No Significant Differences between Bisphosphonates and Placebo for the Treatment of Bone Marrow Lesions of the Knee: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Risk of Bias Assessment
Publication | Study Design | Level of Evidence | Disease | Therapeutic Protocol | Outcome | Patient Characteristics | Follow-Up | Main Findings |
---|---|---|---|---|---|---|---|---|
Agarwala et al., 2020 [27] | Prospective case series | IV | Spontaneous osteonecrosis of the knee (SPONK) | Single IV dose of 5 mg of ZA, 70 mg alendronate tablets weekly divided into two doses taken on empty stomach, supplemented with calcium, vitamin D, and anti-inflammatory medications | VAS, Bone marrow involvement (%) | n = 16 patients with SPONK lesions involving only the femur | 16 weeks | ZA combined with alendronate for SPONK provides faster recovery clinically and radiographically compared to ZA and/or ibandronate alone in the literature |
Baier et al., 2013 [1] | Retrospective cohort study | III | BML of the knee, talus, or navicular bone | Ibandronate administered once monthly in a dosage of 6 mg for three consecutive months; iloprost administered intravenously for five consecutive days with 20, 30, or 40 μg | VAS, WOMAC, SF-36 | n = 20 10 ibandronate, mean age 34.6; 10 iloprost, mean age 35.2 | Mean 12 months (range: 10–17) | Conservative treatment of BML in the knee and foot with intravenous infusion of prostacyclin or bisphosphonates represents an encouraging and efficacious option. These infusions are minimally invasive procedures with relatively low risks. Compared to bisphosphonates, prostacyclin appears to act more rapidly and effectively in reducing BML. |
Ballal et al., 2020 [28] | Retrospective cohort study | III | OA | Oral bisphosphonate; non-bisphosphonate | BML size (mm2) | n = 290, propensity score matched; 145 bisphosphonate, age 64.8 (±8.0), BMI 26.3 (±4.3), baseline BML 392.2 mm2 (±738.8); 145 non-bisphosphonate, age 65.1 (±7.8), BMI 26.2 (±4.1), baseline BML 355.6 (±704.6) | 12 months | The use of bisphosphonates for over 12 months showed no definite harm as a disease-modifying therapy in OA. However, there is insufficient evidence to demonstrate a clear benefit. A potential sign of efficacy was noted among OA patients with BMLs at baseline. |
Bartl et al., 2012 [29] | Prospective cohort study | II | BML around knee and ankle joint | Three ambulatory infusions with 6 mg ibandronate; diclofenac sodium, 2 × 75 mg per day for 3 weeks | VAS, Mazur ankle scores, Larson knee scores, BML-stage | n = 50 30 ibandronate, 15 knee joint BML, 15 ankle joint BML, mean age 41; 20 diclofenac sodium, mean age 44 | 12 months | Intravenous ibandronate demonstrated efficacy as a treatment for BMLs of the knee and ankle. Patients receiving ibandronate showed significantly greater improvements in pain and function compared to the control group receiving only analgesic treatment. Follow-up MRI scans revealed a significant decrease in BML size solely in the ibandronate treatment group. |
Cai et al., 2020 [30] | Multi-center, double-blind, placebo-controlled RCT | I | >50 years, knee pain, criteria for symptomatic knee OA, subchondral BML present on MRI | Single 15 min intravenous infusion of ZA (5 mg in 100 mL saline solution), identical placebo (100 mL saline solution) at baseline and at 12 months | Tibiofemoral cartilage volume, VAS, WOMAC, BML (mm2) | n = 223 113 ZA, mean age 62.8 (±8.5), BMI 30.2 (±5.5), BML size 476 mm2 (255–860); 110 placebo, mean age 61.3 (±7.3), BMI 30.8 (± 6.2), BML size 502 mm2 (225–919) | 24 months | Annual ZA infusions did not significantly reduce cartilage volume loss compared to placebo over 24 months. |
Cai et al., 2019 [31] | Single-center, double-blind RCT | I | >50 years, knee pain, criteria for symptomatic knee OA, subchondral BML present on MRI | Single infusion of either 5 mg/100 mL ZA/saline for the ZA group and Zobone 5 for the VOLT01 group, or 100 mL saline for the placebo group | Acute phase responses over 3 days, VAS, WOMAC, BML size (mm2) | n = 117 39 ZA, mean age 64.4 (±8.4), BMI 31 (± 5.2), BML size 446 mm2 (±396.7); 40 VOLT01, mean age 60.9 (±8.1), BMI 30.4 (±6), BML size 576.8 mm2 (±531.3); 38 placebo, mean age 61.5 (±7.4), BMI 31 (±5.4), BML size 518.8 mm2 (±438) | 6 months | Intravenous VOLT01 did not reduce APR or knee BML size over 6 months. Unlike ZA alone, this combination may improve symptoms in knee OA. |
Laslett et al., 2012 [32] | Single-center, double-blind RCT | I | ≥50 years, knee pain, OA, BML on MRI | Intravenous infusion of 100 mg of fluid, containing ZA (5 mg in normal saline) or placebo (normal saline) | VAS, BML size (mm2), KOOS, adverse events | n = 59 31 ZA, mean age 54.2 (±8.2), BMI 29.6 (±4.4), BML size 483.9 mm2 (±410.2); 28 placebo, mean age 60.4 (±7.3), BMI 29.8 (±5.8), BML size 449.4 mm2 (±339.3) | 12 months | A single ZA infusion reduced knee pain, BML size, and the proportion of patients with clinically significant BML reduction at 6 months. |
Meier et al., 2014 [33] | Double-blind RCT | I | Newly diagnosed spontaneous or postarthroscopic osteonecrosis of the knee | 13.5 mg ibandronate, placebo intravenously divided in four injections within 2 weeks (once 1.5 mg then 3 mg per injection) and followed by a fifth injection after 3 months (3 mg). In addition, all patients received daily calcium (500 mg) and vitamin D (400 IU) throughout the study and diclofenac (50 mg/day) for the first 3 months. | VAS, WOMAC, IKDC, ALP, PINP, CTX | n = 30 14 ibandronate, mean age 62.4 (±7.7), BMI 27.7 (±3.7); 16 placebo, mean age 52.7 (±8.2), BMI 31.1 (±6.2) | 48 weeks | Intravenous ibandronate displayed no additional benefit compared to anti-inflammatory medication alone for patients with spontaneous osteonecrosis of the knee. |
Müller et al., 2020 [34] | Retrospective cohort study | III | Symptomatic BML of the knee | Vitamin D supplementation, ibandronic acid, ZA, sequential (I→Z), denosumab, alendronic acid | Adverse events, CTX, P1NP, WORMS, “Satisfaction” | n = 34 9 ibandronic acid, 12 ZA, 7 sequential (I→Z), 3 denosumab, 3 alendronic acid | 4 weeks clinical and laboratory follow-up for all patients, additional follow-up if persistent pain | ZA appeared to exhibit enhanced efficacy compared to alternative antiresorptive medications, particularly ibandronic acid; however, these differences did not achieve statistical significance. Moreover, ZA was associated with a higher frequency of adverse events |
Ringe et al., 2005 [35] | Case Series | IV | Localized transient osteoporosis (LTO) | Single IV administration of 4 mg ibandronate; second IV injection of 2 mg ibandronate optional after 3 months, daily calcium (1 g) and vitamin D (800 IU) supplements | VAS, BMD, adverse events | n = 12 mean age 44 (range: 29–61), | 6 months | IV ibandronate appears effective in treating LTO. It increases BMD locally and systemically while providing significant and substantial pain relief, even in those with prior opioid-resistant pain |
Seefried et al., 2022 [36] | Triple-blind, placebo-controlled randomized trial | I | Painful bone marrow lesions | Single-dose ZA 5 mg IV versus placebo, daily calcium 1 g and 1000 IU vitamin D | VAS, BML size, PDI, QoL, biochemical analysis | n = 48 34 ZA, mean age 50.19 (±13.12), BML size 69.74 cm3 (±75.4); 14 placebo, mean age 53.6 (±7.1), BML size 46.99 cm3 (±76.8); | 12 weeks | The addition of ZA to a regimen of suspended weight bearing and vitamin D has the potential to augment the healing capabilities of painful BMLs significantly by leading to a significant reduction in BML volume |
Varenna et al., 2015 [37] | Double blind RCT | I | >50 years, knee OA, worsening of knee pain for at least 2 weeks, knee MRI scan showing large (>1 cm) BMLs | Neridronate 100 mg/8 mL ampoules or placebo, every third day starting on day 1 and ending on day 10 | VAS, WOMAC, SF-36, WORMS, McGill | n = 68 34 neridronate, mean age 64.7 (±11.8), BMI 25.7 (±3.6); 34 placebo, mean age 67 (±7.3), BMI 25.5 (±3.9) | 2 months | IV neridronate course showed a clinically relevant benefit in patients with acute painful OA, reducing the extent of bone marrow edema |
Varenna et al., 2021 [38] | Double blind RCT | I | CRPS— International Association for the Study of Pain (IASP) diagnostic criteria | Neridronate 25 mg IM or matched placebo IM daily day for 16 consecutive days | VAS, SF-36, edema-score, McGill, adverse events | n = 78 41 neridronate, mean age 59.3 (±10.2), BMI 26.7 (±5.1); 37 placebo, mean age 59.7 (±10.5), BMI 26.6 (±4.4) | 1 month | Clinically significant improvement in patients treated with neridronate compared with placebo |
Varenna et al., 2022 [39] | Prospective cohort study | II | CRPS—International Association for the Study of Pain (IASP) diagnostic criteria | Patients treated with placebo during the double-blind phase of the study with IV neridronate at a dose of four 100 mg infusions each diluted in a 500 mL saline isotonic solution and infused over 2 h every third day | VAS, SF-36, edema-score, McGill, adverse events | n = 60 35 previous neridronate; 25 previous placebo now open label neridronate | 12 months | Patients with acute CRPS-1 experienced a significant, clinically relevant, and persistent benefit following both IM and IV neridronate treatment regimens |
Vasiliadis et al., 2021 [2] | Case series | IV | Bone marrow edema syndrome | IV 100 mL of ZA 5 mg/100 mL | VAS, adverse events | n = 54 54 ZA, mean age 52.7 (±9.7), BMI 28.9 (±3.8) | 6 months | A single dose of intravenous ZA, when combined with partial weight-bearing for one month, yields favorable responses in both clinical and radiographic outcomes for patients with BMLs |
3.1.1. Bisphosphonates in Bone Marrow Edema
3.1.2. Bisphosphonates in Osteoarthritis
3.1.3. Bisphosphonates in Osteonecrosis of the Knee
3.1.4. Bisphosphonates in Transient Osteoporosis
3.1.5. Bisphosphonates in Complex Regional Pain Syndrome of the Knee
3.2. Meta-Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Baier, C.; Schaumburger, J.; Götz, J.; Heers, G.; Schmidt, T.; Grifka, J.; Beckmann, J. Bisphosphonates or Prostacyclin in the Treatment of Bone-Marrow Oedema Syndrome of the Knee and Foot. Rheumatol. Int. 2013, 33, 1397–1402. [Google Scholar] [CrossRef] [PubMed]
- Vasiliadis, A.V.; Zidrou, C.; Charitoudis, G.; Beletsiotis, A. Single-Dose Therapy of Zoledronic Acid for the Treatment of Primary Bone Marrow Edema Syndrome. Cureus 2021, 13, e13977. [Google Scholar] [CrossRef] [PubMed]
- Bonadio, M.B.; Giglio, P.N.; Helito, C.P.; Pécora, J.R.; Camanho, G.L.; Demange, M.K. Subchondroplasty for Treating Bone Marrow Lesions in the Knee—Initial Experience. Rev. Bras. Ortop. 2017, 52, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Primorac, D.; Molnar, V.; Rod, E.; Jeleč, Ž.; Čukelj, F.; Matišić, V.; Vrdoljak, T.; Hudetz, D.; Hajsok, H.; Borić, I. Knee Osteoarthritis: A Review of Pathogenesis and State-Of-The-Art Non-Operative Therapeutic Considerations. Genes 2020, 11, 854. [Google Scholar] [CrossRef] [PubMed]
- Di Matteo, B.; Anzillotti, G.; Gallese, A.; Vitale, U.; Gaggia, G.M.M.C.; Ronzoni, F.L.; Marcacci, M.; Kon, E. Placenta-Derived Products Demonstrate Good Safety Profile and Overall Satisfactory Outcomes for Treating Knee Osteoarthritis: A Systematic Review of Clinical Evidence. Arthroscopy 2023, 39, 1892–1904. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, E.F. Treatment of Bone Marrow Lesions (Bone Marrow Edema). Bonekey Rep. 2015, 4, 755. [Google Scholar] [CrossRef] [PubMed]
- Driban, J.B.; Price, L.; Lo, G.H.; Pang, J.; Hunter, D.J.; Miller, E.; Ward, R.J.; Eaton, C.B.; Lynch, J.A.; McAlindon, T.E. Evaluation of Bone Marrow Lesion Volume as a Knee Osteoarthritis Biomarker--Longitudinal Relationships with Pain and Structural Changes: Data from the Osteoarthritis Initiative. Arthritis Res. Ther. 2013, 15, R112. [Google Scholar] [CrossRef] [PubMed]
- Aso, K.; Shahtaheri, S.M.; McWilliams, D.F.; Walsh, D.A. Association of Subchondral Bone Marrow Lesion Localization with Weight-Bearing Pain in People with Knee Osteoarthritis: Data from the Osteoarthritis Initiative. Arthritis Res. Ther. 2021, 23, 35. [Google Scholar] [CrossRef] [PubMed]
- Ververidis, A.N.; Paraskevopoulos, K.; Tilkeridis, K.; Riziotis, G.; Tottas, S.; Drosos, G.I. Surgical Modalities for the Management of Bone Marrow Edema of the Knee Joint. J. Orthop. 2020, 17, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Oehler, N.; Mussawy, H.; Schmidt, T.; Rolvien, T.; Barvencik, F. Identification of Vitamin D and Other Bone Metabolism Parameters as Risk Factors for Primary Bone Marrow Oedema Syndrome. BMC Musculoskelet. Disord. 2018, 19, 451. [Google Scholar] [CrossRef] [PubMed]
- Roemer, F.W.; Frobell, R.; Hunter, D.J.; Crema, M.D.; Fischer, W.; Bohndorf, K.; Guermazi, A. MRI-Detected Subchondral Bone Marrow Signal Alterations of the Knee Joint: Terminology, Imaging Appearance, Relevance and Radiological Differential Diagnosis. Osteoarthr. Cartil. 2009, 17, 1115–1131. [Google Scholar] [CrossRef] [PubMed]
- Kon, E.; Ronga, M.; Filardo, G.; Farr, J.; Madry, H.; Milano, G.; Andriolo, L.; Shabshin, N. Bone Marrow Lesions and Subchondral Bone Pathology of the Knee. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 1797–1814. [Google Scholar] [CrossRef] [PubMed]
- Aigner, N.; Meizer, R.; Petje, G.; Meizer, E.; Abdelkafy, A.; Landsiedl, F. Natural Course of Intra-Articular Shifting Bone Marrow Edema Syndrome of the Knee. BMC Musculoskelet. Disord. 2008, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Davies-Tuck, M.L.; Wluka, A.E.; Wang, Y.; English, D.R.; Giles, G.G.; Cicuttini, F. The Natural History of Bone Marrow Lesions in Community-Based Adults with No Clinical Knee Osteoarthritis. Ann. Rheum. Dis. 2009, 68, 904–908. [Google Scholar] [CrossRef]
- Anzillotti, G.; Conte, P.; Di Matteo, B.; Bertolino, E.M.; Marcacci, M.; Kon, E. Injection of Biologic Agents for Treating Severe Knee Osteoarthritis: Is There a Chance for a Good Outcome? A Systematic Review of Clinical Evidence. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 5447–5459. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Martín, S.; López-Peña, M.; Muñoz, F.; Permuy, M.; González-Cantalapiedra, A. Bisphosphonates as Disease-Modifying Drugs in Osteoarthritis Preclinical Studies: A Systematic Review from 2000 to 2020. Arthritis Res. Ther. 2021, 23, 60. [Google Scholar] [CrossRef] [PubMed]
- Drake, M.T.; Clarke, B.L.; Khosla, S. Bisphosphonates: Mechanism of Action and Role in Clinical Practice. Mayo Clin. Proc. 2008, 83, 1032–1045. [Google Scholar] [CrossRef] [PubMed]
- Roelofs, A.J.; Thompson, K.; Ebetino, F.H.; Rogers, M.J.; Coxon, F.P. Bisphosphonates: Molecular Mechanisms of Action and Effects on Bone Cells, Monocytes and Macrophages. Curr. Pharm. Des. 2010, 16, 2950–2960. [Google Scholar] [CrossRef] [PubMed]
- Davies-Tuck, M.L.; Wluka, A.E.; Forbes, A.; Wang, Y.; English, D.R.; Giles, G.G.; O’Sullivan, R.; Cicuttini, F.M. Development of Bone Marrow Lesions Is Associated with Adverse Effects on Knee Cartilage While Resolution Is Associated with Improvement--a Potential Target for Prevention of Knee Osteoarthritis: A Longitudinal Study. Arthritis Res. Ther. 2010, 12, R10. [Google Scholar] [CrossRef] [PubMed]
- Tanamas, S.K.; Wluka, A.E.; Pelletier, J.-P.; Pelletier, J.M.; Abram, F.; Berry, P.A.; Wang, Y.; Jones, G.; Cicuttini, F.M. Bone Marrow Lesions in People with Knee Osteoarthritis Predict Progression of Disease and Joint Replacement: A Longitudinal Study. Rheumatology 2010, 49, 2413–2419. [Google Scholar] [CrossRef]
- Kon, E.; Boffa, A.; Andriolo, L.; Di Martino, A.; Di Matteo, B.; Magarelli, N.; Trenti, N.; Zaffagnini, S.; Filardo, G. Combined Subchondral and Intra-Articular Injections of Bone Marrow Aspirate Concentrate Provide Stable Results up to 24 Months. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 2511–2517. [Google Scholar] [CrossRef] [PubMed]
- Marcacci, M.; Andriolo, L.; Kon, E.; Shabshin, N.; Filardo, G. Aetiology and Pathogenesis of Bone Marrow Lesions and Osteonecrosis of the Knee. EFORT Open Rev. 2016, 1, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cai, G.; Jones, G.; Laslett, L.L. Intravenous Bisphosphonates Do Not Improve Knee Pain or Bone Marrow Lesions in People with Knee Osteoarthritis: A Meta-Analysis. Rheumatology 2022, 61, 2235–2242. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Kon, E.; Verdonk, P.; Condello, V.; Delcogliano, M.; Dhollander, A.; Filardo, G.; Pignotti, E.; Marcacci, M. Matrix-Assisted Autologous Chondrocyte Transplantation for the Repair of Cartilage Defects of the Knee: Systematic Clinical Data Review and Study Quality Analysis. Am. J. Sports Med. 2009, 37 (Suppl. S1), 156S–166S. [Google Scholar] [CrossRef] [PubMed]
- Agarwala, S.; Sharoff, L.; Jagani, N. Effect of Zoledronic Acid and Alendronate on Bone Edema and Pain in Spontaneous Osteonecrosis of the Knee: A New Paradigm in the Medical Management. Rev. Bras. Ortop. (Sao Paulo) 2020, 55, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Ballal, P.; Sury, M.; Lu, N.; Duryea, J.; Zhang, Y.; Ratzlaff, C.; Neogi, T. The Relation of Oral Bisphosphonates to Bone Marrow Lesion Volume among Women with Osteoarthritis. Osteoarthr. Cartil. 2020, 28, 1325–1329. [Google Scholar] [CrossRef] [PubMed]
- Bartl, C.; Imhoff, A.; Bartl, R. Treatment of Bone Marrow Edema Syndrome with Intravenous Ibandronate. Arch. Orthop. Trauma. Surg. 2012, 132, 1781–1788. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Aitken, D.; Laslett, L.L.; Pelletier, J.-P.; Martel-Pelletier, J.; Hill, C.; March, L.; Wluka, A.E.; Wang, Y.; Antony, B.; et al. Effect of Intravenous Zoledronic Acid on Tibiofemoral Cartilage Volume Among Patients With Knee Osteoarthritis With Bone Marrow Lesions: A Randomized Clinical Trial. JAMA 2020, 323, 1456–1466. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Laslett, L.L.; Aitken, D.; Cicuttini, F.; March, L.; Hill, C.; Winzenberg, T.; Jones, G. Zoledronic Acid plus Methylprednisolone versus Zoledronic Acid or Placebo in Symptomatic Knee Osteoarthritis: A Randomized Controlled Trial. Ther. Adv. Musculoskelet. Dis. 2019, 11, 1759720X19880054. [Google Scholar] [CrossRef] [PubMed]
- Laslett, L.L.; Doré, D.A.; Quinn, S.J.; Boon, P.; Ryan, E.; Winzenberg, T.M.; Jones, G. Zoledronic Acid Reduces Knee Pain and Bone Marrow Lesions over 1 Year: A Randomised Controlled Trial. Ann. Rheum. Dis. 2012, 71, 1322–1328. [Google Scholar] [CrossRef] [PubMed]
- Meier, C.; Kraenzlin, C.; Friederich, N.F.; Wischer, T.; Grize, L.; Meier, C.R.; Kraenzlin, M.E. Effect of Ibandronate on Spontaneous Osteonecrosis of the Knee: A Randomized, Double-Blind, Placebo-Controlled Trial. Osteoporos. Int. 2014, 25, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Müller, F.; Appelt, K.A.; Meier, C.; Suhm, N. Zoledronic Acid Is More Efficient than Ibandronic Acid in the Treatment of Symptomatic Bone Marrow Lesions of the Knee. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Ringe, J.D.; Dorst, A.; Faber, H. Effective and Rapid Treatment of Painful Localized Transient Osteoporosis (Bone Marrow Edema) with Intravenous Ibandronate. Osteoporos. Int. 2005, 16, 2063–2068. [Google Scholar] [CrossRef] [PubMed]
- Seefried, L.; Genest, F.; Baumann, J.; Heidemeier, A.; Meffert, R.; Jakob, F. Efficacy of Zoledronic Acid in the Treatment of Nonmalignant Painful Bone Marrow Lesions: A Triple-Blind, Randomized, Placebo-Controlled Phase III Clinical Trial (ZoMARS). J. Bone Miner. Res. 2022, 37, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Varenna, M.; Zucchi, F.; Failoni, S.; Becciolini, A.; Berruto, M. Intravenous Neridronate in the Treatment of Acute Painful Knee Osteoarthritis: A Randomized Controlled Study. Rheumatology 2015, 54, 1826–1832. [Google Scholar] [CrossRef] [PubMed]
- Varenna, M.; Braga, V.; Gatti, D.; Iolascon, G.; Frediani, B.; Zucchi, F.; Crotti, C.; Nannipieri, F.; Rossini, M. Intramuscular Neridronate for the Treatment of Complex Regional Pain Syndrome Type 1: A Randomized, Double-Blind, Placebo-Controlled Study. Ther. Adv. Musculoskelet. Dis. 2021, 13, 1759720X211014020. [Google Scholar] [CrossRef] [PubMed]
- Varenna, M.; Gatti, D.; Zucchi, F.; Crotti, C.; Braga, V.; Iolascon, G.; Frediani, B.; Nannipieri, F.; Rossini, M. Long-Term Efficacy and Safety of Neridronate Treatment in Patients with Complex Regional Pain Syndrome Type 1: A Pre-Specified, Open-Label, Extension Study. Ther. Adv. Musculoskelet. Dis. 2022, 14, 1759720X221142274. [Google Scholar] [CrossRef] [PubMed]
- Haj-Mirzaian, A.; Guermazi, A.; Roemer, F.W.; Bowes, M.A.; Conaghan, P.G.; Demehri, S. Bisphosphonates Intake and Its Association with Changes of Periarticular Bone Area and Three-Dimensional Shape: Data from the Osteoarthritis Initiative (OAI). Osteoarthr. Cartil. 2018, 26, 564–568. [Google Scholar] [CrossRef]
- Bauer, D.C. Osteoporotic Fractures: Ignorance Is Bliss? Am. J. Med. 2000, 109, 338–339. [Google Scholar] [CrossRef] [PubMed]
- Black, D.M.; Thompson, D.E.; Bauer, D.C.; Ensrud, K.; Musliner, T.; Hochberg, M.C.; Nevitt, M.C.; Suryawanshi, S.; Cummings, S.R. Fracture Intervention Trial Fracture Risk Reduction with Alendronate in Women with Osteoporosis: The Fracture Intervention Trial. J. Clin. Endocrinol. Metab. 2000, 85, 4118–4124. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.J.; Smith, T.O.; Hing, C.B.; Sofat, N. Are Bisphosphonates Effective in the Treatment of Osteoarthritis Pain? A Meta-Analysis and Systematic Review. PLoS ONE 2013, 8, e72714. [Google Scholar] [CrossRef] [PubMed]
- Blumenkrantz, G.; Lindsey, C.T.; Dunn, T.C.; Jin, H.; Ries, M.D.; Link, T.M.; Steinbach, L.S.; Majumdar, S. A Pilot, Two-Year Longitudinal Study of the Interrelationship between Trabecular Bone and Articular Cartilage in the Osteoarthritic Knee. Osteoarthr. Cartil. 2004, 12, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Raynauld, J.-P.; Martel-Pelletier, J.; Berthiaume, M.-J.; Abram, F.; Choquette, D.; Haraoui, B.; Beary, J.F.; Cline, G.A.; Meyer, J.M.; Pelletier, J.-P. Correlation between Bone Lesion Changes and Cartilage Volume Loss in Patients with Osteoarthritis of the Knee as Assessed by Quantitative Magnetic Resonance Imaging over a 24-Month Period. Ann. Rheum. Dis. 2008, 67, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Khorasani, M.S.; Diko, S.; Hsia, A.W.; Anderson, M.J.; Genetos, D.C.; Haudenschild, D.R.; Christiansen, B.A. Effect of Alendronate on Post-Traumatic Osteoarthritis Induced by Anterior Cruciate Ligament Rupture in Mice. Arthritis Res. Ther. 2015, 17, 30. [Google Scholar] [CrossRef] [PubMed]
- Panahifar, A.; Maksymowych, W.P.; Doschak, M.R. Potential Mechanism of Alendronate Inhibition of Osteophyte Formation in the Rat Model of Post-Traumatic Osteoarthritis: Evaluation of Elemental Strontium as a Molecular Tracer of Bone Formation. Osteoarthr. Cartil. 2012, 20, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Moreau, M.; Rialland, P.; Pelletier, J.-P.; Martel-Pelletier, J.; Lajeunesse, D.; Boileau, C.; Caron, J.; Frank, D.; Lussier, B.; del Castillo, J.R.E.; et al. Tiludronate Treatment Improves Structural Changes and Symptoms of Osteoarthritis in the Canine Anterior Cruciate Ligament Model. Arthritis Res. Ther. 2011, 13, R98. [Google Scholar] [CrossRef] [PubMed]
- Vaysbrot, E.E.; Osani, M.C.; Musetti, M.-C.; McAlindon, T.E.; Bannuru, R.R. Are Bisphosphonates Efficacious in Knee Osteoarthritis? A Meta-Analysis of Randomized Controlled Trials. Osteoarthr. Cartil. 2018, 26, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: A Disease of the Joint as an Organ. Arthritis Rheum. 2012, 64, 1697–1707. [Google Scholar] [CrossRef] [PubMed]
- Kon, E.; Anzillotti, G.; Di Matteo, B.; Hernigou, P. Mission (Im)Possible: Meniscal Preservation and Cartilage Regeneration. Int. Orthop. 2023, 47, 2371–2374. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.A.; Sofat, N.; Guermazi, A.; Hunter, D.J. Osteoarthritis Bone Marrow Lesions. Osteoarthr. Cartil. 2023, 31, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Klontzas, M.E.; Vassalou, E.E.; Zibis, A.H.; Bintoudi, A.S.; Karantanas, A.H. MR Imaging of Transient Osteoporosis of the Hip: An Update on 155 Hip Joints. Eur. J. Radiol. 2015, 84, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Jaeschke, R.; Singer, J.; Guyatt, G.H. Measurement of Health Status. Ascertaining the Minimal Clinically Important Difference. Control Clin. Trials 1989, 10, 407–415. [Google Scholar] [CrossRef] [PubMed]
Publication | Baseline Confounding | Selection of Participants | Classification of Intervention | Deviation from Intended Intervention | Missing Data | Measurement of Outcomes | Selection of Reported Results | Overall Risk of Bias |
---|---|---|---|---|---|---|---|---|
Agarwala et al. (2020) [27] | Low | Low | Low | Low | No information | Low | Low | Low |
Baier et al. (2013) [1] | Low | Moderate | Low | Low | No information | Low | Moderate | Moderate |
Ballal et al. (2020) [28] | Moderate | Serious | Low | Low | Low | Moderate | Low | Serious |
Bartl et al. (2012) [29] | Moderate | Low | Low | Low | No information | Moderate | Low | Moderate |
Müller et al. (2020) [34] | Moderate | Moderate | Moderate | Low | Low | Low | Moderate | Moderate |
Ringe et al. (2005) [35] | Low | Low | Low | Low | No information | Low | Low | Low |
Varenna et al. (2022) [39] | Low | Low | Low | Low | Moderate | Low | Moderate | Moderate |
Vasiliadis et al. (2021) [2] | Low | Low | Low | Low | No information | Low | Low | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anzillotti, G.; Öttl, F.C.; Franceschi, C.; Conte, P.; Bertolino, E.M.; Lipina, M.; Lychagin, A.; Kon, E.; Di Matteo, B. No Significant Differences between Bisphosphonates and Placebo for the Treatment of Bone Marrow Lesions of the Knee: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2024, 13, 3799. https://doi.org/10.3390/jcm13133799
Anzillotti G, Öttl FC, Franceschi C, Conte P, Bertolino EM, Lipina M, Lychagin A, Kon E, Di Matteo B. No Significant Differences between Bisphosphonates and Placebo for the Treatment of Bone Marrow Lesions of the Knee: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of Clinical Medicine. 2024; 13(13):3799. https://doi.org/10.3390/jcm13133799
Chicago/Turabian StyleAnzillotti, Giuseppe, Felix C. Öttl, Carlotta Franceschi, Pietro Conte, Enrico Maria Bertolino, Marina Lipina, Alexey Lychagin, Elizaveta Kon, and Berardo Di Matteo. 2024. "No Significant Differences between Bisphosphonates and Placebo for the Treatment of Bone Marrow Lesions of the Knee: A Systematic Review and Meta-Analysis of Randomized Controlled Trials" Journal of Clinical Medicine 13, no. 13: 3799. https://doi.org/10.3390/jcm13133799
APA StyleAnzillotti, G., Öttl, F. C., Franceschi, C., Conte, P., Bertolino, E. M., Lipina, M., Lychagin, A., Kon, E., & Di Matteo, B. (2024). No Significant Differences between Bisphosphonates and Placebo for the Treatment of Bone Marrow Lesions of the Knee: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of Clinical Medicine, 13(13), 3799. https://doi.org/10.3390/jcm13133799