Win Statistics in Observational Cancer Research: Integrating Clinical and Quality-of-Life Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Real Case Study in Colorectal Cancer Research: The ReSARCh Observational Study
2.2. Simulation Study
2.2.1. Randomized Controlled Trial (RCT) Setting
2.2.2. Observational Setting
2.3. Win Statistics
2.4. Win Statistics in Randomized Studies
“All against all” WR, WO, and NB
2.5. Win Statistics in Non-Randomized Studies
2.5.1. Matched WR, WO, and NB
2.5.2. Stratified WR, WO, and NB
3. Results
3.1. Real Case Study
3.2. Simulation Study
4. Discussion
4.1. Main Results
4.2. Matched Win Statistics and Related Limitations
4.3. Stratified Win Statistics and Related Limitations
4.4. Final Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baracaldo-Santamaría, D.; Feliciano-Alfonso, J.E.; Ramirez-Grueso, R.; Rojas-Rodríguez, L.C.; Dominguez-Dominguez, C.A.; Calderon-Ospina, C.A. Making Sense of Composite Endpoints in Clinical Research. J. Clin. Med. 2023, 12, 4371. [Google Scholar] [CrossRef] [PubMed]
- McCoy, C. Understanding the Use of Composite Endpoints in Clinical Trials. WestJEM 2018, 19, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Russo, S.; Jongerius, C.; Faccio, F.; Pizzoli, S.F.M.; Pinto, C.A.; Veldwijk, J.; Janssens, R.; Simons, G.; Falahee, M.; De Bekker-Grob, E.; et al. Understanding Patients’ Preferences: A Systematic Review of Psychological Instruments Used in Patients’ Preference and Decision Studies. Value Health 2019, 22, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Gour, N.; Chaudhary, M. The Quality of Life in Cancer Patients. In Supportive and Palliative Care and Quality of Life in Oncology; Abdul Rasool Hassan, B., Ed.; IntechOpen: London, UK, 2023; Available online: https://www.intechopen.com/chapters/83096 (accessed on 11 January 2024).
- Jiang, Y.; Zhao, M.; Tang, W.; Zheng, X. Impacts of systemic treatments on health-related quality of life for patients with metastatic colorectal cancer: A systematic review and network meta-analysis. BMC Cancer 2024, 24, 188. [Google Scholar] [CrossRef] [PubMed]
- Pocock, S.J.; Ariti, C.A.; Collier, T.J.; Wang, D. The win ratio: A new approach to the analysis of composite endpoints in clinical trials based on clinical priorities. Eur. Heart J. 2012, 33, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Huang, B.; Verbeeck, J.; Cui, Y.; Song, J.; Gamalo-Siebers, M.; Wang, D.; Hoaglin, D.C.; Seifu, Y.; Mütze, T.; et al. Win statistics (win ratio, win odds, and net benefit) can complement one another to show the strength of the treatment effect on time-to-event outcomes. Pharm. Stat. 2023, 22, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Pocock, S. A win ratio approach to comparing continuous non-normal outcomes in clinical trials. Pharm. Stat. 2016, 15, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Oakes, D. On the win-ratio statistic in clinical trials with multiple types of event. Biometrika 2016, 103, 742–745. [Google Scholar] [CrossRef]
- Peng, L. The use of the win odds in the design of non-inferiority clinical trials. J. Biopharm. Stat. 2020, 30, 941–946. [Google Scholar] [CrossRef]
- Gasparyan, S.B.; Kowalewski, E.K.; Folkvaljon, F.; Bengtsson, O.; Buenconsejo, J.; Adler, J.; Koch, G.G. Power and sample size calculation for the win odds test: Application to an ordinal endpoint in COVID-19 trials. J. Biopharm. Stat. 2021, 31, 765–787. [Google Scholar] [CrossRef]
- Buyse, M. Generalized pairwise comparisons of prioritized outcomes in the two-sample problem. Stat. Med. 2010, 29, 3245–3257. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Hoaglin, D.C.; Qiu, J.; Matsouaka, R.A.; Chang, Y.-W.; Wang, J.; Vandemeulebroecke, M. The Win Ratio: On Interpretation and Handling of Ties. Stat. Biopharm. Res. 2020, 12, 99–106. [Google Scholar] [CrossRef]
- Dong, G.; Li, D.; Ballerstedt, S.; Vandemeulebroecke, M. A generalized analytic solution to the win ratio to analyze a composite endpoint considering the clinical importance order among components. Pharm. Stat. 2016, 15, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Verbeeck, J.; Ozenne, B.; Anderson, W.N. Evaluation of inferential methods for the net benefit and win ratio statistics. J. Biopharm. Stat. 2020, 30, 765–782. [Google Scholar] [CrossRef] [PubMed]
- Péron, J.; Buyse, M.; Ozenne, B.; Roche, L.; Roy, P. An extension of generalized pairwise comparisons for prioritized outcomes in the presence of censoring. Stat. Methods Med. Res. 2018, 27, 1230–1239. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Mao, L.; Huang, B.; Gamalo-Siebers, M.; Wang, J.; Yu, G.; Hoaglin, D.C. The inverse-probability-of-censoring weighting (IPCW) adjusted win ratio statistic: An unbiased estimator in the presence of independent censoring. J. Biopharm. Stat. 2020, 30, 882–899. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Huang, B.; Wang, D.; Verbeeck, J.; Wang, J.; Hoaglin, D.C. Adjusting win statistics for dependent censoring. Pharm. Stat. 2021, 20, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Brunner, E.; Vandemeulebroecke, M.; Mütze, T. Win odds: An adaptation of the win ratio to include ties. Stat. Med. 2021, 40, 3367–3384. [Google Scholar] [CrossRef] [PubMed]
- Matsouaka, R.A. Robust statistical inference for matched win statistics. Stat. Methods Med. Res. 2022, 31, 1423–1438. [Google Scholar] [CrossRef]
- Mao, L.; Kim, K.; Li, Y. On recurrent-event win ratio. Stat. Methods Med. Res. 2022, 31, 1120–1134. [Google Scholar] [CrossRef]
- Lim, C.-Y.; In, J. Randomization in clinical studies. Korean J. Anesthesiol. 2019, 72, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Bosdriesz, J.R.; Stel, V.S.; Van Diepen, M.; Meuleman, Y.; Dekker, F.W.; Zoccali, C.; Jager, K.J. Evidence-based medicine—When observational studies are better than randomized controlled trials. Nephrology 2020, 25, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wisniewski, S.R.; Jeong, J.-H. Causal Inference on Win Ratio for Observational Data with Dependent Subjects. 2022. Available online: https://arxiv.org/abs/2212.06676 (accessed on 19 September 2023).
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Rosenbaum, P.R.; Rubin, D.B. Constructing a Control Group Using Multivariate Matched Sampling Methods That Incorporate the Propensity Score. Am. Stat. 1985, 39, 33–38. [Google Scholar] [CrossRef]
- Stephani, H. The Efficacy of Propensity Score Matching in Bias Reduction with Limited Sample Sizes. Ph.D. Thesis, University of Kansas, Lawrence, KS, USA, 2015. Available online: http://hdl.handle.net/1808/21672 (accessed on 11 January 2023).
- Barina, A.; De Paoli, A.; Delrio, P.; Guerrieri, M.; Muratore, A.; Bianco, F.; Vespa, D.; Asteria, C.; Morpurgo, E.; Restivo, A.; et al. Rectal sparing approach after preoperative radio- and/or chemotherapy (RESARCH) in patients with rectal cancer: A multicentre observational study. Tech. Coloproctol. 2017, 21, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Bao, Q.R.; Ferrari, S.; Capelli, G.; Ruffolo, C.; Scarpa, M.; Agnes, A.; Chiloiro, G.; Palazzari, E.; Urso, E.D.L.; Pucciarelli, S.; et al. Rectal Sparing Approaches after Neoadjuvant Treatment for Rectal Cancer: A Systematic Review and Meta-Analysis Comparing Local Excision and Watch and Wait. Cancers 2023, 15, 465. [Google Scholar] [CrossRef] [PubMed]
- Islam, N.; Atreya, A.; Nepal, S.; Uddin, K.J.; Kaiser, M.R.; Menezes, R.G.; Lasrado, S.; Abdullah-Al-Noman, M. Assessment of quality of life (QOL) in cancer patients attending oncology unit of a Teaching Hospital in Bangladesh. Cancer Rep. 2023, 6, e1829. [Google Scholar] [CrossRef] [PubMed]
- Muthanna, F.; Hassan, B.; Karuppannan, M.; Ibrahim, H.; Mohammed, A.H.; Abdulrahman, E. Prevalence and Impact of Fatigue on Quality of Life (QOL) of Cancer Patients Undergoing Chemotherapy: A Systematic Review and Meta-Analysis. Asian Pac. J. Cancer Prev. 2023, 24, 769–781. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Bebu, I.; Lachin, J.M. Large sample inference for a win ratio analysis of a composite outcome based on prioritized components. Biostatistics 2016, 17, 178–187. [Google Scholar] [CrossRef]
- Williams, R.L. A Note on Robust Variance Estimation for Cluster-Correlated Data. Biometrics 2000, 56, 645–646. [Google Scholar] [CrossRef]
- Imbens, G.W. Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review. Rev. Econ. Stat. 2004, 86, 4–29. [Google Scholar] [CrossRef]
- Dong, G.; Qiu, J.; Wang, D.; Vandemeulebroecke, M. The stratified win ratio. J. Biopharm. Stat. 2018, 28, 778–796. [Google Scholar] [CrossRef] [PubMed]
- Paro, A.; Hyer, J.M.; Avery, B.S.; Tsilimigras, D.I.; Bagante, F.; Guglielmi, A.; Ruzzenente, A.; Alexandrescu, S.; Poultsides, G.; Sasaki, K.; et al. Using the win ratio to compare laparoscopic versus open liver resection for colorectal cancer liver metastases. Hepatobiliary Surg. Nutr. 2023, 12, 692–703. [Google Scholar] [CrossRef] [PubMed]
- Xu, R. Estimating average regression effect under non-proportional hazards. Biostatistics 2000, 1, 423–439. [Google Scholar] [CrossRef] [PubMed]
- Clark, T.G.; Bradburn, M.J.; Love, S.B.; Altman, D.G. Survival Analysis Part I: Basic concepts and first analyses. Br. J. Cancer 2003, 89, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G.; Bland, J.M. Standard deviations and standard errors. BMJ 2005, 331, 903. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.G.; Carter, R.E.; Nietert, P.J.; Stewart, P.W. Recommendations for Planning Pilot Studies in Clinical and Translational Research. Clin. Transl. Sci. 2011, 4, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Cochran, W.G. The Effectiveness of Adjustment by Subclassification in Removing Bias in Observational Studies. Biometrics 1968, 24, 295. [Google Scholar] [CrossRef]
- Rosenbaum, P.R.; Rubin, D.B. Reducing Bias in Observational Studies Using Subclassification on the Propensity Score. J. Am. Stat. Assoc. 1984, 79, 516–524. [Google Scholar] [CrossRef]
- Yu, R.X.; Ganju, J. Sample size formula for a win ratio endpoint. Stat. Med. 2022, 41, 950–963. [Google Scholar] [CrossRef]
Characteristic | LE, n = 117 1 | WW, n = 73 1 | p-Value 2 |
---|---|---|---|
Sex, Male vs. Female | 76 (65%) | 48 (65.8%) | 0.9 |
Age, years | 65 (60, 72) | 65 (58, 72) | 0.9 |
Body Mass Index | 26.3 (23.9, 28.9) | 24–5 (22.4, 27.4) | 0.01 |
(Missing) | 2 | 5 | |
Anal verge dist., cm | 4.5 (3.00, 6.7) | 5.00 (3.00, 7.00) | 0.2 |
(Missing) | 2 | 0 | |
Tumor Stage, ycT ≥ 1 vs. ycT = 0 | 70 (60.9%) | 17 (23.9%) | <0.001 |
(Missing) | 2 | 2 |
Covariate | Unadjusted | Matched | Stratified | |||||
---|---|---|---|---|---|---|---|---|
Strata | Mean | |||||||
1 | 2 | 3 | 4 | 5 | ||||
Sex | 0.02 | 0.04 | 0.13 | 0.37 | 0.11 | 0.04 | 0.17 | 0.16 |
Age | 0.36 | 0.01 | 0.11 | 0.28 | 0.24 | 0.01 | 0.30 | 0.19 |
BMI | 0.43 | 0.14 | 0.08 | 0.24 | 0.24 | 0.36 | 0.01 | 0.18 |
Anal verge dist. | 0.24 | 0.002 | 0.17 | 0.03 | 0.04 | 0.17 | 0.25 | 0.13 |
Tumor Stage | 0.81 | 0.04 | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | 0.06 |
Win Statistics | Efficacy Outcomes | Efficacy + QoL Outcomes |
---|---|---|
Matched | ||
Win Ratio (95%CI) | 0.47 (0.01 to 1.14) | 0.87 (0.06 to 2.06) |
Net Benefit (95%CI) | −0.16 (−0.34 to 0.02) | −0.04 (−0.25 to 0.17) |
Win Odds (95%CI) | 0.73 (0.5 to 1.05) | 0.93 (0.61 to 1.4) |
Stratified | ||
Win Ratio (95%CI) | 0.39 (0.19 to 0.83) * | 0.7 (0.36 to 1.32) |
Net Benefit (95%CI) | −0.18 (−0.33 to −0.03) * | −0.09 (−0.25 to 0.07) |
Win Odds (95%CI) | 0.7 (0.52 to 0.94) * | 0.84 (0.61 to 1.15) |
Characteristic | Unadjusted | Matched | Stratification |
---|---|---|---|
Imbalance: high | n = 200 | n = 100 | n = 200 |
X1, dichotomous | 0.34 | 0.08 | 0.22 |
X2, continuous | 1.32 | 0.06 | 0.56 |
X3, dichotomous | 0.30 | 0.12 | 0.39 |
Imbalance: medium | n = 200 | n = 124 | n = 200 |
X1, dichotomous | 0.26 | 0.1 | 0.27 |
X2, continuous | 0.90 | 0.05 | 0.31 |
X3, dichotomous | 0.28 | 0.12 | 0.29 |
Imbalance: low | n = 200 | n = 148 | n = 200 |
X1, dichotomous | 0.2 | 0.13 | 0.19 |
X2, continuous | 0.46 | 0.05 | 0.21 |
X3, dichotomous | 0.24 | 0.1 | 0.12 |
Setting | WR | NB | WO |
---|---|---|---|
Imbalance: high | |||
Unadjusted | 0% | 0% | 0.1% |
PS matching | 97% | 77% | 97% |
PS stratification | 33.2% | 80.2% | 8.3% |
Imbalance: medium | |||
Unadjusted | 1.1% | 5.9% | 23.6% |
PS matching | 98% | 78% | 98% |
PS stratification | 34.4% | 94% | 8.9% |
Imbalance: low | |||
Unadjusted | 38.1% | 59.6% | 86.8% |
PS matching | 99.2% | 84.4% | 99.2% |
PS stratification | 37.4% | 95.2% | 9.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiaruttini, M.V.; Lorenzoni, G.; Spolverato, G.; Gregori, D. Win Statistics in Observational Cancer Research: Integrating Clinical and Quality-of-Life Outcomes. J. Clin. Med. 2024, 13, 3272. https://doi.org/10.3390/jcm13113272
Chiaruttini MV, Lorenzoni G, Spolverato G, Gregori D. Win Statistics in Observational Cancer Research: Integrating Clinical and Quality-of-Life Outcomes. Journal of Clinical Medicine. 2024; 13(11):3272. https://doi.org/10.3390/jcm13113272
Chicago/Turabian StyleChiaruttini, Maria Vittoria, Giulia Lorenzoni, Gaya Spolverato, and Dario Gregori. 2024. "Win Statistics in Observational Cancer Research: Integrating Clinical and Quality-of-Life Outcomes" Journal of Clinical Medicine 13, no. 11: 3272. https://doi.org/10.3390/jcm13113272
APA StyleChiaruttini, M. V., Lorenzoni, G., Spolverato, G., & Gregori, D. (2024). Win Statistics in Observational Cancer Research: Integrating Clinical and Quality-of-Life Outcomes. Journal of Clinical Medicine, 13(11), 3272. https://doi.org/10.3390/jcm13113272