Novel CAD Diagnosis Method Based on Search, PCA, and AdaBoostM1 Techniques
Abstract
:1. Introduction
- Proposes a new method to diagnose CAD based on age, hypertension, typical chest pain, t-wave inversion, and region with regional wall motion abnormality features.
- Explores attribute spaces using eight different search methods, namely, evolutionary, best first, genetic, harmony, particle swarm optimization (PSO), greedy stepwise, rank, and multi-objective evolutionary search.
- Enhances the performance of CAD diagnosis by efficiently taking advantage of using PCA and AdaBoostM1 techniques together.
- The performance of the proposed method is tested in terms of several metrics and compared with basic classifiers and existing studies in the literature.
- Achieves the best classification performance ever reported on the Z-Alizadeh Sani dataset with so few features (five) with an accuracy rate of 91.80%.
- The experimental results demonstrate that the proposed method is promising to be utilized by medical specialists for diagnosing CAD.
2. Materials and Methods
2.1. Dataset Description
2.2. The Proposed CAD Diagnosis Method
2.2.1. Feature Selection
2.2.2. Feature Extraction
2.2.3. Data Dividing
2.2.4. Classification
3. Experimental Results and Discussions
3.1. Performance Metrics
3.2. Experiments on the Feature Extraction
3.3. Comparison with Traditional Methods
3.4. Comparison with Existing Methods in the Literature
3.5. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Available online: https://www.who.int/ (accessed on 1 December 2023).
- International Diabetes Federation. Diabetes and Cardiovascular Disease. 2016. Available online: https://idf.org/our-activities/care-prevention/cardiovascular-disease.html (accessed on 1 December 2023).
- World Health Organization. Cardiovascular Diseases (CVDs). 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 1 December 2023).
- World Health Organization. The Top 10 Causes of Death. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 1 December 2023).
- Eyupoglu, C. Breast cancer classification using k-nearest neighbors algorithm. Online J. Sci. Technol. 2018, 8, 29–34. [Google Scholar]
- Janosi, A.; Steinbrunn, W.; Pfisterer, M.; Detrano, R. Heart Disease Data Set, UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu/ml/datasets/Heart+Disease (accessed on 1 December 2023).
- Akgül, M.; Sönmez, Ö.E.; Özcan, T. Diagnosis of heart disease using an intelligent method: A hybrid ANN–GA approach. In Proceedings of the International Conference on Intelligent and Fuzzy Systems, Istanbul, Turkey, 21–23 July 2019; pp. 1250–1257. [Google Scholar]
- Rajab, W.; Rajab, S.; Sharma, V. Kernel FCM-based ANFIS approach to heart disease prediction. In Proceedings of the Emerging Trends in Expert Applications and Security, Jaipur, India, 17–19 February 2019; pp. 643–650. [Google Scholar]
- Uyar, K.; İlhan, A. Diagnosis of heart disease using genetic algorithm based trained recurrent fuzzy neural networks. Procedia Comput. Sci. 2017, 120, 588–593. [Google Scholar] [CrossRef]
- Haq, A.U.; Li, J.P.; Memon, M.H.; Nazir, S.; Sun, R. A hybrid intelligent system framework for the prediction of heart disease using machine learning algorithms. Mob. Inf. Syst. 2018, 2018, 3860146. [Google Scholar] [CrossRef]
- Ali, L.; Niamat, A.; Khan, J.A.; Golilarz, N.A.; Xingzhong, X.; Noor, A.; Bukhari, S.A.C. An optimized stacked support vector machines based expert system for the effective prediction of heart failure. IEEE Access 2019, 7, 54007–54014. [Google Scholar] [CrossRef]
- Burse, K.; Kirar, V.P.S.; Burse, A.; Burse, R. Various preprocessing methods for neural network based heart disease prediction. In Proceedings of the Smart Innovations in Communication and Computational Sciences; Springer: Singapore, 2019; pp. 55–65. [Google Scholar]
- Paul, A.K.; Shill, P.C.; Rabin, M.; Islam, R.; Murase, K. Adaptive weighted fuzzy rule-based system for the risk level assessment of heart disease. Appl. Intell. 2018, 48, 1739–1756. [Google Scholar] [CrossRef]
- Amin, M.S.; Chiam, Y.K.; Varathan, K.D. Identification of significant features and data mining techniques in predicting heart disease. Telemat. Inform. 2019, 36, 82–93. [Google Scholar] [CrossRef]
- Terrada, O.; Cherradi, B.; Raihani, A.; Bouattane, O. Classification and Prediction of atherosclerosis diseases using machine learning algorithms. In Proceedings of the 2019 5th International Conference on Optimization and Applications (ICOA), Kenitra, Morocco, 25–26 April 2019. [Google Scholar]
- Gokulnath, C.B.; Shantharajah, S.P. An optimized feature selection based on genetic approach and support vector machine for heart disease. Clust. Comput. 2019, 22, 14777–14787. [Google Scholar] [CrossRef]
- Karayılan, T.; Kılıç, Ö. Prediction of heart disease using neural network. In Proceedings of the 2017 International Conference on Computer Science and Engineering (UBMK), Antalya, Turkey, 5–7 October 2017; pp. 719–723. [Google Scholar]
- Alizadeh Sani, Z.; Alizadehsani, R.; Roshanzamir, M. Z-Alizadeh Sani Data Set, UCI Machine Learning Repository. 2017. Available online: https://archive.ics.uci.edu/ml/datasets/Z-Alizadeh+Sani (accessed on 1 December 2023).
- Alizadehsani, R.; Habibi, J.; Hosseini, M.J.; Mashayekhi, H.; Boghrati, R.; Ghandeharioun, A.; Bahadorian, B.; Sani, Z.A. A data mining approach for diagnosis of coronary artery disease. Comput. Methods Programs Biomed. 2013, 111, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Alizadehsani, R.; Habibi, J.; Sani, Z.A.; Mashayekhi, H.; Boghrati, R.; Ghandeharioun, A.; Alizadeh-Sani, F. Diagnosing coronary artery disease via data mining algorithms by considering laboratory and echocardiography features. Res. Cardiovasc. Med. 2013, 2, 133–139. [Google Scholar]
- Alizadehsani, R.; Hosseini, M.J.; Sani, Z.A.; Ghandeharioun, A.; Boghrati, R. Diagnosis of coronary artery disease using cost-sensitive algorithms. In Proceedings of the 2012 IEEE 12th International Conference on Data Mining Workshops, Brussels, Belgium, 10–12 December 2012; pp. 9–16. [Google Scholar]
- Alizadehsani, R.; Habibi, J.; Sani, Z.A.; Mashayekhi, H.; Boghrati, R.; Ghandeharioun, A.; Bahadorian, B. Diagnosis of coronary artery disease using data mining based on lab data and echo features. J. Med. Bioeng. 2012, 1, 26–29. [Google Scholar] [CrossRef]
- Alizadehsani, R.; Zangooei, M.H.; Hosseini, M.J.; Habibi, J.; Khosravi, A.; Roshanzamir, M.; Khozeimeh, F.; Sarrafzadegan, N.; Nahavandi, S. Coronary artery disease detection using computational intelligence methods. Knowl. Based Syst. 2016, 109, 187–197. [Google Scholar] [CrossRef]
- Alizadehsani, R.; Hosseini, M.J.; Boghrati, R.; Ghandeharioun, A.; Khozeimeh, F.; Sani, Z.A. Exerting cost-sensitive and feature creation algorithms for coronary artery disease diagnosis. Int. J. Knowl. Discov. Bioinform. (IJKDB) 2012, 3, 59–79. [Google Scholar] [CrossRef]
- Alizadehsani, R.; Habibi, J.; Hosseini, M.J.; Boghrati, R.; Ghandeharioun, A.; Bahadorian, B.; Sani, Z.A. Diagnosis of coronary artery disease using data mining techniques based on symptoms and ecg features. Eur. J. Sci. Res. 2012, 82, 542–553. [Google Scholar]
- Qin, C.J.; Guan, Q.; Wang, X.P. Application of ensemble algorithm integrating multiple criteria feature selection in coronary heart disease detection. Biomed. Eng. Appl. Basis Commun. 2017, 29, 1750043. [Google Scholar] [CrossRef]
- Arabasadi, Z.; Alizadehsani, R.; Roshanzamir, M.; Moosaei, H.; Yarifard, A.A. Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm. Comput. Methods Programs Biomed. 2017, 141, 19–26. [Google Scholar] [CrossRef]
- Babič, F.; Olejár, J.; Vantová, Z.; Paralič, J. Predictive and descriptive analysis for heart disease diagnosis. In Proceedings of the 2017 Federated Conference on Computer Science and Information Systems (fedCSIS), Prague, Czech Republic, 3–6 September 2017; pp. 155–163. [Google Scholar]
- Kılıc, Ü.; Kaya Keleş, M. Feature selection with artificial bee colony algorithm on Z-Alizadeh Sani dataset. In Proceedings of the 2018 Innovations in Intelligent Systems and Applications Conference (ASYU), Adana, Turkey, 4–6 October 2018; pp. 1–3. [Google Scholar]
- Hu, C.; Fan, W.; Du, J.X.; Bouguila, N. A novel statistical approach for clustering positive data based on finite inverted Beta-Liouville mixture models. Neurocomputing 2019, 333, 110–123. [Google Scholar] [CrossRef]
- Abdar, M.; Książek, W.; Acharya, U.R.; Tan, R.S.; Makarenkov, V.; Pławiak, P. A new machine learning technique for an accurate diagnosis of coronary artery disease. Comput. Methods Programs Biomed. 2019, 179, 104992. [Google Scholar] [CrossRef] [PubMed]
- Abdar, M.; Acharya, U.R.; Sarrafzadegan, N.; Makarenkov, V. NE-nu-SVC: A new nested ensemble clinical decision support system for effective diagnosis of coronary artery disease. IEEE Access 2019, 7, 167605–167620. [Google Scholar] [CrossRef]
- Joloudari, J.H.; Hassannataj Joloudari, E.; Saadatfar, H.; Ghasemigol, M.; Razavi, S.M.; Mosavi, A.; Nadai, L. Coronary artery disease diagnosis; ranking the significant features using a random trees model. Int. J. Environ. Res. Public Health 2020, 17, 731. [Google Scholar] [CrossRef]
- Nasarian, E.; Abdar, M.; Fahami, M.A.; Alizadehsani, R.; Hussain, S.; Basiri, M.E.; Sarrafzadegan, N. Association between work-related features and coronary artery disease: A heterogeneous hybrid feature selection integrated with balancing approach. Pattern Recognit. Lett. 2020, 133, 33–40. [Google Scholar] [CrossRef]
- Ashish, L.; Kumar, S.; Yeligeti, S. Ischemic heart disease detection using support vector machine and extreme gradient boosting method. Mater. Today Proc. 2021; in press. [Google Scholar] [CrossRef]
- Kolukisa, B.; Bakir-Gungor, B. Ensemble feature selection and classification methods for machine learning-based coronary artery disease diagnosis. Comput. Stand. Interfaces 2023, 84, 103706. [Google Scholar] [CrossRef]
- Hall, M.A. Correlation-Based Feature Subset Selection for Machine Learning. Ph.D. Thesis, University of Waikato, Hamilton, New Zealand, 1998. [Google Scholar]
- Vikhar, P.A. Evolutionary algorithms: A critical review and its future prospects. In Proceedings of the 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), Jalgaon, India, 22–24 December 2016; pp. 261–265. [Google Scholar]
- Pearl, J. Heuristics: Intelligent Search Strategies for Computer Problem Solving; Addison-Wesley Longman Publishing Company: Boston, MA, USA, 1984. [Google Scholar]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley Longman Publishing Company: Boston, MA, USA, 1989. [Google Scholar]
- Fong, S.; Biuk-Aghai, R.P.; Millham, R.C. Swarm search methods in weka for data mining. In Proceedings of the 2018 10th International Conference on Machine Learning and Computing, Macau, China, 26–28 February 2018; pp. 122–127. [Google Scholar]
- Moraglio, A.; Chio, C.D.; Poli, R. Geometric particle swarm optimisation. In Proceedings of the European Conference on Genetic Programming, Valencia, Spain, 11–13 April 2007; pp. 125–136. [Google Scholar]
- Butterworth, R.; Simovici, D.A.; Santos, G.S.; Ohno-Machado, L. A greedy algorithm for supervised discretization. J. Biomed. Inform. 2004, 37, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.A.; Holmes, G. Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans. Knowl. Data Eng. 2003, 15, 1437–1447. [Google Scholar] [CrossRef]
- Jiménez, F.; Sánchez, G.; García, J.M.; Sciavicco, G.; Miralles, L. Multi-objective evolutionary feature selection for online sales forecasting. Neurocomputing 2017, 234, 75–92. [Google Scholar] [CrossRef]
- Statistics and Machine Learning Toolbox. 2018. Available online: https://www.mathworks.com/products/statistics.html (accessed on 1 December 2023).
- Salo, F.; Nassif, A.B.; Essex, A. Dimensionality reduction with IG-PCA and ensemble classifier for network intrusion detection. Comput. Netw. 2019, 148, 164–175. [Google Scholar] [CrossRef]
- Jackson, J.E. A User’s Guide to Principal Components; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 587. [Google Scholar]
- Yavuz, E.; Eyupoglu, C. An effective approach for breast cancer diagnosis based on routine blood analysis features. Med. Biol. Eng. Comput. 2020, 58, 1583–1601. [Google Scholar] [CrossRef] [PubMed]
- Olson, D.L.; Delen, D. Advanced Data Mining Techniques; Springer Science & Business Media: New York, NY, USA, 2008. [Google Scholar]
- Eyüpoğlu, C. Büyük Veride Etkin Gizlilik Koruması Için Yazılım Tasarımı /Software Design for Efficient Privacy Preserving in Big Data. Ph.D. Thesis, İstanbul University, Istanbul, Turkey, 2018. [Google Scholar]
- Freund, Y.; Schapire, R.E. Experiments with a new boosting algorithm. In Proceedings of the 13th International Conference on Machine Learning, Bari Italy, 3–6 July 1996; pp. 148–156. [Google Scholar]
- Cortes, E.A.; Martinez, M.G.; Rubio, N.G. Multiclass corporate failure prediction by Adaboost. M1. Int. Adv. Econ. Res. 2007, 13, 301–312. [Google Scholar] [CrossRef]
- Eyupoglu, C.; Aydin, M.A.; Zaim, A.H.; Sertbas, A. An efficient big data anonymization algorithm based on chaos and perturbation techniques. Entropy 2018, 20, 373. [Google Scholar] [CrossRef]
- Eyüpoğlu, C. Kronik Böbrek Hastalığının Erken Tanısı için Yeni Bir Klinik Karar Destek Sistemi. Avrupa Bilim Teknol. Derg. 2020, 20, 448–455. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Eyüpoğlu, C. Korelasyon Temelli Özellik Seçimi, Genetik Arama ve Rastgele Ormanlar Tekniklerine Dayanan Yeni Bir Rahim Ağzı Kanseri Teşhis Yöntemi. Avrupa Bilim Teknol. Derg. 2020, 19, 263–271. [Google Scholar] [CrossRef]
- Han, J.; Kamber, M.; Pei, J. Data Mining Concepts and Techniques, 3rd ed.; Elsevier, Morgan Kaufmann Publishers: San Francisco, CA, USA, 2012. [Google Scholar]
- John, G.H.; Langley, P. Estimating continuous distributions in Bayesian classifiers. In Proceedings of the Eleventh conference on Uncertainty in Artificial Intelligence, Montreal, Canada, 18–20 August 1995; pp. 338–345. [Google Scholar]
- Aha, D.W.; Kibler, D.; Albert, M. Instance-based learning algorithms. Mach. Learn. 1991, 6, 37–66. [Google Scholar] [CrossRef]
- Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann Publishers: San Mateo, CA, USA, 1993. [Google Scholar]
- Frank, E.; Hall, M.; Pfahringer, B. Locally Weighted Naive Bayes. In Proceedings of the 19th Conference in Uncertainty in Artificial Intelligence, Acapulco, Mexico, 7–10 August 2003; pp. 249–256. [Google Scholar]
- Cleary, J.G.; Trigg, L.E. K*: An instance-based learner using an entropic distance measure. In Proceedings of the 12th International Conference on Machine Learning, Tahoe City, CA, USA, 9–12 July 1995; pp. 108–114. [Google Scholar]
- Landwehr, N.; Hall, M.; Frank, E. Logistic model trees. Mach. Learn. 2005, 59, 161–205. [Google Scholar] [CrossRef]
- Keerthi, S.S.; Shevade, S.K.; Bhattacharyya, C.; Murthy, K.R. Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput. 2001, 13, 637–649. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Le Cessie, S.; Van Houwelingen, H.C. Ridge estimators in logistic regression. J. R. Stat. Soc. Ser. Appl. Stat. 1992, 41, 191–201. [Google Scholar] [CrossRef]
- Hulten, G.; Spencer, L.; Domingos, P. Mining time-changing data streams. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 26–29 August 2001; pp. 97–106. [Google Scholar]
- Deeplearning4j. Deep Learning for Java. Available online: https://deeplearning4j.org/ (accessed on 1 December 2023).
- Locuratolo, N.; Scicchitano, P.; Antoncecchi, E.; Basso, P.; Bonfantino, V.M.; Brescia, F.; Carrata, F.; De Martino, G.; Landriscina, R.; Lanzone, S.; et al. Follow-up of patients after an acute coronary event: The Apulia PONTE-SCA program. G. Ital. Cardiol. (2006) 2022, 23, 63–74. [Google Scholar]
# | Attribute Name | Attribute Category | Attribute Range |
---|---|---|---|
1 | Age | Demographic | 30–86 |
2 | Weight | Demographic | 48–120 |
3 | Length | Demographic | 140–188 |
4 | Sex | Demographic | Female, Male |
5 | Body Mass Index (BMI, Kg/m2) | Demographic | 18.115–40.901 |
6 | Diabetes Mellitus (DM) | Demographic | Yes, No |
7 | Hypertension (HTN) | Demographic | Yes, No |
8 | Current Smoker | Demographic | Yes, No |
9 | Ex-Smoker | Demographic | Yes, No |
10 | Family History (FH) | Demographic | Yes, No |
11 | Obesity (BMI > 25) | Demographic | Yes, No |
12 | Chronic Renal Failure (CRF) | Demographic | Yes, No |
13 | Cerebrovascular Accident (CVA) | Demographic | Yes, No |
14 | Airway Disease | Demographic | Yes, No |
15 | Thyroid Disease | Demographic | Yes, No |
16 | Congestive Heart Failure (CHF) | Demographic | Yes, No |
17 | Dyslipidemia (DLP) | Demographic | Yes, No |
18 | Blood Pressure (BP, mmHg) | Symptom and examination | 90–190 |
19 | Pulse Rate (PR, ppm) | Symptom and examination | 50–110 |
20 | Edema | Symptom and examination | Yes, No |
21 | Weak Peripheral Pulse | Symptom and examination | Yes, No |
22 | Lung Rales | Symptom and examination | Yes, No |
23 | Systolic Murmur | Symptom and examination | Yes, No |
24 | Diastolic Murmur | Symptom and examination | Yes, No |
25 | Typical Chest Pain | Symptom and examination | Yes, No |
26 | Dyspnea | Symptom and examination | Yes, No |
27 | Function Class | Symptom and examination | 0, 1, 2, 3 |
28 | Atypical | Symptom and examination | Yes, No |
29 | Nonanginal Chest Pain | Symptom and examination | Yes, No |
30 | Exertional Chest Pain | Symptom and examination | Yes, No |
31 | Low Threshold Angina (Low TH Ang) | Symptom and examination | Yes, No |
32 | Q-Wave | ECG | Yes, No |
33 | ST Elevation | ECG | Yes, No |
34 | ST Depression | ECG | Yes, No |
35 | T-Wave Inversion | ECG | Yes, No |
36 | Left Ventricular Hypertrophy (LVH) | ECG | Yes, No |
37 | Poor R-Wave Progression | ECG | Yes, No |
38 | Bundle Branch Block (BBB) | ECG | Left, Right, Normal |
39 | Fasting Blood Sugar (FBS, mg/dL) | Laboratory and echo | 62–400 |
40 | Creatine (Cr, mg/dL) | Laboratory and echo | 0.5–2.2 |
41 | Triglyceride (TG, mg/dL) | Laboratory and echo | 37–1050 |
42 | Low Density Lipoprotein (LDL, mg/dl) | Laboratory and echo | 18–232 |
43 | High Density Lipoprotein (HDL, mg/dL) | Laboratory and echo | 15.9–111 |
44 | Blood Urea Nitrogen (BUN, mg/dL) | Laboratory and echo | 6–52 |
45 | Erythrocyte Sedimentation Rate (ESR, mm/h) | Laboratory and echo | 1–90 |
46 | Hemoglobin (HB, g/dL) | Laboratory and echo | 8.9–17.6 |
47 | Potassium (K, mEq/lit) | Laboratory and echo | 3–6.6 |
48 | Sodium (Na, mEq/lit) | Laboratory and echo | 128–156 |
49 | White Blood Cell (WBC, cells/mL) | Laboratory and echo | 3700–18,000 |
50 | Lymphocyte (%) | Laboratory and echo | 7–60 |
51 | Neutrophil (%) | Laboratory and echo | 32–89 |
52 | Platelet (PLT, 1000/mL) | Laboratory and echo | 25–742 |
53 | Ejection Fraction (%) | Laboratory and echo | 15–60 |
54 | Region-RWMA | Laboratory and echo | 0, 1, 2, 3, 4 |
55 | Valvular Heart Disease (VHD) | Laboratory and echo | Mild, Severe, Moderate, Normal |
Search Method | Number of Chosen Attributes | Attribute No. |
---|---|---|
Evolutionary | 17 | 1, 7, 9, 14, 15, 18, 24, 25, 28, 29, 31, 35, 39, 41, 45, 47, 54 |
Best first | 12 | 1, 6, 7, 18, 25, 28, 29, 35, 45, 47, 53, 54 |
Genetic | 15 | 1, 4, 6, 7, 12, 18, 25, 28, 29, 32, 34, 35, 47, 53, 54 |
Harmony | 17 | 1,7, 12, 13, 14, 15, 17, 25, 27, 28, 29, 35, 37, 45, 47, 53, 54 |
PSO | 14 | 1, 6, 7, 18, 25, 28, 29, 32, 34, 35, 45, 47, 53, 54 |
Greedy stepwise | 10 | 1, 6, 7, 14, 25,35, 45, 47, 53, 54 |
Rank | 13 | 1, 6, 7, 14, 25, 28, 29, 32, 33, 35, 45, 53, 54 |
Multi-objective evolutionary | 10 | 1, 6, 7, 14, 25, 35, 45, 47, 53, 54 |
Feature Extraction Technique | 80/20% Train/Test Split | 5-Fold CV | 10-Fold CV | |
---|---|---|---|---|
Feature selection only | %Acc. | 90.164 | 86.799 | 86.469 |
Precision | 0.932 | 0.893 | 0.900 | |
Recall | 0.932 | 0.926 | 0.912 | |
F1 | 0.932 | 0.909 | 0.906 | |
AUC | 0.929 | 0.909 | 0.907 | |
MCC | 0.755 | 0.670 | 0.666 | |
PCA | %Acc. | 91.803 | 88.119 | 89.109 |
Precision | 0.933 | 0.913 | 0.914 | |
Recall | 0.955 | 0.921 | 0.935 | |
F1 | 0.944 | 0.917 | 0.924 | |
AUC | 0.895 | 0.888 | 0.879 | |
MCC | 0.793 | 0.708 | 0.730 |
Feature Extraction Technique | Naïve Bayes [59] | k-NN [60] | C4.5 DT [61] | LWL [62] | K* [63] | LMT [64] | SVM [65] | RF [66] | Log Reg [67] | Hoeff. Tree [68] | DL 4J [69] | Ours | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Feature selection only | %Acc. | 88.120 | 85.480 | 85.150 | 87.130 | 83.500 | 88.450 | 87.790 | 81.520 | 88.450 | 87.790 | 85.480 | 86.470 |
Preci. | 0.905 | 0.910 | 0.890 | 0.900 | 0.877 | 0.910 | 0.916 | 0.864 | 0.910 | 0.905 | 0.939 | 0.900 | |
Recall | 0.931 | 0.884 | 0.903 | 0.921 | 0.894 | 0.931 | 0.912 | 0.880 | 0.931 | 0.926 | 0.852 | 0.912 | |
F1 | 0.918 | 0.897 | 0.897 | 0.911 | 0.885 | 0.920 | 0.914 | 0.872 | 0.920 | 0.915 | 0.893 | 0.906 | |
AUC | 0.923 | 0.894 | 0.830 | 0.907 | 0.901 | 0.919 | 0.853 | 0.881 | 0.922 | 0.923 | 0.922 | 0.907 | |
MCC | 0.705 | 0.653 | 0.634 | 0.681 | 0.592 | 0.714 | 0.703 | 0.543 | 0.714 | 0.697 | 0.676 | 0.666 | |
PCA | %Acc. | 80.530 | 86.470 | 87.790 | 87.790 | 81.850 | 86.800 | 88.120 | 81.190 | 88.450 | 80.200 | 86.800 | 89.110 |
Preci. | 0.920 | 0.900 | 0.912 | 0.905 | 0.871 | 0.889 | 0.917 | 0.863 | 0.910 | 0.919 | 0.944 | 0.914 | |
Recall | 0.796 | 0.912 | 0.917 | 0.926 | 0.875 | 0.931 | 0.917 | 0.875 | 0.931 | 0.792 | 0.866 | 0.935 | |
F1 | 0.854 | 0.906 | 0.915 | 0.915 | 0.873 | 0.910 | 0.917 | 0.869 | 0.920 | 0.851 | 0.903 | 0.924 | |
AUC | 0.892 | 0.878 | 0.846 | 0.697 | 0.858 | 0.918 | 0.855 | 0.874 | 0.922 | 0.892 | 0.921 | 0.879 | |
MCC | 0.581 | 0.666 | 0.701 | 0.885 | 0.555 | 0.668 | 0.710 | 0.536 | 0.714 | 0.575 | 0.703 | 0.730 |
Paper | Year | Method | # of Features | Accuracy (%) |
---|---|---|---|---|
[22] | 2012 | SMO | 16 | 82.16 |
[25] | 2012 | Naïve Bayes–SMO | 16 | 88.52 |
[21] | 2012 | SMO | 34 | 92.09 |
[24] | 2012 | SMO 1-1 | 34 | 92.74 |
[19] | 2013 | Information gain + SMO | 34 | 94.08 |
[20] | 2013 | Bagging | 20 | 79.54 (LAD) |
+ | 61.46 (LCX) | |||
C4.5 | 68.96 (RCA) | |||
[23] | 2016 | Average and combined | 24 | 86.14 (LAD) |
information gain | 83.17 (LCX) | |||
+ SVM | 83.50 (RCA) | |||
[26] | 2017 | EA-MFS + SVM | 34 | 93.7 |
[27] | 2017 | GA + MLP-ANN | 22 | 93.85 |
[28] | 2017 | SVM | 27 | 86.67 |
[29] | 2018 | ABC + SMO | 16 | 89.44 |
[30] | 2019 | MML-IBLMM and Var-IBLMM | 55 | 81.84 |
[31] | 2019 | N2Genetic-nuSVM | 29 | 93.08 |
[32] | 2019 | NE-nu-SVC | 16 | 94.66 |
[33] | 2020 | Random trees | 40 | 91.47 |
[34] | 2020 | 2HFS + SMOTE + XGBoost | 38 | 92.58 |
[35] | 2021 | Random forests + SVM + XGBoost | 10 | 93.86 |
[36] | 2023 | MLP | 25 | 91.78 |
Proposed | PCA + AdaBoostM1 | 5 | 91.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eyupoglu, C.; Karakuş, O. Novel CAD Diagnosis Method Based on Search, PCA, and AdaBoostM1 Techniques. J. Clin. Med. 2024, 13, 2868. https://doi.org/10.3390/jcm13102868
Eyupoglu C, Karakuş O. Novel CAD Diagnosis Method Based on Search, PCA, and AdaBoostM1 Techniques. Journal of Clinical Medicine. 2024; 13(10):2868. https://doi.org/10.3390/jcm13102868
Chicago/Turabian StyleEyupoglu, Can, and Oktay Karakuş. 2024. "Novel CAD Diagnosis Method Based on Search, PCA, and AdaBoostM1 Techniques" Journal of Clinical Medicine 13, no. 10: 2868. https://doi.org/10.3390/jcm13102868
APA StyleEyupoglu, C., & Karakuş, O. (2024). Novel CAD Diagnosis Method Based on Search, PCA, and AdaBoostM1 Techniques. Journal of Clinical Medicine, 13(10), 2868. https://doi.org/10.3390/jcm13102868