TNF-alfa Gene Polymorphism Associations with Multiple Sclerosis
Abstract
:1. Introduction
2. Methods
2.1. Study Design
- Group I: patients with multiple sclerosis (n = 250).
- Group II: healthy subjects (n = 250).
- Patients diagnosed with multiple sclerosis, confirmed using the 2017 McDonald diagnostic criteria. This includes the presence of positive oligoclonal bands, typical demyelinating lesions on brain or spinal cord MRI scans (according to MAGNIMS criteria), and clinical symptoms or relapses.
- Males and females aged between 18 and 99 years.
- Patients younger than 18 years.
- Patients who have received a transfusion of blood or blood components within the past four weeks.
- Patients who have received treatment with growth factors that influence blood production within the past four weeks.
- Healthy individuals without multiple sclerosis.
- Males and females aged between 18 and 99 years.
- Individuals with subjective neurological complaints.
- Individuals who have undergone spinal anesthesia.
- Individuals with other neurological diseases, excluding those related to demyelinating disorders of the brain and/or spinal cord.
2.2. DNA Extraction and Genotyping
- rs1800630: TaqMan probe Assay ID C___2215707_10,
- rs1800629: TaqMan probe Assay ID C___7514879_10, and
- rs361525: TaqMan probe Assay ID C___11918230_10.
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frischer, J.M.; Bramow, S.; Dal-Bianco, A.; Lucchinetti, C.F.; Rauschka, H.; Schmidbauer, M.; Laursen, H.; Sorensen, P.S.; Lassmann, H. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 2009, 132 Pt 5, 1175–1189. [Google Scholar] [CrossRef] [PubMed]
- Miljković, D.; Spasojević, I. Multiple Sclerosis: Molecular Mechanisms and Therapeutic Opportunities. Antioxid. Redox Signal 2013, 19, 2286. [Google Scholar] [CrossRef]
- Multiple Sclerosis|National Institute of Neurological Disorders and Stroke. Available online: https://www.ninds.nih.gov/health–information/disorders/multiple–sclerosis (accessed on 5 December 2023).
- Buzzard, K.; Chan, W.H.; Kilpatrick, T.; Murray, S. Multiple Sclerosis: Basic and Clinical. Adv. Neurobiol. 2017, 15, 211–252. [Google Scholar] [PubMed]
- Ghasemi, N.; Razavi, S.; Nikzad, E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell–Based Therapy. Cell J. 2017, 19, 1. [Google Scholar]
- Kamel, F.O. Factors involved in relapse of multiple sclerosis. J. Microsc. Ultrastruct. 2019, 7, 103–108. [Google Scholar] [CrossRef]
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I.; et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler. 2020, 26, 1816–1821. [Google Scholar] [CrossRef]
- Pugliatti, M.; Rosati, G.; Carton, H.; Riise, T.; Drulovic, J.; Vécsei, L.; Milanov, I. The epidemiology of multiple sclerosis in Europe. Eur. J. Neurol. 2006, 13, 700–722. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Aliaga, E.S.; Barkhof, F. MRI mimics of multiple sclerosis. Handb. Clin. Neurol. 2014, 122, 291–316. [Google Scholar]
- Nourbakhsh, B.; Mowry, E.M. Multiple sclerosis risk factors and pathogenesis. Contin. Lifelong Learn. Neurol. 2019, 25, 596–610. [Google Scholar] [CrossRef]
- Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015, 15, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Hauser, S.L.; Cree, B.A.C. Treatment of Multiple Sclerosis: A Review. Am. J. Med. 2020, 133, 1380–1390.e2. [Google Scholar] [CrossRef] [PubMed]
- Patsopoulos, N.A. Genetics of Multiple Sclerosis: An Overview and New Directions. Cold Spring Harb. Perspect. Med. 2018, 8, a028951. [Google Scholar] [CrossRef]
- Fresegna, D.; Bullitta, S.; Musella, A.; Rizzo, F.R.; De Vito, F.; Guadalupi, L.; Caioli, S.; Balletta, S.; Sanna, K.; Dolcetti, E.; et al. Re–Examining the Role of TNF in MS Pathogenesis and Therapy. Cells 2020, 9, 2290. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.R. TNF–mediated inflammatory disease. J. Pathol. 2008, 214, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, T.; Mitoma, H.; Harashima, S.I.; Tsukamoto, H.; Shimoda, T. Transmembrane TNF–alpha: Structure, function and interaction with anti–TNF agents. Rheumatology 2010, 49, 1215–1228. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Caldito, N. Role of tumor necrosis factor–alpha in the central nervous system: A focus on autoimmune disorders. Front. Immunol. 2023, 14, 1213448. [Google Scholar] [CrossRef] [PubMed]
- Kemanetzoglou, E.; Andreadou, E. CNS Demyelination with TNF–α Blockers. Curr. Neurol. Neurosci. Rep. 2017, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Hajeer, A.H.; Hutchinson, I.V. Influence of TNFα gene polymorphisms on TNFα production and disease. Hum. Immunol. 2001, 62, 1191–1199. [Google Scholar] [CrossRef]
- Xu, L.; Liu, C.; Zheng, Y.; Huang, Y.; Zhong, Y.; Zhao, Z.; Ma, N.; Zhang, Z.; Zhang, L. Association of TNF–α–308G/A, –238G/A, –863C/A, –1031T/C, –857C/T polymorphisms with periodontitis susceptibility: Evidence from a meta–analysis of 52 studies. Medicine 2020, 99, E21851. [Google Scholar] [CrossRef]
- El–Tahan, R.R.; Ghoneim, A.M.; El–Mashad, N. TNF–α gene polymorphisms and expression. Springerplus 2016, 5, 1508. [Google Scholar] [CrossRef]
- Jang, D.I.; Lee, A.H.; Shin, H.Y.; Song, H.R.; Park, J.H.; Kang, T.B.; Lee, S.R.; Yang, S.H. The Role of Tumor Necrosis Factor Alpha (TNF–α) in Autoimmune Disease and Current TNF–α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef]
- Steeland, S.; Libert, C.; Vandenbroucke, R.E. A New Venue of TNF Targeting. Int. J. Mol. Sci. 2018, 19, 1442. [Google Scholar] [CrossRef]
- Karamita, M.; Barnum, C.; Möbius, W.; Tansey, M.G.; Szymkowski, D.E.; Lassmann, H.; Probert, L. Therapeutic inhibition of soluble brain TNF promotes remyelination by increasing myelin phagocytosis by microglia. JCI Insight 2017, 2, e87455. [Google Scholar] [CrossRef]
- Zelová, H.; Hošek, J. TNF–α signalling and inflammation: Interactions between old acquaintances. Inflamm. Res. 2013, 62, 641–651. [Google Scholar] [CrossRef]
- Qidwai, T.; Khan, F. Tumour Necrosis Factor Gene Polymorphism and Disease Prevalence. Scand. J. Immunology 2011, 74, 522–547. [Google Scholar] [CrossRef]
- Lu, G.; Bathelier’, C.; Mercier’, G. TNF–c polymorphisms in multiple sderosis: No association with–238 and–308 promoter alleles, but the microsatellite allele a I I is associated with the disease in French patients. Mult. Scler. J. 2000, 6, 78–80. [Google Scholar]
- Kosałka-Węgiel, J.; Lichołai, S.; Dziedzina, S.; Milewski, M.; Kuszmiersz, P.; Rams, A.; Gąsior, J.; Matyja-Bednarczyk, A.; Kwiatkowska, H.; Korkosz, M.; et al. Genetic Association between TNFA Polymorphisms (rs1799964 and rs361525) and Susceptibility to Cancer in Systemic Sclerosis. Life 2022, 12, 698. [Google Scholar] [CrossRef] [PubMed]
- Bakr, N.M.; Hashim, N.A.; El–Baz, H.A.E.D.; Khalaf, E.M.; Elharoun, A.S. Polymorphisms in proinflammatory cytokines genes and susceptibility to Multiple Sclerosis. Mult. Scler. Relat. Disord. 2021, 47, 102654. [Google Scholar] [CrossRef]
- Al–Mohaya, M.A.; Al–Harthi, F.; Arfin, M.; Al–Asmari, A. TNF–α, TNF–β and IL–10 gene polymorphism and association with oral lichen planus risk in Saudi patients. J. Appl. Oral. Sci. 2015, 23, 295–301. [Google Scholar] [CrossRef]
- Yousefian–Jazi, A.; Jung, J.; Choi, J.K.; Choi, J. Functional annotation of noncoding causal variants in autoimmune diseases. Genomics 2020, 112, 1208–1213. [Google Scholar] [CrossRef] [PubMed]
- Zazeckyte, G.; Gedvilaite, G.; Vilkeviciute, A.; Kriauciuniene, L.; Balciuniene, V.J.; Mockute, R.; Liutkeviciene, R. Associations of Tumor Necrosis Factor–Alpha Gene Polymorphisms (TNF)–α TNF–863A/C (rs1800630), TNF–308A/G (rs1800629), TNF–238A/G (rs361525), and TNF–Alpha Serum Concentration with Age–Related Macular Degeneration. Life 2022, 12, 928. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Group | |||
---|---|---|---|---|
MS Patients, (%) | Control Group (%) | p-Value | ||
Sex | Females, n (%) | 162 (64.8) | 165 (66.0) | 0.778 |
Males, n (%) | 88 (35.2) | 85 (34.0) | ||
Age median (IQR) | 39.0 (15.0) | 42.0 (24.0) | 0.717 * |
Polymorphism | MS Patients, n (%) | Control Group, n (%) | HWE p-Value | p-Value |
---|---|---|---|---|
rs1800630 | ||||
CC | 182 (72.8) | 186 (74.4) | 0.001 | 0.749 |
AC | 51 (20.4) | 51 (20.4) | ||
AA | 17 (6.8) | 13 (5.2) | ||
Total | 250 (100) | 250 (100) | ||
Allele | ||||
C | 415 (83.0) | 423 (84.6) | 0.492 | |
A | 85 (17.0) | 77 (15.4) | ||
rs1800629 | ||||
GG | 202 (80.8) | 186 (74.4) | 0.417 | 0.227 |
AG | 46 (18.4) | 61 (24.4) | ||
AA | 2 (0.8) | 3 (1.2) | ||
Total | 250 (100) | 250 (100) | ||
Allele | ||||
G | 450 (90.0) | 433 (86.6) | 0.094 | |
A | 50 (10.0) | 67 (13.4) | ||
rs361525 | ||||
GG | 236 (94.4) | 232 (92.8) | 0.555 | 0.042 |
AG | 10 (4.0) | 18 (7.2) | ||
AA | 4 (1.6) | 0 (0) | ||
Total | 250 (100) | 250 (100) | ||
Allele | ||||
G | 482 (96.4) | 482 (96.4) | 1.00 | |
A | 18 (3.6) | 18 (3.6) |
Model | Genotype/Allele | OR (95% CI) | p-Value | AIC |
---|---|---|---|---|
rs1800630 | ||||
Codominant | AC vs. AA | 1.022 (0.659–1.585) | 0.923 | 696.569 |
CC vs. AA | 1.336 (0.631–2.831) | 0.449 | ||
Dominant | AC + CC vs. AA | 1.086 (0.729–1.616) | 0.685 | 694.982 |
Recessive | CC vs. AA + AC | 1.330 (0.632–2.800) | 0.453 | 694.578 |
Overdominant | AC vs. AA + CC | 1.000 (0.647–1.545) | 1.000 | 695.147 |
Additive | A | 1.099 (0.813–1.486) | 0.539 | 694.769 |
rs1800629 | ||||
Codominant | AG vs. AA | 0.694 (0.451–1.069) | 0.098 | 694.176 |
GG vs. AA | 0.614 (0.101–3.715) | 0.595 | ||
Dominant | AG + GG vs. AA | 0.691 (0.452–1.055) | 0.087 | 692.194 |
Recessive | GG vs. AA + AG | 0.664 (0.110–4.008) | 0.655 | 694.944 |
Overdominant | AG vs. AA + GG | 0.699 (0.454–1.075) | 0.103 | 690.465 |
Additive | A | 0.709 (0.476–1.055) | 0.090 | 692.234 |
rs361525 | ||||
Codominant | AG vs. AA | 0.546 (0.247–1.208) | 0.135 | 689.250 |
GG vs. AA | - | - | ||
Dominant | AG + GG vs. AA | 0.765 (0.372–1.573) | 0.466 | 694.612 |
Recessive | GG vs. AA + AG | - | 0.999 | 689.570 |
Overdominant | AG vs. AA + GG | 0.537 (0.243–1.188) | 0.125 | 692.694 |
Additive | A | 1.000 (0.544–1.839) | 1.000 | 695.147 |
Polymorphism | MS Patients, n (%) | Control Group, n (%) | p-Value |
---|---|---|---|
rs1800630 | |||
CC | 84 (68.9) | 82 (72.6) | 0.271 |
AC | 23 (18.9) | 24 (21.2) | |
AA | 15 (12.2) | 7 (6.2) | |
Total | 122 (100) | 113 (100) | |
Allele | |||
C | 191 (85.2) | 188 (83.3) | 0.179 |
A | 53 (14.8) | 38 (16.7) | |
rs1800629 | |||
GG | 101 (82.8) | 81 (71.7) | 0.066 |
AG | 21 (17.2) | 30 (26.4) | |
AA | 0 (0) | 2 (1.9) | |
Total | 122 (100) | 113 (100) | |
Allele | |||
G | 223 (91.4) | 192 (85.0) | 0.030 |
A | 21 (8.6) | 34 (15.0) | |
rs361525 | |||
GG | 114 (93.4) | 106 (93.8) | 0.363 |
AG | 6 (4.9) | 7 (6.2) | |
AA | 2 (1.7) | 0 (0) | |
Total | 122 (100) | 113 (100) | |
Allele | |||
G | 234 (95.9) | 219 (96.9) | 0.561 |
A | 10 (4.1) | 7 (3.1) |
Model | Genotype/Allele | OR (95% CI) | p-Value | AIC |
---|---|---|---|---|
rs1800630 | ||||
Codominant | AC vs. AA | 0.936 (0.489–1.788) | 0.840 | 326.757 |
CC vs. AA | 2.092 (0.811–5.395) | 0.127 | ||
Dominant | AC + CC vs. AA | 1.197 (0.681–2.102) | 0.532 | 327.044 |
Recessive | CC vs. AA + AC | 2.123 (0.832–5.415) | 0.115 | 324.798 |
Overdominant | AC vs. AA + CC | 0.862 (0.454–1.633) | 0.648 | 327.226 |
Additive | A | 1.263 (0.848–1.882) | 0.250 | 326.095 |
rs1800629 | ||||
Codominant | AG vs. AA | 0.561 (0.299–1.054) | 0.072 | 324.208 |
GG vs. AA | - | - | ||
Dominant | AG + GG vs. AA | 0.526 (0.282–0.982) | 0.044 | 323.277 |
Recessive | GG vs. AA + AG | - | - | 324.487 |
Overdominant | AG vs. AA + GG | 0.575 (0.307–1.079) | 0.085 | 324.419 |
Additive | A | 0.512 (0.282–0.931) | 0.028 | 322.436 |
rs361525 | ||||
Codominant | AG vs. AA | 0.797 (0.26–2.448) | 0.692 | 326.639 |
GG vs. AA | - | - | ||
Dominant | AG + GG vs. AA | 1.063 (0.373–3.031) | 0.910 | 327.421 |
Recessive | GG vs. AA + AG | - | - | 324.796 |
Overdominant | AG vs. AA + GG | 0.783 (0.255–2.405) | 0.669 | 327.252 |
Additive | A | 1.273 (0.518–3.129) | 0.599 | 327.153 |
Polymorphism | MS Patients, n (%) | Control Group, n (%) | p-Value |
---|---|---|---|
rs1800630 | |||
CC | 60 (68.2) | 66 (77.6) | 0.174 |
AC | 19 (21.6) | 16 (18.8) | |
AA | 9 (10.2) | 3 (3.5) | |
Total | 88 (100) | 85 (100) | |
Allele | |||
C | 139 (79.0) | 148 (87.1) | 0.046 |
A | 37 (21.0) | 22 (12.9) | |
rs1800629 | |||
GG | 72 (81.8) | 64 (75.3) | 0.262 |
AG | 16 (18.2) | 19 (22.4) | |
AA | 0 (0) | 2 (2.4) | |
Total | 88 (100) | 85 (100) | |
Allele | |||
G | 160 (90.9) | 147 (86.5) | 0.192 |
A | 16 (9.1) | 23 (13.5) | |
rs361525 | |||
GG | 86 (97.7) | 77 (90.6) | 0.005 |
AG | 0 (0) | 8 (9.4) | |
AA | 2 (2.3) | 0 (0) | |
Total | 88 (100) | 85 (100) | |
Allele | |||
G | 172 (97.7) | 162 (95.3) | 0.216 |
A | 4 (2.3) | 8 (4.7) |
Model | Genotype/Allele | OR (95% CI) | p-Value | AIC |
---|---|---|---|---|
rs1800630 | ||||
Codominant | AC vs. AA | 1.306 (0.616–2.769) | 0.486 | 240.146 |
CC vs. AA | 3.300 (0.853–12.763) | 0.084 | ||
Dominant | AC + CC vs. AA | 1.621 (0.822–3.198) | 0.163 | 239.809 |
Recessive | CC vs. AA + AC | 3.114 (0.813–11.924 | 0.097 | 238.634 |
Overdominant | AC vs. AA + CC | 1.187 (0.564–2.499) | 0.651 | 241.571 |
Additive | A | 1.582 (0.944–2.651) | 0.082 | 238.620 |
rs1800629 | ||||
Codominant | AG vs. AA | 0.749 (0.355–1.577) | 0.446 | 240.328 |
GG vs. AA | - | - | ||
Dominant | AG + GG vs. AA | 0.677 (0.326–1.409) | 0.297 | 240.680 |
Recessive | GG vs. AA + AG | - | - | 238.910 |
Overdominant | AG vs. AA + GG | 0.772 (0.367–1.625) | 0.495 | 241.311 |
Additive | A | 0.635 (0.320–1.258) | 0.193 | 240.043 |
rs361525 | ||||
Codominant | AG vs. AA GG vs. AA | - | - | 229.469 |
Dominant | AG + GG vs. AA | 0.224 (0.046–1.086) | 0.063 | 237.477 |
Recessive | GG vs. AA + AG | - | - | 239.050 |
Overdominant | AG vs. AA + GG | - | - | 230.005 |
Additive | A | 0.557 (0.187–1.662) | 0.294 | 240.579 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalvaitis, L.; Gedvilaite-Vaicechauskiene, G.; Kriauciuniene, L.; Balnyte, R.; Liutkeviciene, R. TNF-alfa Gene Polymorphism Associations with Multiple Sclerosis. J. Clin. Med. 2024, 13, 3693. https://doi.org/10.3390/jcm13133693
Kalvaitis L, Gedvilaite-Vaicechauskiene G, Kriauciuniene L, Balnyte R, Liutkeviciene R. TNF-alfa Gene Polymorphism Associations with Multiple Sclerosis. Journal of Clinical Medicine. 2024; 13(13):3693. https://doi.org/10.3390/jcm13133693
Chicago/Turabian StyleKalvaitis, Lukas, Greta Gedvilaite-Vaicechauskiene, Loresa Kriauciuniene, Renata Balnyte, and Rasa Liutkeviciene. 2024. "TNF-alfa Gene Polymorphism Associations with Multiple Sclerosis" Journal of Clinical Medicine 13, no. 13: 3693. https://doi.org/10.3390/jcm13133693
APA StyleKalvaitis, L., Gedvilaite-Vaicechauskiene, G., Kriauciuniene, L., Balnyte, R., & Liutkeviciene, R. (2024). TNF-alfa Gene Polymorphism Associations with Multiple Sclerosis. Journal of Clinical Medicine, 13(13), 3693. https://doi.org/10.3390/jcm13133693