Landscape and Treatment Options of Shapeshifting Small Cell Lung Cancer
Abstract
:1. Introduction
2. Unveiling the Genomic Landscape of SCLC
2.1. Loss of the RB and TP53 Families in SCLC
2.2. Rare Kinase Alterations in SCLC
2.3. MYC Amplification in SCLC
2.4. Notch Signaling Pathway in SCLC
2.5. Epigenetic Alterations in SCLC
2.6. Alterations of Cytoskeletal and Cell Adhesion Genes in SCLC
3. SCLC Heterogeneity and Phenotypic Switching
3.1. Intertumoral Subtypes
- Neuroendocrine SCLC has a high expression of NE markers, including Synaptophysin (SYP), Chromogranin-A (CHGA), and Neural cell adhesion molecule 1 (NCAM1 or CD56). NE SCLC can be divided into two subtypes:
- ο
- SCLC-A: This neuroendocrine subtype is characterized by high ASCL1 expression and accounts for approximately 50% of primary SCLC cases [60]. ASCL1 is an NE-lineage-specific transcription factor essential for SCLC tumorigenesis [61]. It exhibits super-enhancers associated with genes like MYCL1, NFIB, BCL2, NKX2-1, FOXA1, and FOXA2 [61]. Gene ontology analysis reveals enrichment in neuronal systems, potassium channel genes, and epithelial cell differentiation [61,62].
- ο
- Non-NE SCLC has low expression of both ASCL1 and NEUROD1 and can be divided into two subtypes:
- ο
- SCLC-P: Characterized by high POU2F3 expression, it exhibits the unique expression of other transcription factors, including SOX9 and ASCL2, and the tyrosine kinase receptor insulin-like growth factor 1 receptor (IGF1R) [63].
- ο
- The remaining SCLC tumors have low expressions of ASCL1, NEUROD1, and POU2F3. Two putative subtypes are SCLC-Y and SCLC-I.
- -
- SCLC-Y: With high YAP1 expression, it is sensitive to CDK4/6 inhibitors [64].
- -
3.2. Intratumoral Heterogeneity and Evolution
3.3. The Immune Microenvironment in SCLC Subtypes
3.4. Therapeutic Vulnerabilities in SCLC Subtypes
4. Current Treatment
5. Promising Treatment Options for SCLC
5.1. Targeted Therapies
5.2. Immunotherapies
6. Advance in Early Lung Cancer Diagnosis and Assessment of Therapy Response
7. Remaining Challenges and Future Directions
- It is essential to recognize that SCLC management is evolving, with ongoing research and clinical trials exploring novel and potentially more effective therapies for this aggressive cancer. Recent insights into the heterogeneous nature of SCLC, as well as advancements in understanding its plasticity, offer the potential for tailored and targeted treatment approaches. These may encompass subtype-specific therapies, immunotherapies, and innovative treatments based on epigenetics and other cutting-edge approaches. Here, we propose a few future directions for studying and targeting SCLC:
- It is exciting to observe the declining incidence rate of SCLC with the help of global tobacco control programs. It is crucial to continue public education emphasizing smoking as the primary cause of SCLC and advocating for reduced tobacco consumption.
- The identification of predictive biomarkers will be crucial for treating SCLC. Although different subtype’s therapeutic vulnerabilities have been predicted with drug library screening [62], the exact difference among subtypes should be more closely investigated. The inclusion of subtype-specific markers (ASCL1, NEUROD1, POU2F3, and maybe YAP1) for immunohistochemistry staining besides neuroendocrine markers, such as SYP and NCAM1, will benefit the physicians in diagnosing patients with specific SCLC subtypes and predicting the potential treatment response. Stratifying patients based on molecular subtypes should also be incorporated into clinical trial design. The failure of certain targets in the clinical trials might be due to not targeting the proper patient subpopulation. Tumor shapeshifting after treatment, especially chemotherapy, should also be considered when designing clinical trials. One example is SLFN11, which is utilized as a predictive marker for PARP1/2-targeted therapies [Table 1].
- Another big direction will be to improve the immunotherapy response. Since non-neuroendocrine subtypes (especially triple-negative for ASCL1, NEUROD1, and POU2F3) showed more immune infiltration, identifying the genes switching neuroendocrine SCLC to non-neuroendocrine SCLC will be critically important to achieve durable immune therapy response by directing immune “cold” NE to immune “hot” non-NE SCLC. One major player for the switch is the activation of the MYC-Notch signaling pathway, which has been shown to drive the SCLC-A subtype to SCLC-N and eventually to SCLC-Y [39]. Treatments targeting this pathway and other mechanisms underlying the NE-to-non-NE switch should be investigated.
- Considering the general immune “cold” phenotype in the classic neuroendocrine SCLC, immunotherapy, especially monospecific immune checkpoint inhibitors alone, might not be the best strategy, as shown by the moderate clinical ORRs, but targeting overexpressed antigens with proper payload and antigen-directed T cell engagers might have better efficacy. Another approach is to explore the combinational treatment of ICBs with non-NE-induction treatment.
- The approval of atezolizumab and durvalumab as a first-line treatment with platinum-based chemotherapy ignites the exploration of combined regimens. It provides the opportunities to target tumors while potentially bypassing the resistance; however, it also brings challenges: finding the best combination in this heterogenous and shapeshifting malignancy and determining the best dosage schedule when designing clinical trials.
- Due to the plasticity and heterogeneity of SCLC, models like patient-derived xenograft will be a powerful tool to monitor the subtype transition before, during, and after the treatment, to develop a more personalized treatment plan. Also, validating the preliminary results obtained from murine models and human SCLC cell lines in these patient-derived xenograft models will increase the probability of successful laboratory-to-clinic translation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- The American Cancer Society Medical and Editorial Content Team What Is Lung Cancer?|Types of Lung Cancer. Available online: https://www.cancer.org/cancer/lung-cancer/about/what-is.html (accessed on 4 May 2021).
- Cittolin-Santos, G.F.; Knapp, B.; Ganesh, B.; Gao, F.; Waqar, S.; Stinchcombe, T.E.; Govindan, R.; Morgensztern, D. The Changing Landscape of Small Cell Lung Cancer. Cancer 2024. [Google Scholar] [CrossRef] [PubMed]
- Fisseler-Eckhoff, A.; Demes, M. Neuroendocrine Tumors of the Lung. Cancers 2012, 4, 777–798. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-B.; Dunn, C.T.; Park, K.-S. Recent Progress in Mapping the Emerging Landscape of the Small Cell Lung Cancer Genome. Exp. Mol. Med. 2019, 51, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gay, C.M.; Stewart, C.A.; Park, E.M.; Diao, L.; Groves, S.M.; Heeke, S.; Nabet, B.Y.; Fujimoto, J.; Solis, L.M.; Lu, W.; et al. Patterns of Transcription Factor Programs and Immune Pathway Activation Define Four Major Subtypes of SCLC with Distinct Therapeutic Vulnerabilities. Cancer Cell 2021, 39, 346–360.e7. [Google Scholar] [CrossRef] [PubMed]
- Harbour, J.W.; Lai, S.L.; Whang-Peng, J.; Gazdar, A.F.; Minna, J.D.; Kaye, F.J. Abnormalities in Structure and Expression of the Human Retinoblastoma Gene in SCLC. Science 1988, 241, 353–357. [Google Scholar] [CrossRef]
- Takahashi, T.; Nau, M.M.; Chiba, I.; Birrer, M.J.; Rosenberg, R.K.; Vinocour, M.; Levitt, M.; Pass, H.; Gazdar, A.F.; Minna, J.D. P53: A Frequent Target for Genetic Abnormalities in Lung Cancer. Science 1989, 246, 491–494. [Google Scholar] [CrossRef] [PubMed]
- Semenova, E.A.; Nagel, R.; Berns, A. Origins, Genetic Landscape, and Emerging Therapies of Small Cell Lung Cancer. Genes Dev. 2015, 29, 1447–1462. [Google Scholar] [CrossRef] [PubMed]
- Pleasance, E.D.; Stephens, P.J.; O’Meara, S.; McBride, D.J.; Meynert, A.; Jones, D.; Lin, M.-L.; Beare, D.; Lau, K.W.; Greenman, C.; et al. A Small Cell Lung Cancer Genome with Complex Signatures of Tobacco Exposure. Nature 2010, 463, 184–190. [Google Scholar] [CrossRef]
- Roberts, S.A.; Lawrence, M.S.; Klimczak, L.J.; Grimm, S.A.; Fargo, D.; Stojanov, P.; Kiezun, A.; Kryukov, G.V.; Carter, S.L.; Saksena, G.; et al. An APOBEC Cytidine Deaminase Mutagenesis Pattern Is Widespread in Human Cancers. Nat. Genet. 2013, 45, 970–976. [Google Scholar] [CrossRef]
- George, J.; Lim, J.S.; Jang, S.J.; Cun, Y.; Ozretić, L.; Kong, G.; Leenders, F.; Lu, X.; Fernández-Cuesta, L.; Bosco, G.; et al. Comprehensive Genomic Profiles of Small Cell Lung Cancer. Nature 2015, 524, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, B.E.; Park, K.-S.; Yiu, G.; Conklin, J.F.; Lin, C.; Burkhart, D.L.; Karnezis, A.N.; Sweet-Cordero, E.A.; Sage, J. Loss of P130 Accelerates Tumor Development in a Mouse Model for Human Small Cell Lung Carcinoma. Cancer Res. 2010, 70, 3877–3883. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, A.; Merlo, P.; Pediconi, N.; Fulco, M.; Sartorelli, V.; Cole, P.A.; Fontemaggi, G.; Fanciulli, M.; Schiltz, L.; Blandino, G.; et al. DNA Damage-Dependent Acetylation of P73 Dictates the Selective Activation of Apoptotic Target Genes. Mol. Cell 2002, 9, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Gowers, K.; Yoshida, K.; Lee-Six, H.; Chandrasekharan, D.; Maughan, E.; Millar, F.; Clarke, S.; Pennycuick, A.; Thakrar, R.; Carroll, B.; et al. Tobacco Exposure and Somatic Mutations in Normal Human Bronchial Epithelium. Am. J. Respir. Crit. Care Med. 2020, 201, A4090. [Google Scholar]
- Gibbons, D.L.; Byers, L.A.; Kurie, J.M. Smoking, P53 Mutation, and Lung Cancer. Mol. Cancer Res. 2014, 12, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Wildey, G.; Shay, A.M.; McColl, K.S.; Yoon, S.; Shatat, M.A.; Perwez, A.; Spainhower, K.B.; Kresak, A.M.; Lipka, M.; Yang, M.; et al. Retinoblastoma Expression and Targeting by CDK4/6 Inhibitors in Small Cell Lung Cancer. Mol. Cancer Ther. 2023, 22, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Workman, P. Drugging the Cancer Kinome: Progress and Challenges in Developing Personalized Molecular Cancer Therapeutics. Cold Spring Harb. Symp. Quant. Biol. 2005, 70, 499–515. [Google Scholar] [CrossRef] [PubMed]
- Micke, P.; Basrai, M.; Faldum, A.; Bittinger, F.; Rönnstrand, L.; Blaukat, A.; Beeh, K.M.; Oesch, F.; Fischer, B.; Buhl, R.; et al. Characterization of C-Kit Expression in Small Cell Lung Cancer: Prognostic and Therapeutic Implications. Clin. Cancer Res. 2003, 9, 188–194. [Google Scholar]
- Voortman, J.; Lee, J.-H.; Killian, J.K.; Suuriniemi, M.; Wang, Y.; Lucchi, M.; Smith, W.I.; Meltzer, P.; Wang, Y.; Giaccone, G. Array Comparative Genomic Hybridization-Based Characterization of Genetic Alterations in Pulmonary Neuroendocrine Tumors. Proc. Natl. Acad. Sci. USA 2010, 107, 13040–13045. [Google Scholar] [CrossRef]
- Boldrini, L.; Ursino, S.; Gisfredi, S.; Faviana, P.; Donati, V.; Camacci, T.; Lucchi, M.; Mussi, A.; Basolo, F.; Pingitore, R.; et al. Expression and Mutational Status of C-Kit in Small Cell Lung Cancer: Prognostic Relevance. Clin. Cancer Res. 2004, 10, 4101–4108. [Google Scholar] [CrossRef]
- Johnson, B.E.; Fischer, T.; Fischer, B.; Dunlop, D.; Rischin, D.; Silberman, S.; Kowalski, M.O.; Sayles, D.; Dimitrijevic, S.; Fletcher, C.; et al. Phase II Study of Imatinib in Patients with Small Cell Lung Cancer. Clin. Cancer Res. 2003, 9, 5880–5887. [Google Scholar] [PubMed]
- Kim, K.-H.; Kim, J.-O.; Park, J.-Y.; Seo, M.-D.; Park, S.G. Antibody-Drug Conjugate Targeting c-Kit for the Treatment of Small Cell Lung Cancer. Int. J. Mol. Sci. 2022, 23, 2264. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-B.; Kim, Y.; Kim, D.-W.; Park, K.-S. Oncogenic Role of FGFR1 and Vulnerability of RBL2-FGFR1 Axis in Small Cell Lung Cancer Development. bioRxiv 2019, 796607. [Google Scholar] [CrossRef]
- Ferone, G.; Song, J.-Y.; Krijgsman, O.; van der Vliet, J.; Cozijnsen, M.; Semenova, E.A.; Adams, D.J.; Peeper, D.; Berns, A. FGFR1 Oncogenic Activation Reveals an Alternative Cell of Origin of SCLC in Rb1/P53 Mice. Cell Rep. 2020, 30, 3837–3850.e3. [Google Scholar] [CrossRef] [PubMed]
- Carmena, M.; Earnshaw, W.C. The Cellular Geography of Aurora Kinases. Nat. Rev. Mol. Cell Biol. 2003, 4, 842–854. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.L.; Bowers, N.L.; Betticher, D.C.; Gautschi, O.; Ratschiller, D.; Hoban, P.R.; Booton, R.; Santibáñez-Koref, M.F.; Heighway, J. Overexpression of Aurora B Kinase (AURKB) in Primary Non-Small Cell Lung Carcinoma Is Frequent, Generally Driven from One Allele, and Correlates with the Level of Genetic Instability. Br. J. Cancer 2005, 93, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Helfrich, B.A.; Kim, J.; Gao, D.; Chan, D.C.; Zhang, Z.; Tan, A.-C.; Bunn, P.A. Barasertib (AZD1152), a Small Molecule Aurora B Inhibitor, Inhibits the Growth of SCLC Cell Lines In Vitro and In Vivo. Mol. Cancer Ther. 2016, 15, 2314–2322. [Google Scholar] [CrossRef] [PubMed]
- Testing the Addition of an Anti-Cancer Drug, BAY 1895344, to Usual Chemotherapy for Advanced Stage Solid Tumors, with a Specific Focus on Patients with Small Cell Lung Cancer, Poorly Differentiated Neuroendocrine Cancer, and Pancreatic Cancer—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04514497 (accessed on 26 July 2023).
- Thomas, A.; Takahashi, N.; Rajapakse, V.N.; Zhang, X.; Sun, Y.; Ceribelli, M.; Wilson, K.M.; Zhang, Y.; Beck, E.; Sciuto, L.; et al. Therapeutic Targeting of ATR Yields Durable Regressions in Small Cell Lung Cancers with High Replication Stress. Cancer Cell 2021, 39, 566–579.e7. [Google Scholar] [CrossRef] [PubMed]
- Mollaoglu, G.; Guthrie, M.R.; Böhm, S.; Brägelmann, J.; Can, I.; Ballieu, P.M.; Marx, A.; George, J.; Heinen, C.; Chalishazar, M.D.; et al. MYC Drives Progression of Small Cell Lung Cancer to a Variant Neuroendocrine Subtype with Vulnerability to Aurora Kinase Inhibition. Cancer Cell 2017, 31, 270–285. [Google Scholar] [CrossRef]
- Rita de Cássia, S.A.; Meurer, R.T.; Roehe, A.V. MYC Amplification Is Associated with Poor Survival in Small Cell Lung Cancer: A Chromogenic in Situ Hybridization Study. J. Cancer Res. Clin. Oncol. 2014, 140, 2021–2025. [Google Scholar] [CrossRef]
- Kim, D.-W.; Wu, N.; Kim, Y.-C.; Cheng, P.F.; Basom, R.; Kim, D.; Dunn, C.T.; Lee, A.Y.; Kim, K.; Lee, C.S.; et al. Genetic Requirement for Mycl and Efficacy of RNA Pol I Inhibition in Mouse Models of Small Cell Lung Cancer. Genes Dev. 2016, 30, 1289–1299. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, F.P.; Tokgün, E.; Solé-Sánchez, S.; Giampaolo, S.; Tokgün, O.; Jauset, T.; Kohno, T.; Perucho, M.; Soucek, L.; Yokota, J. Growth Suppression by MYC Inhibition in Small Cell Lung Cancer Cells with TP53 and RB1 Inactivation. Oncotarget 2016, 7, 31014–31028. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, K.D.; Proost, N.; Brouns, I.; Adriaensen, D.; Song, J.-Y.; Berns, A. Cell of Origin of Small Cell Lung Cancer: Inactivation of Trp53 and Rb1 in Distinct Cell Types of Adult Mouse Lung. Cancer Cell 2011, 19, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Augert, A.; Rongione, M.; Conkrite, K.; Parazzoli, S.; Nikitin, A.Y.; Ingolia, N.; MacPherson, D. PTEN Is a Potent Suppressor of Small Cell Lung Cancer. Mol. Cancer Res. 2014, 12, 654–659. [Google Scholar] [CrossRef] [PubMed]
- McFadden, D.G.; Papagiannakopoulos, T.; Taylor-Weiner, A.; Stewart, C.; Carter, S.L.; Cibulskis, K.; Bhutkar, A.; McKenna, A.; Dooley, A.; Vernon, A.; et al. Genetic and Clonal Dissection of Murine Small Cell Lung Carcinoma Progression by Genome Sequencing. Cell 2014, 156, 1298–1311. [Google Scholar] [CrossRef] [PubMed]
- Chalishazar, M.D.; Wait, S.J.; Huang, F.; Ireland, A.S.; Mukhopadhyay, A.; Lee, Y.; Schuman, S.S.; Guthrie, M.R.; Berrett, K.C.; Vahrenkamp, J.M.; et al. MYC-Driven Small Cell Lung Cancer Is Metabolically Distinct and Vulnerable to Arginine Depletion. Clin. Cancer Res. 2019, 25, 5107–5121. [Google Scholar] [CrossRef] [PubMed]
- Ireland, A.S.; Micinski, A.M.; Kastner, D.W.; Guo, B.; Wait, S.J.; Spainhower, K.B.; Conley, C.C.; Chen, O.S.; Guthrie, M.R.; Soltero, D.; et al. MYC Drives Temporal Evolution of Small Cell Lung Cancer Subtypes by Reprogramming Neuroendocrine Fate. Cancer Cell 2020, 38, 60–78.e12. [Google Scholar] [CrossRef] [PubMed]
- Meder, L.; König, K.; Ozretić, L.; Schultheis, A.M.; Ueckeroth, F.; Ade, C.P.; Albus, K.; Boehm, D.; Rommerscheidt-Fuss, U.; Florin, A.; et al. Notch, ASCL1, P53 and RB Alterations Define an Alternative Pathway Driving Neuroendocrine and Small Cell Lung Carcinomas. Int. J. Cancer 2016, 138, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.S.; Ibaseta, A.; Fischer, M.M.; Cancilla, B.; O’Young, G.; Cristea, S.; Luca, V.C.; Yang, D.; Jahchan, N.S.; Hamard, C.; et al. Intratumoural Heterogeneity Generated by Notch Signalling Promotes Small Cell Lung Cancer. Nature 2017, 545, 360–364. [Google Scholar] [CrossRef]
- Gazdar, A.F.; Bunn, P.A.; Minna, J.D. Small Cell Lung Cancer: What We Know, What We Need to Know and the Path Forward. Nat. Rev. Cancer 2017, 17, 725–737. [Google Scholar] [CrossRef]
- AbbVie. AbbVie Discontinues Rovalpituzumab Tesirine (Rova-T) Research and Development Program. Available online: https://www.prnewswire.com/news-releases/abbvie-discontinues-rovalpituzumab-tesirine-rova-t-research-and-development-program-300909121.html (accessed on 4 May 2021).
- Owen, D.H.; Giffin, M.J.; Bailis, J.M.; Smit, M.-A.D.; Carbone, D.P.; He, K. DLL3: An Emerging Target in Small Cell Lung Cancer. J. Hematol. Oncol. 2019, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Murai, F.; Koinuma, D.; Shinozaki-Ushiku, A.; Fukayama, M.; Miyaozono, K.; Ehata, S. EZH2 Promotes Progression of Small Cell Lung Cancer by Suppressing the TGF-β-Smad-ASCL1 Pathway. Cell Discov. 2015, 1, 15026. [Google Scholar] [CrossRef] [PubMed]
- Gardner, E.E.; Lok, B.H.; Schneeberger, V.E.; Desmeules, P.; Miles, L.A.; Arnold, P.K.; Ni, A.; Khodos, I.; de Stanchina, E.; Nguyen, T.; et al. Chemosensitive Relapse in Small Cell Lung Cancer Proceeds through an EZH2-SLFN11 Axis. Cancer Cell 2017, 31, 286–299. [Google Scholar] [CrossRef] [PubMed]
- DS-3201b and Irinotecan for Patients with Recurrent Small Cell Lung Cancer—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03879798 (accessed on 27 July 2023).
- PF-06821497 Treatment of Relapsed/Refractory SCLC, Castration Resistant Prostate Cancer, and Follicular Lymphoma—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03460977 (accessed on 27 July 2023).
- Augert, A.; Eastwood, E.; Ibrahim, A.H.; Wu, N.; Grunblatt, E.; Basom, R.; Liggitt, D.; Eaton, K.D.; Martins, R.; Poirier, J.T.; et al. Targeting Notch Activation in Small Cell Lung Cancer through LSD1 Inhibition. Sci. Signal. 2019, 12, eaau2922. [Google Scholar] [CrossRef] [PubMed]
- A Safety and Efficacy Study of CC-90011 in Combination with Nivolumab in Subjects with Advanced Cancers—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04350463 (accessed on 27 July 2023).
- A Safety, Tolerability and Preliminary Efficacy Evaluation of CC-90011 Given in Combination with Cisplatin and Etoposide in Subjects with First Line, Extensive Stage Small Cell Lung Cancer—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03850067 (accessed on 27 July 2023).
- Jia, D.; Augert, A.; Kim, D.-W.; Eastwood, E.; Wu, N.; Ibrahim, A.H.; Kim, K.-B.; Dunn, C.T.; Pillai, S.P.S.; Gazdar, A.F.; et al. Crebbp Loss Drives Small Cell Lung Cancer and Increases Sensitivity to HDAC Inhibition. Cancer Discov. 2018, 8, 1422–1437. [Google Scholar] [CrossRef] [PubMed]
- Abexinostat in Combination with Pembrolizumab in Patients with Advanced Solid Tumor Malignancies—No Study Results Posted—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/results/NCT03590054 (accessed on 27 July 2023).
- Study of the Safety, Pharmacokinetics and Efficacy of EDO-S101, in Patients with Advanced Solid Tumors—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03345485 (accessed on 27 July 2023).
- Testing the Addition of an Anti-Cancer Drug, Entinostat, to the Usual Chemotherapy and Immunotherapy Treatment (Atezolizumab, Carboplatin and Etoposide) for Previously Untreated Aggressive Lung Cancer That Has Spread—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04631029 (accessed on 27 July 2023).
- Wu, Z.; Su, J.; Li, F.; Chen, T.; Mayner, J.; Engler, A.; Ma, S.; Li, Q.; Guan, K.-L. YAP Silencing by RB1 Mutation Is Essential for Small Cell Lung Cancer Metastasis. Nat. Commun. 2023, 14, 5916. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Gong, L.; Su, D.; Jin, Y.; Guo, C.; Yue, M.; Yao, S.; Qin, Z.; Ye, Y.; Tang, Y.; et al. Cullin5 Deficiency Promotes Small Cell Lung Cancer Metastasis by Stabilizing Integrin β1. J. Clin. Investig. 2019, 129, 972–987. [Google Scholar] [CrossRef] [PubMed]
- Gazdar, A.F.; Carney, D.N.; Nau, M.M.; Minna, J.D. Characterization of Variant Subclasses of Cell Lines Derived from Small Cell Lung Cancer Having Distinctive Biochemical, Morphological, and Growth Properties. Cancer Res. 1985, 45, 2924–2930. [Google Scholar] [PubMed]
- Calbo, J.; van Montfort, E.; Proost, N.; van Drunen, E.; Beverloo, H.B.; Meuwissen, R.; Berns, A. A Functional Role for Tumor Cell Heterogeneity in a Mouse Model of Small Cell Lung Cancer. Cancer Cell 2011, 19, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Rudin, C.M.; Poirier, J.T.; Byers, L.A.; Dive, C.; Dowlati, A.; George, J.; Heymach, J.V.; Johnson, J.E.; Lehman, J.M.; MacPherson, D.; et al. Molecular Subtypes of Small Cell Lung Cancer: A Synthesis of Human and Mouse Model Data. Nat. Rev. Cancer 2019, 19, 289–297. [Google Scholar] [CrossRef]
- Borromeo, M.D.; Savage, T.K.; Kollipara, R.K.; He, M.; Augustyn, A.; Osborne, J.K.; Girard, L.; Minna, J.D.; Gazdar, A.F.; Cobb, M.H.; et al. ASCL1 and NEUROD1 Reveal Heterogeneity in Pulmonary Neuroendocrine Tumors and Regulate Distinct Genetic Programs. Cell Rep. 2016, 16, 1259–1272. [Google Scholar] [CrossRef] [PubMed]
- Wooten, D.J.; Groves, S.M.; Tyson, D.R.; Liu, Q.; Lim, J.S.; Albert, R.; Lopez, C.F.; Sage, J.; Quaranta, V. Systems-Level Network Modeling of Small Cell Lung Cancer Subtypes Identifies Master Regulators and Destabilizers. PLoS Comput. Biol. 2019, 15, e1007343. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Klingbeil, O.; He, X.-Y.; Wu, X.S.; Arun, G.; Lu, B.; Somerville, T.D.D.; Milazzo, J.P.; Wilkinson, J.E.; Demerdash, O.E.; et al. POU2F3 Is a Master Regulator of a Tuft Cell-like Variant of Small Cell Lung Cancer. Genes Dev. 2018, 32, 915–928. [Google Scholar] [CrossRef] [PubMed]
- McColl, K.; Wildey, G.; Sakre, N.; Lipka, M.B.; Behtaj, M.; Kresak, A.; Chen, Y.; Yang, M.; Velcheti, V.; Fu, P.; et al. Reciprocal Expression of INSM1 and YAP1 Defines Subgroups in Small Cell Lung Cancer. Oncotarget 2017, 8, 73745–73756. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, N.R.; Knelson, E.H.; Wolff, J.O.; Vajdi, A.; Saigí, M.; Campisi, M.; Hong, D.; Thai, T.C.; Piel, B.; Han, S.; et al. Intrinsic Immunogenicity of Small Cell Lung Carcinoma Revealed by Its Cellular Plasticity. Cancer Discov. 2021, 11, 1952–1969. [Google Scholar] [CrossRef] [PubMed]
- Hamanaka, W.; Motoi, N.; Ishikawa, S.; Ushijima, M.; Inamura, K.; Hatano, S.; Uehara, H.; Okumura, S.; Nakagawa, K.; Nishio, M.; et al. A Subset of Small Cell Lung Cancer with Low Neuroendocrine Expression and Good Prognosis: A Comparison Study of Surgical and Inoperable Cases with Biopsy. Hum. Pathol. 2014, 45, 1045–1056. [Google Scholar] [CrossRef]
- Megyesfalvi, Z.; Barany, N.; Lantos, A.; Valko, Z.; Pipek, O.; Lang, C.; Schwendenwein, A.; Oberndorfer, F.; Paku, S.; Ferencz, B.; et al. Expression Patterns and Prognostic Relevance of Subtype-Specific Transcription Factors in Surgically Resected Small Cell Lung Cancer: An International Multicenter Study. J. Pathol. 2022, 257, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Zhang, J.; Liu, N.; Zhao, L.; Xu, B. Prognostic Implications of Molecular Subtypes in Primary Small Cell Lung Cancer and Their Correlation with Cancer Immunity. Front. Oncol. 2022, 12, 779276. [Google Scholar] [CrossRef] [PubMed]
- Horn, L.; Mansfield, A.S.; Szczęsna, A.; Havel, L.; Krzakowski, M.; Hochmair, M.J.; Huemer, F.; Losonczy, G.; Johnson, M.L.; Nishio, M.; et al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2220–2229. [Google Scholar] [CrossRef]
- Doyle, A.; Martin, W.J.; Funa, K.; Gazdar, A.; Carney, D.; Martin, S.E.; Linnoila, I.; Cuttitta, F.; Mulshine, J.; Bunn, P. Markedly Decreased Expression of Class I Histocompatibility Antigens, Protein, and mRNA in Human Small Cell Lung Cancer. J. Exp. Med. 1985, 161, 1135–1151. [Google Scholar] [CrossRef]
- Best, S.A.; Hess, J.B.; Souza-Fonseca-Guimaraes, F.; Cursons, J.; Kersbergen, A.; Dong, X.; Rautela, J.; Hyslop, S.R.; Ritchie, M.E.; Davis, M.J.; et al. Harnessing Natural Killer Immunity in Metastatic SCLC. J. Thorac. Oncol. 2020, 15, 1507–1521. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, Z.; Wang, Q. Emerging Therapies for Small Cell Lung Cancer. J. Hematol. Oncol. 2019, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- AFINITOR® (Everolimus) Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/022334s6lbl.pdf (accessed on 5 May 2021).
- Santamaría Nuñez, G.; Robles, C.M.G.; Giraudon, C.; Martínez-Leal, J.F.; Compe, E.; Coin, F.; Aviles, P.; Galmarini, C.M.; Egly, J.-M. Lurbinectedin Specifically Triggers the Degradation of Phosphorylated RNA Polymerase II and the Formation of DNA Breaks in Cancer Cells. Mol. Cancer Ther. 2016, 15, 2399–2412. [Google Scholar] [CrossRef] [PubMed]
- Leal, J.F.M.; Martínez-Díez, M.; García-Hernández, V.; Moneo, V.; Domingo, A.; Bueren-Calabuig, J.A.; Negri, A.; Gago, F.; Guillén-Navarro, M.J.; Avilés, P.; et al. PM01183, a New DNA Minor Groove Covalent Binder with Potent in Vitro and in Vivo Anti-Tumour Activity. Br. J. Pharmacol. 2010, 161, 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- ZEPZELCA (Lurbinectedin) Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213702s000lbl.pdf (accessed on 5 May 2021).
- Akinleye, A.; Rasool, Z. Immune Checkpoint Inhibitors of PD-L1 as Cancer Therapeutics. J. Hematol. Oncol. 2019, 12, 92. [Google Scholar] [CrossRef]
- Mansfield, A.S.; Każarnowicz, A.; Karaseva, N.; Sánchez, A.; De Boer, R.; Andric, Z.; Reck, M.; Atagi, S.; Lee, J.-S.; Garassino, M.; et al. Safety and Patient-Reported Outcomes of Atezolizumab, Carboplatin, and Etoposide in Extensive-Stage Small Cell Lung Cancer (IMpower133): A Randomized Phase I/III Trial. Ann. Oncol. 2020, 31, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Vaisman-Mentesh, A.; Gutierrez-Gonzalez, M.; DeKosky, B.J.; Wine, Y. The Molecular Mechanisms That Underlie the Immune Biology of Anti-Drug Antibody Formation Following Treatment with Monoclonal Antibodies. Front. Immunol. 2020, 11, 1951. [Google Scholar] [CrossRef] [PubMed]
- Schofield, D.J.; Percival-Alwyn, J.; Rytelewski, M.; Hood, J.; Rothstein, R.; Wetzel, L.; McGlinchey, K.; Adjei, G.; Watkins, A.; Machiesky, L.; et al. Activity of Murine Surrogate Antibodies for Durvalumab and Tremelimumab Lacking Effector Function and the Ability to Deplete Regulatory T Cells in Mouse Models of Cancer. mAbs 2021, 13, 1857100. [Google Scholar] [CrossRef] [PubMed]
- OPDIVO (Nivolumab) Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/125554s112lbl.pdf (accessed on 5 May 2021).
- Genprex, Inc. A Phase 1/2 Clinical Trial of Quaratusugene Ozeplasmid and Atezolizumab Maintenance Therapy in Patients with Extensive Stage Small Cell Lung Cancer (ES-SCLC); clinicaltrials.gov; Genprex, Inc.: Austin, TX, USA, 2023. Available online: https://clinicaltrials.gov/study/NCT05703971 (accessed on 31 January 2024).
- Carvajal-Hausdorf, D.; Altan, M.; Velcheti, V.; Gettinger, S.N.; Herbst, R.S.; Rimm, D.L.; Schalper, K.A. Expression and Clinical Significance of PD-L1, B7-H3, B7-H4 and TILs in Human Small Cell Lung Cancer (SCLC). J. Immunother. Cancer 2019, 7, 65. [Google Scholar] [CrossRef]
- Daiichi Sankyo, Inc. A Phase 3, Multicenter, Randomized, Open-Label Study of Ifinatamab Deruxtecan (I-DXd), a B7-H3 Antibody Drug Conjugate (ADC), Versus Treatment of Physician’s Choice (TPC) in Subjects with Relapsed Small Cell Lung Cancer (SCLC) (IDeate-2); clinicaltrials.gov; Daiichi Sankyo, Inc.: Chūō City, Japan, 2024. Available online: https://clinicaltrials.gov/study/NCT06203210 (accessed on 31 December 2023).
- Johnson, M.; Awad, M.; Koyama, T.; Gutierrez, M.; Falchook, G.S.; Piha-Paul, S.A.; Doi, T.; Satoh, T.; Okamoto, N.; Singh, J.; et al. OA05.05 Ifinatamab Deruxtecan (I-DXd; DS-7300) in Patients with Refractory SCLC: A Subgroup Analysis of a Phase 1/2 Study. J. Thorac. Oncol. 2023, 18, S54–S55. [Google Scholar] [CrossRef]
- AbbVie. A Phase 1 First-in-Human Study with ABBV-155 Alone and in Combination with Taxane Therapy in Adults with Relapsed and/or Refractory Solid Tumors; clinicaltrials.gov; AbbVie: North Chicago, IL, USA, 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT03595059 (accessed on 5 May 2021).
- Wiedemeyer, W.R.; Gavrilyuk, J.; Schammel, A.; Zhao, X.; Sarvaiya, H.; Pysz, M.; Gu, C.; You, M.; Isse, K.; Sullivan, T.; et al. ABBV-011, A Novel, Calicheamicin-Based Antibody–Drug Conjugate, Targets SEZ6 to Eradicate Small Cell Lung Cancer Tumors. Mol. Cancer Ther. 2022, 21, 986–998. [Google Scholar] [CrossRef]
- Gray, J.E.; Heist, R.S.; Starodub, A.N.; Camidge, D.R.; Kio, E.A.; Masters, G.A.; Purcell, W.T.; Guarino, M.J.; Misleh, J.; Schneider, C.J.; et al. Therapy of Small Cell Lung Cancer (SCLC) with a Topoisomerase-I-Inhibiting Antibody-Drug Conjugate (ADC) Targeting Trop-2, Sacituzumab Govitecan. Clin. Cancer Res. 2017, 23, 5711–5719. [Google Scholar] [CrossRef] [PubMed]
- Rudin, C.M.; Pietanza, M.C.; Bauer, T.M.; Ready, N.; Morgensztern, D.; Glisson, B.S.; Byers, L.A.; Johnson, M.L.; Burris, H.A.; Robert, F.; et al. Rovalpituzumab Tesirine, a DLL3-Targeted Antibody-Drug Conjugate, in Recurrent Small Cell Lung Cancer: A First-in-Human, First-in-Class, Open-Label, Phase 1 Study. Lancet Oncol. 2017, 18, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Rivera, I.I.; Hafez, N.; Tolcher, A.W.; LoRusso, P.; Wilks, S.; Tripathy, D.; Gara, M.; Pearson, P.; DeCillis, A.P.; Meric-Bernstam, F. CBX-12-101: A First-in-Human Study of CBX-12, an Alphalex Peptide Drug Conjugate (PDC) in Patients (Pts) with Advanced or Metastatic Solid Tumors. JCO 2023, 41, 3087. [Google Scholar] [CrossRef]
- Gif, M.J.; Thomas, M.; Murawsky, C.M.; Werner, J.; Liu, S.; Lee, F.; Homann, O.; Friedrich, M.; Pearson, J.T.; Raum, T.; et al. AMG 757, a Half-Life Extended, DLL3-Targeted Bispecific T-Cell Engager, Shows High Potency and Sensitivity in Preclinical Models of Small Cell Lung Cancer. Clin. Cancer Res. 2021, 27, 1526–1537. [Google Scholar]
- Guo, Y.; Guo, J.; Cheng, Y.; Wang, Z.; Li, Y.; Lv, D.; Yin, Y.; Li, G.; Wu, L.; Huang, Y.; et al. Phase Ib/IIa Safety and Efficacy of PM8002, a Bispecific Antibody Targeting PD-L1 and VEGF-A, as a Monotherapy in Patients with Advanced Solid Tumors. JCO 2023, 41, 2536. [Google Scholar] [CrossRef]
- Tomita, Y.; Oronsky, B.; Abrouk, N.; Cabrales, P.; Reid, T.R.; Lee, M.-J.; Yuno, A.; Baker, J.; Lee, S.; Trepel, J.B. In Small Cell Lung Cancer Patients Treated with RRx-001, a Downregulator of CD47, Decreased Expression of PD-L1 on Circulating Tumor Cells Significantly Correlates with Clinical Benefit. Transl. Lung Cancer Res. 2021, 10, 274–278. [Google Scholar] [CrossRef]
- Sinclair, C.; Revenko, A.S.; Johnson, R.B.; Peter, A.; Taylor, M.A.; Hettrick, L.A.; Klein, S.; Solanki, A.; Chapman, M.; Yates, J.; et al. Abstract 2713: Discovery and Characterization of AZD8701, a High Affinity Antisense Oligonucleotide Targeting FOXP3 to Relieve Immunosuppression in Cancer. Cancer Res. 2019, 79, 2713. [Google Scholar] [CrossRef]
- Wolchok, J.D.; Hoos, A.; O’Day, S.; Weber, J.S.; Hamid, O.; Lebbé, C.; Maio, M.; Binder, M.; Bohnsack, O.; Nichol, G.; et al. Guidelines for the Evaluation of Immune Therapy Activity in Solid Tumors: Immune-Related Response Criteria. Clin. Cancer Res. 2009, 15, 7412–7420. [Google Scholar] [CrossRef]
- Chaudhuri, A.A.; Chabon, J.J.; Lovejoy, A.F.; Newman, A.M.; Stehr, H.; Azad, T.D.; Khodadoust, M.S.; Esfahani, M.S.; Liu, C.L.; Zhou, L.; et al. Early Detection of Molecular Residual Disease in Localized Lung Cancer by Circulating Tumor DNA Profiling. Cancer Discov. 2017, 7, 1394–1403. [Google Scholar] [CrossRef]
- Swisher, E.M.; Wollan, M.; Mahtani, S.M.; Willner, J.B.; Garcia, R.; Goff, B.A.; King, M.-C. Tumor-Specific P53 Sequences in Blood and Peritoneal Fluid of Women with Epithelial Ovarian Cancer. Am. J. Obs. Gynecol. 2005, 193, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Guardant360®CDx FDA Approval Letter. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf20/P200010S008A.pdf (accessed on 5 May 2021).
- Powrózek, T.; Krawczyk, P.; Kucharczyk, T.; Milanowski, J. Septin 9 Promoter Region Methylation in Free Circulating DNA—Potential Role in Noninvasive Diagnosis of Lung Cancer: Preliminary Report. Med. Oncol. 2014, 31, 917. [Google Scholar] [CrossRef] [PubMed]
- University of California, San Francisco. Circulating Tumor DNA for Risk Stratification in Lung Cancer Screening; clinicaltrials.gov, 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT03774758 (accessed on 5 May 2021).
- University College, London. The SUMMIT Study: Cancer Screening Study with or without Low Dose Lung CT to Validate a Multi-Cancer Early Detection Test; clinicaltrials.gov; University College: London, UK, 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT03934866 (accessed on 5 May 2021).
- Cescon, D.W.; Bratman, S.V.; Chan, S.M.; Siu, L.L. Circulating Tumor DNA and Liquid Biopsy in Oncology. Nat. Cancer 2020, 1, 276–290. [Google Scholar] [CrossRef] [PubMed]
- Grunblatt, E.; Wu, N.; Zhang, H.; Liu, X.; Norton, J.P.; Ohol, Y.; Leger, P.; Hiatt, J.B.; Eastwood, E.C.; Thomas, R.; et al. MYCN Drives Chemoresistance in Small Cell Lung Cancer While USP7 Inhibition Can Restore Chemosensitivity. Genes Dev. 2020, 34, 1210–1226. [Google Scholar] [CrossRef]
- Uprety, D.; Remon, J.; Adjei, A.A. All That Glitters Is Not Gold: The Story of Rovalpituzumab Tesirine in SCLC. J. Thorac. Oncol. 2021, 16, 1429–1433. [Google Scholar] [CrossRef]
Therapeutic Class | Target(s) | Drug | Trial ID | Phase | Disease Conditions | |
---|---|---|---|---|---|---|
ADC and ADC like | B7-H3 | ABBV-155 (Mirzo-C) | NCT03595059 | 1 | Relapsed/refractory solid tumors | |
Ifinatamab Deruxtecan | NCT05280470 | 2 | ES-SCLC | |||
NCT06203210 | 3 | Relapsed/refractory SCLC | ||||
HS-20093 | NCT06052423 | 2 | ES-SCLC | |||
SEZ6 | ABBV-011 | NCT03639194 | 1 | Relapsed/refractory SCLC | ||
ABBV-706 | NCT05599984 | 1 | Advanced solid tumors with SEZ6 expression | |||
Carbonic anhydrase IX (CAIX) | 89Zr-DFO-girentuximab | NCT05563272 | 2 | CAIX-positive solid tumors | ||
EGFRxHER3 bispecific antibody | BL-B01D1 | NCT05924841 | 2 | ES-SCLC | ||
pH-sensitive peptide | CBX-12 | NCT04902872 | 1,2 | Advanced or metastatic refractory solid tumors | ||
GD2 | GD2-SADA:177Lu-DOTA Complex | NCT05130255 | 1 | GD2-expressing solid tumors | ||
Somatostatin receptor | 177-Lu Dotatate | NCT05142696 | 1 | Newly diagnosed ES-SCLC | ||
heat shock protein 90 (HSP90) | PEN-866 Sodium | NCT03221400 | 1,2 | Advanced solid tumors | ||
Trop-2 | Sacituzumab govitecan | NCT04826341 | 1,2 | SCLC | ||
SKB264 | NCT04152499 | 1,2 | Refractory advanced solid tumors | |||
DLL3 | ZL-1310 | NCT06179069 | 1 | SCLC | ||
Small molecule inhibitors | Kinase inhibitor | CDK2 inhibitor | PF-07104091 | NCT04553133 | 1,2 | SCLC |
Dual CDK4/CDK6i | Abemaciclib | NCT04010357 | 2 | Chemo-refractory, RB1 wild-type ES-SCLC | ||
Aurora A inhibitor | Alisertib | NCT06095505 | 2 | ES-SCLC | ||
JAB-2485 | NCT05490472 | 1,2 | Advanced solid tumors | |||
Aurora B inhibitor | AZD2811 | NCT04745689 | 2 | SCLC | ||
VEGFR2 inhibitor | Apatinib | NCT04683198 | 2 | ES-SCLC | ||
ATR inhibitor | Berzosertib | NCT04826341 | 1,2 | SCLC | ||
NCT02595931 | 1 | Metastatic or unresectable solid tumors | ||||
NCT03896503 | 2 | SCLC | ||||
NCT02487095 | 1,2 | SCLC | ||||
Bevacizumab | NCT05588388 | 2 | ES-SCLC and liver metastases | |||
NCT04730999 | 2 | ES-SCLC | ||||
NCT02734004 | 1,2 | Advanced solid tumors | ||||
Ceralasertib | NCT04699838 | 2 | ES-SCLC | |||
Elimusertib | NCT04491942 | 1 | Advanced solid tumors | |||
NCT04514497 | 1 | Advanced solid tumors | ||||
SC0245 | NCT05731518 | 1,2 | ES-SCLC | |||
WEE1 inhibitor | Debio 0123 | NCT05815160 | 1 | Relapsed/refractory SCLC | ||
PERK inhibitor | HC-5404-FU | NCT04834778 | 1 | Advanced solid tumors | ||
EGFR inhibitor | HLX07 | NCT05354700 | 2 | ES-SCLC | ||
FAK inhibitor | IN10018 | NCT06030258 | 1,2 | ES-SCLC | ||
PLK inhibitor | Onvansertib | NCT05450965 | 2 | Relapsed/refractory SCLC | ||
Pan-VEGFR inhibitor | Cediranib Maleate | NCT02498613 | 2 | Advanced solid tumors | ||
lenvatinib | NCT04938817 | 1,2 | ES-SCLC | |||
NCT04924101 | 2 | ES-SCLC | ||||
NCT05384015 | 2 | ES-SCLC | ||||
TAM receptors and VEGFR2 inhibitor | Sitravatinib | NCT05228496 | 2 | ES-SCLC | ||
Pan-VEGFR and PDGFR inhibitor | Vorolanib | NCT03583086 | 1,2 | Refractory thoracic tumors | ||
NCT04373369 | 2 | ES-SCLC | ||||
Multiple kinase inhibitors (VEGFR, PDGFR, c-Kit, Aurora B, and CSF-1R) | Chiauranib | NCT05271292 | 1,2 | Relapsed/refractory SCLC | ||
NCT05371899 | NA * | SCLC | ||||
NCT04830813 | 3 | SCLC | ||||
Multiple kinase inhibitors (VEGFR, FGFR1, and CSF-1R) | Surufatinib | NCT04579679 | 2 | NET | ||
NCT04579757 | 1,2 | Advanced solid tumors | ||||
NCT05668767 | 2 | ES-SCLC | ||||
NCT04996771 | 1,2 | SCLC | ||||
NCT05882630 | 1,2 | ES-SCLC | ||||
NCT05509699 | 2 | ES-SCLC | ||||
NCT05595889 | 2 | SCLC | ||||
NCT05527821 | 2 | Advanced solid tumors | ||||
multi-kinase inhibitor (Aurora A/B, JAK, FGFRs and VEGFRs) | TT-00420 | NCT04742959 | 1,2 | Advanced solid tumors | ||
NCT05253053 | 1,2 | Advanced solid tumors | ||||
Multiple kinase inhibitors (VEGFR, FGFR, PDGFR, c-Kit, and Ret) | AL3818 (Anlotinib) | NCT04165330 | 1,2 | Advanced solid tumors | ||
NCT04985851 | NA * | ES-SCLC | ||||
NCT05942508 | 1b | LS-SCLC | ||||
NCT05896059 | 2 | ES-SCLC | ||||
NCT04757779 | 2 | Relapsed/refractory SCLC | ||||
Multiple kinase inhibitors (Aurora B, FGFR, and VEGFR) | AL8326 | NCT05363280 | 2 | SCLC | ||
Epigenetic regulator inhibitor | LSD1 inhibitor | Bomedemstat | NCT05191797 | 1,2 | SCLC | |
CC-90011 | NCT03850067 | 1 | ES-SCLC | |||
Iadademstat (ORY-1001) | NCT05420636 | 2 | Relapsed/refractory SCLC | |||
EZH2 inhibitor | PF-06821497 | NCT03460977 | 1 | Relapsed/refractory SCLC | ||
XNW5004 | NCT06022757 | 1,2 | Advanced solid tumors | |||
Other inhibitors | PARP1/2 inhibitor | Fluzoparib (SHR-3162) | NCT04400188 | 1,2 | Relapsed/refractory SCLC | |
HTMC0435 | NCT05728619 | 1,2 | Recurrent ES-SCLC | |||
IMP4297(senaparib) | NCT04434482 | 1,2 | Advanced solid tumors | |||
Niraparib | NCT05718323 | 2 | SLFN11-positive, ES-SCLC | |||
NCT03830918 | 1,2 | ES-SCLC | ||||
NCT04701307 | 2 | SCLC | ||||
NCT03221400 | 1,2 | Advanced solid tumors | ||||
Olaparib | NCT04538378 | 2 | EGFR-mutated adenocarcinomas that transform into SCLC or NE tumors | |||
NCT02734004 | 1,2 | Advanced solid tumors | ||||
NCT04624204 | 3 | Treatment-naïve LS-SCLC | ||||
NCT04728230 | 1,2 | ES-SCLC | ||||
NCT03923270 | 1 | SCLC | ||||
NCT02769962 | 1,2 | Relapsed/refractory SCLC | ||||
NCT02498613 | 2 | Advanced solid tumors | ||||
Pamiparib (BGB-290) | NCT05483543 | 2 | LS-SCLC | |||
RP12146 | NCT05002868 | 1 | Locally advanced or metastatic solid tumors | |||
Rucaparib | NCT04209595 | 1,2 | Solid tumors and small cell cancers | |||
NCT03958045 | 2 | SCLC | ||||
Talazoparib | NCT04334941 | 2 | SLFN11 Positive SCLC | |||
NCT03672773 | 2 | ES-SCLC | ||||
PP2A inhibitor | LB-100 | NCT04560972 | 1 | ES-SCLC | ||
Exportin-1 (nuclear export) inhibitor | Selinexor | NCT05975944 | 1,2 | ES-SCLC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Y.; Benavente, C.A. Landscape and Treatment Options of Shapeshifting Small Cell Lung Cancer. J. Clin. Med. 2024, 13, 3120. https://doi.org/10.3390/jcm13113120
Gu Y, Benavente CA. Landscape and Treatment Options of Shapeshifting Small Cell Lung Cancer. Journal of Clinical Medicine. 2024; 13(11):3120. https://doi.org/10.3390/jcm13113120
Chicago/Turabian StyleGu, Yijun, and Claudia A. Benavente. 2024. "Landscape and Treatment Options of Shapeshifting Small Cell Lung Cancer" Journal of Clinical Medicine 13, no. 11: 3120. https://doi.org/10.3390/jcm13113120
APA StyleGu, Y., & Benavente, C. A. (2024). Landscape and Treatment Options of Shapeshifting Small Cell Lung Cancer. Journal of Clinical Medicine, 13(11), 3120. https://doi.org/10.3390/jcm13113120