Artificial Intelligence-Based Diagnosis of Gastric Mesenchymal Tumors Using Digital Endosonography Image Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. EUS
2.3. Histopathology
2.4. Digital Image Analysis
2.5. AI Model for Differentiating GISTs from Non-GIST Tumors
2.6. Statistical Analysis
3. Results
3.1. Baseline Clinical and Endoscopic Characteristics of Patients with a Gastric Mesenchymal Tumor
3.2. Univariate Analysis of Factors Predicting GISTs
3.3. Developing AI Models for Differentiating GISTs from Non-GIST Tumors
3.4. Classification Performance of AI Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choe, Y.; Cho, Y.K.; Kim, G.H.; Choi, J.H.; Kim, E.S.; Kim, J.H.; Choi, E.K.; Kim, T.H.; Kim, S.H.; Kim, D.H.; et al. Prevalence, natural progression, and clinical practices of upper gastrointestinal subepithelial lesions in Korea: A multicenter study. Clin. Endosc. 2023, 56, 744–753. [Google Scholar] [CrossRef] [PubMed]
- Heo, D.H.; Yang, M.A.; Song, J.S.; Lee, W.D.; Cho, J.W. Prevalence and natural course of incidental gastric subepithelial tumors. Clin. Endosc. 2024; in press. [Google Scholar] [CrossRef] [PubMed]
- Joo, D.C.; Kim, G.H.; Lee, M.W.; Lee, B.E.; Baek, D.H.; Song, G.A. Diagnostic performance of endoscopic ultrasonography-guided fine-needle biopsy in upper gastrointestinal subepithelial tumors measuring 2–5 cm in size. Surg. Endosc. 2022, 36, 8060–8066. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.W.; Kim, G.H.; Kim, K.B.; Kim, Y.H.; Park, D.Y.; Choi, C.I.; Kim, D.H.; Jeon, T.Y. Digital image analysis-based scoring system for endoscopic ultrasonography is useful in predicting gastrointestinal stromal tumors. Gastric Cancer 2019, 22, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Sbaraglia, M.; Businello, G.; Bellan, E.; Fassan, M.; Dei Tos, A.P. Mesenchymal tumours of the gastrointestinal tract. Pathologica 2021, 113, 230–251. [Google Scholar] [CrossRef] [PubMed]
- Lim, H. Endoscopic management of gastric subepithelial tumor. J. Dig. Cancer Res. 2022, 10, 16–21. [Google Scholar] [CrossRef]
- Pal, S.; Hodgar, D. Gastrointestinal subepithelial lesions: A review. J. Dig. Endosc. 2023, 14, 99–105. [Google Scholar] [CrossRef]
- Ryu, D.G.; Choi, C.W. Common gastric subepithelial tumors in koreans. Korean J. Helicobacter Up. Gastrointest. Res. 2022, 22, 29–37. [Google Scholar] [CrossRef]
- Hunt, G.C.; Smith, P.P.; Faigel, D.O. Yield of tissue sampling for submucosal lesions evaluated by EUS. Gastrointest. Endosc. 2003, 57, 68–72. [Google Scholar] [CrossRef]
- Goto, O.; Kaise, M.; Iwakiri, K. Advancements in the diagnosis of gastric subepithelial tumors. Gut Liver 2022, 16, 321–330. [Google Scholar] [CrossRef]
- Ra, J.C.; Lee, E.S.; Lee, J.B.; Kim, J.G.; Kim, B.J.; Park, H.J.; Park, S.B.; Choi, B.I. Diagnostic performance of stomach CT compared with endoscopic ultrasonography in diagnosing gastric subepithelial tumors. Abdom. Radiol. 2017, 42, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Gress, F.; Schmitt, C.; Savides, T.; Faigel, D.O.; Catalano, M.; Wassef, W.; Roubein, L.; Nickl, N.; Ciaccia, D.; Bhutani, M.; et al. Interobserver agreement for EUS in the evaluation and diagnosis of submucosal masses. Gastrointest. Endosc. 2001, 53, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Catalano, M.F.; Sivak, M.V.; Bedford, R.A.; Falk, G.W.; van Stolk, R.; Presa, F.; Van Dam, J. Observer variation and reproducibility of endoscopic ultrasonography. Gastrointest. Endosc. 1995, 41, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.W.; Kim, G.H. Diagnosing gastric mesenchymal tumors by digital endoscopic ultrasonography image analysis. Clin. Endosc. 2021, 54, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Seven, G.; Silahtaroglu, G.; Seven, O.O.; Senturk, H. Differentiating gastrointestinal stromal tumors from leiomyomas using a neural network trained on endoscopic ultrasonography images. Dig. Dis. 2022, 40, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Gomes, R.S.A.; de Oliveira, G.H.P.; de Moura, D.T.H.; Kotinda, A.P.S.T.; Matsubayashi, C.O.; Hirsch, B.S.; Veras, M.O.; Ribeiro Jordão Sasso, J.G.; Trasolini, R.P.; Bernardo, W.M.; et al. Endoscopic ultrasound artificial intelligence-assisted for prediction of gastrointestinal stromal tumors diagnosis: A systematic review and meta-analysis. World J. Gastrointest. Endosc. 2023, 15, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Facciorusso, A.; Sunny, S.P.; Del Prete, V.; Antonino, M.; Muscatiello, N. Comparison between fine-needle biopsy and fine-needle aspiration for EUS-guided sampling of subepithelial lesions: A meta-analysis. Gastrointest. Endosc. 2020, 91, 14–22.e2. [Google Scholar] [CrossRef] [PubMed]
- Hirai, K.; Kuwahara, T.; Furukawa, K.; Kakushima, N.; Furune, S.; Yamamoto, H.; Marukawa, T.; Asai, H.; Matsui, K.; Sasaki, Y.; et al. Artificial intelligence-based diagnosis of upper gastrointestinal subepithelial lesions on endoscopic ultrasonography images. Gastric Cancer 2022, 25, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-C.; Li, Q.-L.; Yu, Y.-F.; Yao, L.-Q.; Xu, M.-D.; Zhang, Y.-Q.; Zhong, Y.-S.; Chen, W.-F.; Zhou, P.-H. Diagnostic efficacy of endoscopic ultrasound-guided needle sampling for upper gastrointestinal subepithelial lesions: A meta-analysis. Surg. Endosc. 2016, 30, 2431–2441. [Google Scholar] [CrossRef]
- Schulz, R.T.; Fabio, L.C.; Franco, M.C.; Siqueira, S.A.; Sakai, P.; Maluf-Filho, F. Predictive features for histology of gastric subepithelial lesions. Arq. Gastroenterol. 2017, 54, 11–15. [Google Scholar] [CrossRef]
- Kim, G.H.; Kim, K.B.; Lee, S.H.; Jeon, H.K.; Park, D.Y.; Jeon, T.Y.; Kim, D.H.; Song, G.A. Digital image analysis of endoscopic ultrasonography is helpful in diagnosing gastric mesenchymal tumors. BMC Gastroenterol. 2014, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, T.; Kubota, K.; Mori, M.; Kikuchi, Y.; Katsuta, L.; Kasahara, M.; Oda, G.; Ishiba, T.; Nakagawa, T.; Tateishi, U. Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network. Jpn. J. Radiol. 2019, 37, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Ting, D.S.W.; Cheung, C.Y.-L.; Lim, G.; Tan, G.S.W.; Quang, N.D.; Gan, A.; Hamzah, H.; Garcia-Franco, R.; San Yeo, I.Y.; Lee, S.Y.; et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 2017, 318, 2211–2223. [Google Scholar] [CrossRef] [PubMed]
- Horie, Y.; Yoshio, T.; Aoyama, K.; Yoshimizu, S.; Horiuchi, Y.; Ishiyama, A.; Hirasawa, T.; Tsuchida, T.; Ozawa, T.; Ishihara, S.; et al. Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest. Endosc. 2019, 89, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, T.; Aoyama, K.; Tanimoto, T.; Ishihara, S.; Shichijo, S.; Ozawa, T.; Ohnishi, T.; Fujishiro, M.; Matsuo, K.; Fujisaki, J.; et al. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 2018, 21, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Byrne, M.F.; Chapados, N.; Soudan, F.; Oertel, C.; Pérez, M.L.; Kelly, R.; Iqbal, N.; Chandelier, F.; Rex, D.K. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut 2019, 68, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, T.; Hara, K.; Mizuno, N.; Okuno, N.; Matsumoto, S.; Obata, M.; Kurita, Y.; Koda, H.; Toriyama, K.; Onishi, S.; et al. Usefulness of deep learning analysis for the diagnosis of malignancy in intraductal papillary mucinous neoplasms of the pancreas. Clin. Transl. Gastroenterol. 2019, 10, e00045. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Kim, G.H.; Kim, K.B.; Lee, M.W.; Lee, B.E.; Baek, D.H.; Kim, D.H.; Park, J.C. Application of A convolutional neural network in the diagnosis of gastric mesenchymal tumors on endoscopic ultrasonography images. J. Clin. Med. 2020, 9, 3162. [Google Scholar] [CrossRef]
- Minoda, Y.; Ihara, E.; Komori, K.; Ogino, H.; Otsuka, Y.; Chinen, T.; Tsuda, Y.; Ando, K.; Yamamoto, H.; Ogawa, Y. Efficacy of endoscopic ultrasound with artificial intelligence for the diagnosis of gastrointestinal stromal tumors. J. Gastroenterol. 2020, 55, 1119–1126. [Google Scholar] [CrossRef]
- Yoon, J.M.; Kim, G.H.; Park, D.Y.; Shin, N.R.; Ahn, S.; Park, C.H.; Lee, J.S.; Lee, K.J.; Lee, B.E.; Song, G.A. Endosonographic features of gastric schwannoma: A Single Center experience. Clin. Endosc. 2016, 49, 548–554. [Google Scholar] [CrossRef]
- Misumi, A.; Murakami, A.; Harada, K.; Baba, K.; Akagi, M. Definition of carcinoma of the gastric cardia. Langenbecks Arch. Chir. 1989, 374, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, M.; Sobin, L.H.; Sarlomo-Rikala, M. Immunohistochemical spectrum of GISTs at different sites and their differential diagnosis with a reference to CD117 (KIT). Mod. Pathol. 2000, 13, 1134–1142. [Google Scholar] [CrossRef]
- Dreiseitl, S.; Ohno-Machado, L. Logistic regression and artificial neural network classification models: A methodology review. J. Biomed. Inform. 2002, 35, 352–359. [Google Scholar] [CrossRef]
- Chen, H.; Wang, N.; Du, X.; Mei, K.; Zhou, Y.; Cai, G. Classification prediction of breast cancer based on machine learning. Comput. Intell. Neurosci. 2023, 2023, 6530719. [Google Scholar] [CrossRef]
- Swain, P.H.; Hauska, H. The decision tree classifier: Design and potential. IEEE Trans. Geosci. Electron. 1977, 15, 142–147. [Google Scholar] [CrossRef]
- Prusty, S.; Patnaik, S.; Dash, S.K. SKCV: Stratified K-fold cross-validation on ML classifiers for predicting cervical cancer. Front. Nanotechnol. 2022, 4, 972421. [Google Scholar] [CrossRef]
- Azar, A.T.; Elshazly, H.I.; Hassanien, A.E.; Elkorany, A.M. A random forest classifier for lymph diseases. Comput. Methods Prog. Biomed. 2014, 113, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Kramer, O. K-nearest neighbors. In Dimensionality Reduction with Unsupervised Nearest Neighbors; Kramer, O., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 13–23. [Google Scholar] [CrossRef]
- Suthaharan, S. Support vector machine. In Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning; Springer: Boston, MA, USA, 2016; pp. 207–235. [Google Scholar] [CrossRef]
- Ge, Q.C.; Wu, Y.F.; Liu, Z.M.; Wang, Z.; Wang, S.; Liu, X.; Ge, N.; Guo, J.T.; Sun, S.Y. Efficacy of endoscopic ultrasound in the evaluation of small gastrointestinal stromal tumors. World J. Gastroenterol. 2022, 28, 5457–5468. [Google Scholar] [CrossRef]
- Abdalla, T.S.A.; Pieper, L.; Kist, M.; Thomaschewski, M.; Klinkhammer-Schalke, M.; Zeissig, S.R.; Tol, K.K.-v.; Wellner, U.F.; Keck, T.; Hummel, R. Gastrointestinal stromal tumors of the upper GI tract: Population-based analysis of epidemiology, treatment and outcome based on data from the German Clinical Cancer Registry Group. J. Cancer Res. Clin. Oncol. 2023, 149, 7461–7469. [Google Scholar] [CrossRef]
- Khan, T.M.; Verbus, E.A.; Rossi, A.J.; Hernandez, J.M.; Davis, J.L.; Coakley, B.A.; Blakely, A.M. Patient demographics, clinicopathologic features, and outcomes in wild-type gastrointestinal stromal tumor: A national cohort analysis. Sci. Rep. 2022, 12, 5774. [Google Scholar] [CrossRef]
- Kim, G.H. Systematic endoscopic approach for diagnosing gastric subepithelial tumors. Gut Liver 2022, 16, 19–27. [Google Scholar] [CrossRef]
- Yu, L.; Shi, X.; Liu, X.; Jin, W.; Jia, X.; Xi, S.; Wang, A.; Li, T.; Zhang, X.; Tian, G.; et al. Artificial intelligence systems for diagnosis and clinical classification of COVID-19. Front. Microbiol. 2021, 12, 729455. [Google Scholar] [CrossRef]
Characteristics | Number |
---|---|
Age (years, mean ± SD) | 58.2 ± 11.7 |
Sex, n (%) | |
Male | 159 (41.1) |
Female | 228 (58.9) |
Size (cm, mean ± SD) | 3.1 ± 1.9 |
Longitudinal location, n (%) | |
Cardia | 37 (9.6) |
Upper third | 190 (49.1) |
Middle third | 134 (34.6) |
Lower third | 26 (6.7) |
Transverse location, n (%) | |
Anterior | 64 (16.5) |
Lesser curvature | 57 (14.7) |
Posterior | 119 (30.8) |
Greater curvature | 147 (38.0) |
Ulceration, n (%) | |
Absent | 342 (88.4) |
Present | 45 (11.6) |
Features | Non-GIST Group (n = 93) | GIST Group (n = 294) | p-Value |
---|---|---|---|
Age (years, mean ± SD) | 52.1 ± 12.2 | 61.9 ± 10.7 | <0.001 |
Sex, n (%) | 0.309 | ||
Male | 34 (36.6) | 125 (42.5) | |
Female | 59 (63.4) | 169 (57.5) | |
Size (cm, mean ± SD) | 3.2 ± 1.9 | 3.1 ± 1.9 | 0.671 |
Longitudinal location, n (%) | <0.001 | ||
Cardia | 32 (34.4) | 5 (1.7) | |
Upper third | 22 (23.7) | 168 (57.1) | |
Middle third | 35 (37.6) | 99 (33.7) | |
Lower third | 4 (4.3) | 22 (5.7) | |
Transverse location, n (%) | 0.231 | ||
Anterior wall | 12 (12.9) | 52 (17.7) | |
Lesser curvature | 8 (8.6) | 49 (16.7) | |
Posterior wall | 38 (40.9) | 81 (27.6) | |
Greater curvature | 35 (37.6) | 112 (38.1) | |
Ulceration, n (%) | 0.763 | ||
Absent | 83 (89.2) | 259 (88.1) | |
Present | 10 (10.8) | 35 (11.9) | |
Tmean (mean ± SD) | 42.7 ± 19.2 | 63.2 ± 18.8 | <0.001 |
TSD (mean ± SD) | 16.2 ± 5.2 | 19.3 ± 5.1 | <0.001 |
Diagnostic Performance | ||||||
---|---|---|---|---|---|---|
AUC (95% CI) | Sensitivity, % (95% CI) | Specificity, % (95% CI) | PPV, % (95% CI) | NPV, % (95% CI) | ||
Baseline model (only EUS images) | Logistic regression | 0.805 (0.753–0.855) | 65.6 (62.5–68.5) | 90.9 (78.5–92.0) | 81.8 (80.3–85.3) | 66.3 (61.6–71.1) |
Decision tree | 0.673 (0.580–0.710) | 71.9 (67.5–77.1) | 45.5 (34.6–58.1) | 79.3 (76.9–83.5) | 63.1 (60.0–68.0) | |
Random forest | 0.781 (0.723–0.836) | 78.1 (74.9–84.3) | 81.8 (64.4–89.9) | 78.5 (70.2–84.9) | 64.0 (50.7–77.4) | |
KNN | 0.740 (0.666–0.795) | 78.8 (69.6–79.4) | 84.3 (72.3–85.4) | 85.5 (79.3–88.8) | 62.6 (52.9–64.3) | |
SVM | 0.791 (0.666–0.795) | 93.9 (79.9–94.9) | 74.9 (66.2–83.7) | 75.1 (73.0–80.3) | 52.9 (36.0–59.9) | |
New model (integrating clinical and endoscopic factors) | Logistic regression | 0.853 (0.799–0.892) | 87.5 (83.2–91.7) | 90.9 (80.4–95.1) | 88.2 (82.5–93.6) | 85.0 (80.4–89.7) |
Decision tree | 0.715 (0.668–0.772) | 93.8 (88.9–96.2) | 63.6 (62.9–69.2) | 88.4 (85.1–90.7) | 77.0 (76.2–83.0) | |
Random forest | 0.896 (0.825–0.919) | 93.8 (87.8–94.5) | 81.8 (70.6–86.7) | 91.4 (85.0–96.0) | 75.1 (70.3–79.9) | |
KNN | 0.825 (0.766–0.898) | 93.9 (85.5–96.4) | 81.1 (74.9–82.3) | 93.2 (84.4–96.2) | 80.6 (69.3–83.0) | |
SVM | 0.794 (0.732–0.856) | 93.9 (85.0–96.6) | 80.5 (69.9–91.0) | 79.5 (77.4–81.8) | 52.2 (70.0–85.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joo, D.C.; Kim, G.H.; Lee, M.W.; Lee, B.E.; Kim, J.W.; Kim, K.B. Artificial Intelligence-Based Diagnosis of Gastric Mesenchymal Tumors Using Digital Endosonography Image Analysis. J. Clin. Med. 2024, 13, 3725. https://doi.org/10.3390/jcm13133725
Joo DC, Kim GH, Lee MW, Lee BE, Kim JW, Kim KB. Artificial Intelligence-Based Diagnosis of Gastric Mesenchymal Tumors Using Digital Endosonography Image Analysis. Journal of Clinical Medicine. 2024; 13(13):3725. https://doi.org/10.3390/jcm13133725
Chicago/Turabian StyleJoo, Dong Chan, Gwang Ha Kim, Moon Won Lee, Bong Eun Lee, Ji Woo Kim, and Kwang Baek Kim. 2024. "Artificial Intelligence-Based Diagnosis of Gastric Mesenchymal Tumors Using Digital Endosonography Image Analysis" Journal of Clinical Medicine 13, no. 13: 3725. https://doi.org/10.3390/jcm13133725
APA StyleJoo, D. C., Kim, G. H., Lee, M. W., Lee, B. E., Kim, J. W., & Kim, K. B. (2024). Artificial Intelligence-Based Diagnosis of Gastric Mesenchymal Tumors Using Digital Endosonography Image Analysis. Journal of Clinical Medicine, 13(13), 3725. https://doi.org/10.3390/jcm13133725