 4.7 | <0.01 | |
Postoperative 1 Y—immediately after op | 9.3 ± 8.8 | 2.5 ± 4 | <0.01 | |
Postoperative final follow-up—immediately after op | 9.4 ± 9.7 | 3.2 ± 4.5 | <0.01 | |
Posttreatment | Body cast | 16 | 0 | n.s. |
Hard corset | 97 | 14 | n.s. | |
Soft corset | 13 | 0 | n.s. | |
None | 5 | 1 | n.s. | |
Complications | 32 | 4 | n.s. | |
Postoperative walking ability | Free hand | 47 | 8 | n.s. |
T-cane | 43 | 5 | n.s. | |
Silver car | 15 | 2 | n.s. | |
Wheelchair | 10 | 0 | n.s. | |
Final follow-up year (years) | 2.8 ± 2.7 | 2.5 ± 2.1 | n.s. |
Est. | 2.50% | 97.50% | t Value | p Value | |
---|---|---|---|---|---|
Affected vertebral body level: Thoracic | −4.1 | −8.25 | 0.04 | −1.96 | 0.04 * |
: Lumbar | −4.21 | −8.16 | −0.25 | −2.11 | 0.04 * |
: Lumbosacral | 0.55 | −6.79 | 7.89 | 0.15 | 0.88 |
Age | 0.01 | −0.1 | 0.11 | 0.15 | 0.88 |
Remaining osteosclerotic area after ASF | −5.96 | −11.51 | −0.41 | −2.13 | 0.04 |
Types of grafted bone | 2.27 | −1.6 | 6.13 | 1.16 | 0.25 |
Soft brace | −4.52 | −13.66 | 4.63 | −0.98 | 0.33 |
Hard brace | −3.65 | −11.44 | 4.14 | −0.93 | 0.35 |
Body cast | −6.75 | −15.3 | 1.8 | −1.57 | 0.12 |
Est. | 2.50% | 97.50% | t Value | p Value | |
---|---|---|---|---|---|
Affected vertebral body level: Thoracic | 3.2 | −2.41 | 8.8 | 1.13 | 0.26 |
: Thoracolumbar | 7.35 | 2.16 | 12.54 | 2.8 | 0.01 ** |
: Lumbar | 3.05 | −2.4 | 8.51 | 1.11 | 0.27 |
: Lumbosacral | 8.04 | −0.23 | 16.31 | 1.93 | 0.06 |
Age | 0 | −0.09 | 0.09 | 0.08 | 0.93 |
Remaining osteosclerotic area after ASF | −4.26 | −9.1 | 0.59 | −1.74 | 0.08 |
Types of grafted bone | 2.36 | −1.22 | 5.95 | 1.31 | 0.19 |
No brace | 4.74 | −13.27 | 22.74 | 0.52 | 0.6 |
Soft brace | 1.22 | −15.09 | 17.53 | 0.15 | 0.88 |
Hard brace | 1.19 | −15.33 | 17.7 | 0.14 | 0.89 |
Body cast | −1.9 | −18.91 | 15.07 | −0.22 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furukawa, M.; Fujiyoshi, K.; Kitagawa, T.; Shibata, R.; Hashimoto, S.; Kobayashi, Y.; Konomi, T.; Yato, Y. Surgical Outcomes of Adults with Spinal Caries from 1992 to 2019: A Single-Center Study-Risk Factors for the Progression of Kyphosis after Anterior Spinal Fixation Reveal Cases Needing Additional Posterior Instrumentation. J. Clin. Med. 2024, 13, 3803. https://doi.org/10.3390/jcm13133803
Furukawa M, Fujiyoshi K, Kitagawa T, Shibata R, Hashimoto S, Kobayashi Y, Konomi T, Yato Y. Surgical Outcomes of Adults with Spinal Caries from 1992 to 2019: A Single-Center Study-Risk Factors for the Progression of Kyphosis after Anterior Spinal Fixation Reveal Cases Needing Additional Posterior Instrumentation. Journal of Clinical Medicine. 2024; 13(13):3803. https://doi.org/10.3390/jcm13133803
Chicago/Turabian StyleFurukawa, Mitsuru, Kanehiro Fujiyoshi, Takahiro Kitagawa, Reo Shibata, Shogo Hashimoto, Yoshiomi Kobayashi, Tsunehiko Konomi, and Yoshiyuki Yato. 2024. "Surgical Outcomes of Adults with Spinal Caries from 1992 to 2019: A Single-Center Study-Risk Factors for the Progression of Kyphosis after Anterior Spinal Fixation Reveal Cases Needing Additional Posterior Instrumentation" Journal of Clinical Medicine 13, no. 13: 3803. https://doi.org/10.3390/jcm13133803
APA StyleFurukawa, M., Fujiyoshi, K., Kitagawa, T., Shibata, R., Hashimoto, S., Kobayashi, Y., Konomi, T., & Yato, Y. (2024). Surgical Outcomes of Adults with Spinal Caries from 1992 to 2019: A Single-Center Study-Risk Factors for the Progression of Kyphosis after Anterior Spinal Fixation Reveal Cases Needing Additional Posterior Instrumentation. Journal of Clinical Medicine, 13(13), 3803. https://doi.org/10.3390/jcm13133803