Venous and Arterial Thromboembolism in Lung Cancer Patients: A Retrospective Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Incidence and Risk Factors of VTE and ATE
3.2. VTE and ATE during Platinum-Based Chemotherapy vs. ICI Treatment
3.3. Subgroup Analyses—Incidence of Thrombotic Events in Patients with or without Antithrombotic Therapy at Baseline
3.4. Khorana Risk Score
3.5. Survival of Patients with Thrombosis Versus No Thrombosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grilz, E.; Posch, F.; Nopp, S.; Königsbrügge, O.; Lang, I.M.; Ay, C. Relative risk of arterial and venous thromboembolism in persons with cancer vs. persons without cancer—A nationwide analysis. Eur. Heart J. 2021, 42, 2299–2307. [Google Scholar] [CrossRef] [PubMed]
- Mulder, F.I.; Horváth-Puhó, E.; van Es, N.; van Laarhoven, H.W.M.; Pedersen, L.; Moik, F.; Ay, C.; Büller, H.R.; Sørensen, H.T. Venous thromboembolism in cancer patients: A population-based cohort study. Blood 2021, 137, 1959–1969. [Google Scholar] [CrossRef] [PubMed]
- Mulder, F.I.; Horváth-Puhó, E.; van Es, N.; Pedersen, L.; Büller, H.R.; Bøtker, H.E.; Sørensen, H.T. Arterial Thromboembolism in Cancer Patients: A Danish Population–Based Cohort Study. Cardio Oncol. 2021, 3, 205–218. [Google Scholar] [CrossRef]
- Vitale, C.; D’Amato, M.; Calabrò, P.; Stanziola, A.A.; Mormile, M.; Molino, A. Venous thromboembolism and lung cancer: A review. Multidiscip. Respir. Med. 2015, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J. Thromb. Haemost. 2007, 5, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Ay, C.; Pabinger, I.; Cohen, A.T. Cancer-associated venous thromboembolism: Burden, mechanisms, and management. Thromb. Haemost. 2017, 117, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A. Venous thromboembolism and prognosis in cancer. Thromb. Res. 2010, 125, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Moik, F.; Chan, W.S.E.; Wiedemann, S.; Hoeller, C.; Tuchmann, F.; Aretin, M.B.; Fuereder, T.; Zöchbauer-Müller, S.; Preusser, M.; Pabinger, I.; et al. Incidence, risk factors, and outcomes of venous and arterial thromboembolism in immune checkpoint inhibitor therapy. Blood 2021, 137, 1669–1678. [Google Scholar] [CrossRef]
- Hill, H.; Robinson, M.; Lu, L.; Slaughter, D.; Amin, A.; Mileham, K.; Patel, J.N. Venous thromboembolism incidence and risk factors in non-small cell lung cancer patients receiving first-line systemic therapy. Thromb. Res. 2021, 208, 71–78. [Google Scholar] [CrossRef]
- Khorana, A.A.; Kuderer, N.M.; Germain, G.; McCrae, K.; Laliberté, F.; Lyman, G.H.; Streiff, M.B. Cancer associated thrombosis and mortality in patients with cancer stratified by Khorana score risk levels. Cancer Med. 2020, 9, 8062–8073. [Google Scholar] [CrossRef]
- Kim, E.S.; Baran, A.M.; Mondo, E.L.; Rodgers, T.D.; Nielsen, G.C.; Dougherty, D.W.; Pandya, K.J.; Rich, D.Q.; van Wijngaarden, E. Risk of thromboembolism in cisplatin versus carboplatin-treated patients with lung cancer. PLoS ONE 2017, 12, 410. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wen, Z. Risk factors and prognosis of pulmonary embolism in patients with lung cancer. Medicine 2017, 96, e6638. [Google Scholar] [CrossRef]
- Navi, B.B.; Reiner, A.S.; Kamel, H. Risk of arterial thromboembolism in patients with cancer. J. Am. Coll. Cardiol. 2017, 70, 926–938. [Google Scholar] [CrossRef] [PubMed]
- Seng, S.; Liu, Z.; Chiu, S.K. Risk of venous thromboembolism in patients with cancer treated with cisplatin: A systematic review and meta-analysis. J. Clin. Oncol. 2012, 30, 4416–4426. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.; Bothner, U.; Jick, S.S. Chronic obstructive pulmonary disease and the risk of cardiovascular diseases. Eur. J. Epidemiol. 2010, 25, 253–260. [Google Scholar] [CrossRef]
- Khorana, A.A.; Connolly, G.C. Assessing risk of venous thromboembolism in the patient with cancer. J. Clin. Oncol. 2009, 27, 4839–4847. [Google Scholar] [CrossRef] [PubMed]
- Blom, J.W.; Osanto, S.; Rosendaal, F.R. The risk of a venous thrombotic event in lung cancer patients: Higher risk for adenocarcinoma than squamous cell carcinoma. J. Thromb. Haemost. 2004, 2, 1760–1765. [Google Scholar] [CrossRef] [PubMed]
- Mulder, F.I.; Candeloro, M.; Kamphuisen, P.W.; Di Nisio, M.; Bossuyt, P.M.; Guman, N.; Smit, K.; Büller, H.R.; van Es, N. The Khorana score for prediction of venous thromboembolism in cancer patients: A systematic review and meta-analysis. Haematology 2019, 104, 1277–1287. [Google Scholar] [CrossRef]
- Deschênes-Simard, X.; Richard, C.; Galland, L.; Blais, F.; Desilets, A.; Malo, J.; Cvetkovic, L.; Belkaid, W.; Elkrief, A.; Gagné, A.; et al. Venous thrombotic events in patients treated with immune checkpoint inhibitors for non-small cell lung cancer: A retrospective multicentric cohort study. Thromb. Res. 2021, 205, 29–39. [Google Scholar] [CrossRef]
- Shen, Q.; Dong, X.; Tang, X.; Zhou, J. Risk factors and prognosis value of venous thromboembolism in patients with advanced non-small cell lung cancer: A case control study. J. Thorac. Dis. 2017, 9, 5068–5074. [Google Scholar] [CrossRef]
- Mikuła-Pietrasik, J.; Witucka, A.; Pakuła, M.; Uruski, P.; Begier-Krasińska, B.; Niklas, A.; Tykarski, A.; Książek, K. Comprehensive review on how platinum- and taxane-based chemotherapy of ovarian cancer affects biology of normal cells. Cell. Mol. Life Sci. 2019, 76, 681–697. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Kate, S.; Noronha, V.; Patil, V.; Trivedi, V.; Goud, S.; More, S.; Bhairva, S.; Prabhash, K. Thromboembolic events in patients with advanced stage non-small cell lung cancer treated with platinum-based chemotherapy: A prospective observational study. Ecancermedicalscience 2018, 12, 876. [Google Scholar] [CrossRef] [PubMed]
- Nalluri, S.R.; Chu, D.; Keresztes, R.; Zhu, X.; Wu, S. Risk of Venous Thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: A meta-analysis. JAMA 2008, 300, 2277–2285. [Google Scholar] [CrossRef]
- Brioli, A.; Hochhaus, A. Encyclopedia of Molecular Pharmacology; Springer: Cham, Germany, 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Roopkumar, J.; Swaidani, S.; Kim, A.; Thapa, B.; Gervaso, L.; Hobbs, B.; Wei, W.; Alban, T.; Funchain, P.; Kundu, S.; et al. Increased incidence of venous thromboembolism with cancer immunotherapy. Med 2021, 2, 423–434.e3. [Google Scholar] [CrossRef]
- Goel, A.; Khorana, A.; Kartika, T.; Gowda, S.; Tao, D.L.; Thawani, R.; Shatzel, J.J. Assessing the risk of thromboembolism in cancer patients receiving immunotherapy. Eur. J. Haematol. 2022, 108, 271–277. [Google Scholar] [CrossRef]
- Engelmann, B.; Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 2013, 13, 34–45. [Google Scholar] [CrossRef]
- Iwai, C.; Jo, T.; Konishi, T.; Fujita, A.; Michihata, N.; Matsui, H.; Fushimi, K.; Yasunaga, H. Thrombotic risk of platinum combination chemotherapy with and without immune checkpoint inhibitors for advanced non-small cell lung cancer: A nationwide inpatient database study. Cancer Immunol. Immunother. 2023, 72, 3581–3591. [Google Scholar] [CrossRef] [PubMed]
- Alma, S.; Eloï, D.; Léa, V.; Julie, C.; Valérie, M.; Pierre, G.; Hilgers, W.; Philippe, G.; Christine, Z.; Philippe, D. Incidence of venous thromboembolism and discriminating capacity of Khorana score in lung cancer patients treated with immune checkpoint inhibitors. J. Thromb. Thrombolysis 2022, 54, 287–294. [Google Scholar] [CrossRef]
- Thawani, R.; Kartika, T.; Elstrott, B.; Batiuk, E.; Tao, D.; Gowda, S.; Chen, L.; Lavasseur, C.; Tun, N.; Taflin, N.; et al. Association of PD-L1 expression, tumor mutational burden and immunotherapy with venous thrombosis in patients with solid organ malignancies. Thromb. Res. 2022, 217, 12–14. [Google Scholar] [CrossRef]
- Cánovas, M.; Garay, D.; Moran, L.; Pérez, J.; Rubio, C.; de Mena, M.; Portero, B.; Castro, J.; Lage, Y.; Lavin, D.C.; et al. Immune checkpoint inhibitors-associated thrombosis in patients with lung cancer and melanoma: A study of the Spanish society of medical oncology (SEOM) thrombosis and cancer group. Clin. Transl. Oncol. 2022, 24, 2010–2020. [Google Scholar] [CrossRef]
- Ando, Y.; Hayashi, T.; Sugimoto, R.; Nishibe, S.; Ito, K.; Kawada, K.; Ikeda, Y.; Yamada, S.; Imaizumi, K. Risk factors for cancer-associated thrombosis in patients undergoing treatment with immune checkpoint inhibitors. Investig. New Drugs 2019, 38, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Drobni, Z.; Alvi, R.; Murphy, S.; Sullivan, R.; Hartmann, S.; Gilman, H.; Lee, H.; Zubiri, L.; Raghu, V.; et al. Immune checkpoint inhibitors for cancer and venous thromboembolic events. Eur. J. Cancer 2021, 158, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Sainz, L.; Martinez-Marin, V.; Viñal, D.; Martinez-Perez, D.; Pedregosa, J.; Garcia-Cuesta, J.; Villamayor, J.; Zamora, P.; Pinto, A.; Redondo, A.; et al. Incidence of venous thromboembolic events in cancer patients receiving immunotherapy: A single-institution experience. Clin. Transl. Oncol. 2021, 23, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
- Kewan, T.; Ko, T.; Flores, M.; Sallam, Y.; Haddad, A.; Daw, H. Prognostic impact and risk factors of cancer-associated thrombosis events in stage-IV cancer patients treated with immune checkpoint inhibitors. Eur. J. Haematol. 2021, 106, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Roopkumar, J.; Kim, A.; Bicky, T.; Hobbs, B.; Khorana, A. Venous thromboembolism in cancer patients receiving immunotherapy. Blood 2018, 132, 2510. [Google Scholar] [CrossRef]
- Solinas, C.; Saba, L.; Sganzerla, P.; Petrelli, F. Venous and arterial thromboembolic events with immune checkpoint inhibitors: A systematic review. Thromb. Res. 2020, 196, 444–453. [Google Scholar] [CrossRef]
- Frere, C.; Ederhy, S.; Salem, J.E. Letter to the editors-in-chief reply to: Solinas et al. Venous and arterial thromboembolic events with immune check point inhibitors: A systematic review. Thromb. Res. 2021, 208, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Nordström, M.; Lindblad, B.; Anderson, H.; Bergqvist, D.; Kjellström, T. Deep venous thrombosis and occult malignancy: An epidemiological study. BMJ 1994, 308, 891–894. [Google Scholar] [CrossRef]
- Kirschner, M.; do Ó Hartmann, N.; Parmentier, S.; Hart, C.; Henze, L.; Bisping, G.; Griesshammer, M.; Langer, F.; Pabinger-Fasching, I.; Matzdorff, A.; et al. Primary Thromboprophylaxis in Patients with Malignancies: Daily Practice Recommendations by the Hemostasis Working Party of the German Society of Hematology and Medical Oncology (DGHO), the Society of Thrombosis and Hemostasis Research (GTH), and the Austrian Society of Hematology and Oncology (ÖGHO). Cancers 2021, 13, 2905. [Google Scholar] [CrossRef]
- Khorana, A.A.; Kuderer, N.M.; Culakova, E.; Lyman, G.H.; Francis, C.W. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008, 111, 4902–4907. [Google Scholar] [CrossRef]
- Tsubata, Y.; Kawakado, K.; Hamai, K.; Furuya, N.; Yokoyama, T.; Saito, R.; Nakamura, A.; Masuda, T.; Hamaguchi, M.; Kuyama, S.; et al. Identification of risk factors for venous thromboembolism and validation of the Khorana score in patients with advanced lung cancer: Based on the multicenter, prospective Rising-VTE/NEJ037 study data. Int. J. Clin. Oncol. 2022, 28, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Numico, G.; Garrone, O.; Dongiovanni, V.; Silvestris, N.; Colantonio, I.; Di Costanzo, G.; Granetto, C.; Occelli, M.; Fea, E.; Heouaine, A.; et al. Prospective evaluation of major vascular events in patients with nonsmall cell lung carcinoma treated with cisplatin and gemcitabine. Cancer 2005, 103, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Wahrenbrock, M.; Borsig, L.; Le, D.; Varki, N.; Varki, A. Selectin-mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas. J. Clin. Investig. 2003, 112, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Icht, O.; Darzi, N.; Shimony, S.; Jacobi, O.; Reinhorn, D.; Landman, Y.; Mutai, R.; Averbuch, I.; Shochat, T.; Spectre, G.; et al. Venous thromboembolism incidence and risk assessment in lung cancer patients treated with immune checkpoint inhibitors. J. Thromb. Haemost. 2021, 19, 1250–1258. [Google Scholar] [CrossRef] [PubMed]
- van Es, N.; Le Gal, G.; Otten, H.; Robin, P.; Piccioli, A.; Lecumberri, R.; Jara-Palomares, L.; Religa, P.; Rieu, V.; Rondina, M.; et al. The Khorana score for prediction of venous thromboembolism in cancer patients: An individual patient data meta-analysis. J. Thromb. Haemost. 2020, 18, 1940–1951. [Google Scholar] [CrossRef]
- Gerotziafas, G.T.; Mahé, I.; Lefkou, E.; AboElnazar, E.; Abdel-Razeq, H.; Taher, A.; Antic, D.; Elalamy, I.; Syrigos, K.; Van Dreden, P.; et al. Overview of risk assessment models for venous thromboembolism in ambulatory patients with cancer. Thromb. Res. 2020, 191, S50–S57. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Razeq, H.; Sharaf, B.; Al-Jaghbeer, M.J.; Abu-Fares, H.; Bater, R.; Abu Shaer, M.; Abu-Jaish, H.; Abu Laban, D.; Salamah, O.; Tamimi, F.; et al. COMPASS-CAT versus Khorana risk assessment model for predicting venous thromboembolic events in patients with non-small cell lung cancer on active treatment with chemotherapy and/or immunotherapy, the CK-RAM study. J. Thromb. Thrombolysis 2023, 56, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Kratzer, T.B.; Bandi, P.; Freedman, N.D.; Smith, R.A.; Travis, W.D.; Jemal, A.; Siegel, R.L. Lung cancer statistics, 2023. Cancer 2024, 130, 1330–1348. [Google Scholar] [CrossRef]
- Busti, F.; Marchi, G.; Ugolini, S.; Castagna, A.; Girelli, D. Anemia and iron deficiency in cancer patients: Role of iron replacement therapy. Pharmaceuticals 2018, 11, 94. [Google Scholar] [CrossRef]
Patient-Related Factors | Tumor-Related Factors | Therapy-Related Factors |
---|---|---|
Age | Tumor stage Histologic subtype Biomarkers (e.g., PD-L1, oncogenic driver mutation, cancer cells expressing high levels of tissue factor and systemic tissue factor) | Platinum-based therapy |
Sex | Antiangiogenic therapy (e.g., VEGF inhibitors) | |
Smoking history | Immune checkpoint inhibitor therapy | |
Performance status | Central venous line | |
Body mass index (BMI) | Surgical procedure | |
Comorbidities (e.g., COPD, diabetes or coronary heart disease, autoimmune and renal diseases, infection) | Hospitalization | |
History of thromboembolic events | Transfusion |
Characteristics | n Patients/Events (%) |
---|---|
Demographics and clinical characteristics | |
Age, years (median, range) | 65 [57–72] |
Sex, male/female | 111 (64.2%)/62 (35.8%) |
ECOG ≥ 2 | 21 (12.2%) |
Smoking | 126 (72.8%) |
| 35.0 [20.0–46.3] |
Diabetes mellitus | 42 (24.3%) |
Coronary artery disease | 17 (9.8%) |
Arterial hypertension | 107 (61.8%) |
Forced Expiratory Volume in 1 Second (FEV1), l (median, range) | 2.43 [1.9–3.2] |
Peripherally inserted central venous catheter (PICC) | 33 (19%) |
Port | 102 (59%) |
Prior venous thromboembolism (>2 years before cancer diagnosis) | 12 (6.9%) |
Venous thromboembolism under chemotherapy | 19 (10.6%) |
Venous thromboembolism under checkpoint inhibitors | 12 (6.9%) |
Prior arterial thromboembolism (>2 years before cancer diagnosis) | 31 (17.3%) |
Arterial thromboembolism under chemotherapy | 8 (4.6%) |
Arterial thromboembolism under checkpoint inhibitors | 2 (1.2%) |
Continuous anticoagulation at baseline | 30 (17.3%) |
Continuous antiplatelet therapy at baseline | 25 (14.5%) |
Combined continuous anticoagulation and antiplatelet therapy | 8 (4.6%) |
Khorana risk score | |
| 144 (83%) |
| 29 (17%) |
Tumor characteristics | |
Histology | |
Adenocarcinoma | 98 (56.6%) |
Squamous cell carcinoma | 47 (27.2%) |
Small cell carcinoma | 21 (12.1%) |
Undifferentiated and others | 7 (4.0%) |
PD-L1 expression | |
| 37 (21.4%) |
| 45 (26.0%) |
| 48 (27.7%) |
Therapy | |
Initial surgical therapy | 40 (23.1%) |
Initial radiation therapy | 62 (35.8%) |
Cisplatin | 62 (35.8%) |
Carboplatin | 80 (46.2%) |
Concomitant therapy during checkpoint inhibitors therapy (n) | 88 |
| 66 (75.0%) |
| 22 (25.0%) |
Pembrolizumab | 89 (51.4%) |
Nivolumab | 36 (20.8%) |
Atezolizumab | 36 (20.8%) |
Durvalumab | 11 (6.4%) |
Ipilimumab and nivolumab | 1 (0.6%) |
Line of therapy where ICI was applied | 2, range 1–7 |
n (%) Patients | |
---|---|
Deep vein thrombosis | 11/173 (6.4%) |
Deep vein thrombosis and pulmonary embolism | 6/173 (3.5%) |
Catheter-related thrombosis | 6/173 (3.5%) |
Pulmonary embolism | 5/173 (2.9%) |
Splanchnic thrombosis | 2/173 (1.2%) |
Sinus vein thrombosis | 1/173 (0.6%) |
In total, venous thrombotic events | 31/173 (18.1%) |
Acute coronary syndrome | 4/173 (2.3%) |
Ischemic stroke | 3/173 (1.7%) |
Acute vascular occlusion | 3/173 (1.7%) |
In total, arterial thrombotic events | 10/173 (5.7%) |
Thrombotic Event | Small Cell Carcinoma, n/N (%) | Adenocarcinoma, n/N (%) | Squamous Cell Carcinoma, n/N (%) |
---|---|---|---|
VTE under chemotherapy | 0 | 17/98 (17.4%) * | 2/47 (4.3%) |
VTE under ICIs | 1/21 (4.8%) | 9/98 (9.2%) | 2/47 (4.3%) |
ATE under chemotherapy | 1/21 (4.8%) | 3/98 (3.1%) | 4/47 (8.5%) |
ATE under ICIs | 1/21 (4.8%) | 1/98 (1.02%) | 0 |
Risk Factor | p Value |
---|---|
Age | 0.29 |
Sex | 0.65 |
Eastern Cooperative Oncology Group (ECOG) performance status | 0.96 |
Smoking | 0.78 |
Diabetes mellitus | 0.60 |
Coronary artery disease | 0.48 |
Arterial hypertension | 0.65 |
Forced Expiratory Volume in 1 Second (FEV1) | 0.27 |
Prior venous thromboembolism (>2 years before cancer diagnosis) | <0.001 |
Khorana risk score | 0.20 |
Histology (adenocarcinoma versus squamous cell carcinoma) | <0.001 |
PD-L1 expression | 0.48 |
Cisplatin versus carboplatin | 0.33 |
Chemotherapy versus ICI therapy (alone or combined) | 0.19 |
ICIs alone versus combined immunochemotherapy | 0.43 |
Risk Factor | Multivariable Analysis, OR, 95% CI, p Value |
---|---|
Prior venous thromboembolism (>2 years before cancer diagnosis) | OR 4.46, 95% CI 1.20–16.63, p = 0.03 |
Histology (adenocarcinoma versus squamous cell carcinoma) | OR 0.29, 95% CI 0.09–0.93, p = 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morath, O.; Hoffmann, J.; Schilling, K.; Hochhaus, A.; Rachow, T.; Lang, S.M. Venous and Arterial Thromboembolism in Lung Cancer Patients: A Retrospective Analysis. J. Clin. Med. 2024, 13, 3773. https://doi.org/10.3390/jcm13133773
Morath O, Hoffmann J, Schilling K, Hochhaus A, Rachow T, Lang SM. Venous and Arterial Thromboembolism in Lung Cancer Patients: A Retrospective Analysis. Journal of Clinical Medicine. 2024; 13(13):3773. https://doi.org/10.3390/jcm13133773
Chicago/Turabian StyleMorath, Olga, Julia Hoffmann, Kristina Schilling, Andreas Hochhaus, Tobias Rachow, and Susanne M. Lang. 2024. "Venous and Arterial Thromboembolism in Lung Cancer Patients: A Retrospective Analysis" Journal of Clinical Medicine 13, no. 13: 3773. https://doi.org/10.3390/jcm13133773
APA StyleMorath, O., Hoffmann, J., Schilling, K., Hochhaus, A., Rachow, T., & Lang, S. M. (2024). Venous and Arterial Thromboembolism in Lung Cancer Patients: A Retrospective Analysis. Journal of Clinical Medicine, 13(13), 3773. https://doi.org/10.3390/jcm13133773