Cardiovascular Effects of Tourniquet Application with Cardiac Cycle Efficiency: A Prospective Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Trial Registration
2.3. Patients
2.4. The PRAM Parameters
2.5. Study Protocol
2.5.1. Anesthesia
2.5.2. Fluid Administration
2.5.3. Hemodynamic Monitoring
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Estebe, J.P.; Davies, J.M.; Richebe, P. The pneumatic tourniquet: Mechanical, ischaemia-reperfusion and systemic effects. Eur. J. Anaesthesiol. 2011, 28, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, R.D.; Walts, L.F. Tourniquet-Induced Hypertension. Br. J. Anaesth. 1982, 54, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Valli, H.; Rosenberg, P.H.; Kyttä, J.; Nurminen, M. Arterial hypertension associated with the use of a tourniquet with either general or regional anaesthesia. Acta Anaesthesiol. Scand. 1987, 31, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Samii, K.; Elmelik, E.; Mourtada, M.B.; Debeyre, J.; Rapin, M. Intraoperative hemodynamic changes during total knee replacement. Anesthesiology 1979, 50, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Valli, H.; Rosenberg, P.H. Effects of three anaesthesia methods on haemodynamic responses connected with the use of thigh tourniquet in orthopaedic patients. Acta Anaesthesiol. Scand. 1985, 29, 142–147. [Google Scholar] [CrossRef]
- Liguori, G.A.; Sharrock, N.E. Asystole and severe bradycardia during epidural anesthesia in orthopedic patients. Anesthesiology 1997, 86, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Basilico, F.C.; Sweeney, G.; Losina, E.; Gaydos, J.; Skoniecki, D.; Wright, E.A.; Katz, J.N. Risk factors for cardiovascular complications following total joint replacement surgery. Arthritis Rheum. 2008, 58, 1915–1920. [Google Scholar] [CrossRef]
- Pinsky, M.R. Hemodynamic monitoring over the past 10 years. Crit. Care 2006, 10, 117. [Google Scholar] [CrossRef] [PubMed]
- Kobe, J.; Mishra, N.; Arya, V.K.; Al-Moustadi, W.; Nates, W.; Kumar, B. Cardiac output monitoring: Technology and choice. Ann. Card. Anaesth. 2019, 22, 6–17. [Google Scholar] [CrossRef]
- Mancusi, C.; Midtbø, H.; De Luca, N.; Halland, H.; de Simone, G.; Gerdts, E. Association of Myocardial Energetic Efficiency with Circumferential and Longitudinal Left Ventricular Myocardial Function in Subjects with Increased Body Mass Index (the FATCOR Study). J. Clin. Med. 2021, 10, 1581. [Google Scholar] [CrossRef]
- Teboul, J.-L.; Saugel, B.; Cecconi, M.; De Backer, D.; Hofer, C.K.; Monnet, X.; Perel, A.; Pinsky, M.R.; Reuter, D.A.; Rhodes, A.; et al. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med. 2016, 42, 1350–1359. [Google Scholar] [CrossRef] [PubMed]
- Romano, S.M. Cardiac cycle efficiency: A new parameter able to fully evaluate the dynamic interplay of the cardiovascular system. Int. J. Cardiol. 2012, 155, 326–327. [Google Scholar] [CrossRef] [PubMed]
- Guinot, P.-G.; Andrei, S.; Longrois, D. Ventriculo-arterial coupling: From physiological concept to clinical application in peri-operative care and ICUs. Eur. J. Anaesthesiol. Intensive Care 2022, 1, e004. [Google Scholar] [CrossRef]
- García, M.I.M.; Jian, Z.; Settels, J.J.; Hunley, C.; Cecconi, M.; Hatib, F.; Pinsky, M.R. Determinants of left ventricular ejection fraction and a novel method to improve its assessment of myocardial contractility. Ann. Intensive Care 2019, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Scolletta, S.; Bodson, L.; Donadello, K.; Taccone, F.S.; Devigili, A.; Vincent, J.-L.; De Backer, D. Assessment of left ventricular function by pulse wave analysis in critically ill patients. Intensive Care Med. 2013, 39, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Kılınç, E.; Yildirim, S.A.; Ulugöl, H.; Büyüköner, E.E.; Güçyetmez, B.; Toraman, F. The evaluation of cardiac functions in deep Trendelenburg position during robotic-assisted laparoscopic prostatectomy. Orig. Research. Front. Med. 2023, 10, 1273180. [Google Scholar] [CrossRef]
- Abawi, D.; Faragli, A.; Schwarzl, M.; Manninger, M.; Zweiker, D.; Kresoja, K.-P.; Verderber, J.; Zirngast, B.; Maechler, H.; Steendijk, P.; et al. Cardiac power output accurately reflects external cardiac work over a wide range of inotropic states in pigs. BMC Cardiovasc. Disord. 2019, 19, 217. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.B.; Littler, W.A. Measurement of cardiac reserve in cardiogenic shock: Implications for prognosis and management. Br. Heart J. 1990, 64, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, O.; Aslan, G.; Demirozu, Z.T.; Yenigun, C.D.; Yazicioglu, N. Evaluation of Resting Cardiac Power Output as a Prognostic Factor in Patients with Advanced Heart Failure. Am. J. Cardiol. 2017, 120, 973–979. [Google Scholar] [CrossRef]
- Guarracino, F.; Baldassarri, R.; Pinsky, M.R. Ventriculo-arterial decoupling in acutely altered hemodynamic states. Crit. Care 2013, 17, 213. [Google Scholar] [CrossRef]
- Kelly, R.P.; Ting, C.T.; Yang, T.M.; Liu, C.P.; Maughan, W.L.; Chang, M.S.; A Kass, D. Effective arterial elastance as index of arterial vascular load in humans. Circulation 1992, 86, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Monge Garcia, M.I.; Jian, Z.; Settels, J.J.; Hatib, F.; Cecconi, M.; Pinsky, M.R. Reliability of effective arterial elastance using peripheral arterial pressure as surrogate for left ventricular end-systolic pressure. J. Clin. Monit. Comput. 2019, 33, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Monge García, M.I.; Jian, Z.; Hatib, F.; Settels, J.J.; Cecconi, M.; Pinsky, M.R. Dynamic Arterial Elastance as a Ventriculo-Arterial Coupling Index: An Experimental Animal Study. Front. Physiol. 2020, 11, 284. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.I.M.; Jian, Z.; Settels, J.J.; Hunley, C.; Cecconi, M.; Hatib, F.; Pinsky, M.R. Performance comparison of ventricular and arterial dP/dt(max) for assessing left ventricular systolic function during different experimental loading and contractile conditions. Crit. Care 2018, 22, 325. [Google Scholar] [CrossRef] [PubMed]
- Deloughry, J.L.; Griffiths, R. Arterial tourniquets. Contin. Educ. Anaesth. Crit. Care Pain 2009, 9, 56–60. [Google Scholar] [CrossRef]
- Kam, P.C.; Kavanagh, R.; Yoong, F.F. The arterial tourniquet: Pathophysiological consequences and anaesthetic implications. Anaesthesia 2001, 56, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Gielen, M.J.; Stienstra, R. Tourniquet hypertension and its prevention: A review. Reg. Anesth. 1991, 16, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Railton, C.; Tawfic, Q. Tourniquet application during anesthesia: “What we need to know?”. J. Anaesthesiol. Clin. Pharmacol. 2016, 32, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Grassi, G. The autonomic nervous system and hypertension. Circ. Res. 2014, 114, 1804–1814. [Google Scholar] [CrossRef]
- Bristow, M.R.; Ginsburg, R.; Minobe, W.; Cubicciotti, R.S.; Sageman, W.S.; Lurie, K.; Billingham, M.E.; Harrison, D.C.; Stinson, E.B. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N. Engl. J. Med. 1982, 307, 205–211. [Google Scholar] [CrossRef]
- Crews, J.C.; Sehlhorst, C.S. Response to maintenance of tourniquet inflation in a primate model. Reg. Anesth. 1991, 16, 195–198. [Google Scholar] [PubMed]
- Fincke, R.; Hochman, J.S.; Lowe, A.M.; Menon, V.; Slater, J.N.; Webb, J.G.; LeJemtel, T.H.; Cotter, G. Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: A report from the SHOCK trial registry. J. Am. Coll. Cardiol. 2004, 44, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Grodin, J.L.; Mullens, W.; Dupont, M.; Wu, Y.; Taylor, D.O.; Starling, R.C.; Tang, W.H.W. Prognostic role of cardiac power index in ambulatory patients with advanced heart failure. Eur. J. Heart Fail. 2015, 17, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.; Liu, Y.; Cui, Y.; Li, J.; Li, L.; Ma, L.; Zou, M.; Chen, X.; Li, J. Contemporary Trends and Risk Factors of Hemodynamic and Myocardial Mechanics Derived by the Pressure Recording Analytical Method After Pediatric Cardiopulmonary Bypass. Front. Cardiovasc. Med. 2021, 8, 687150. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Pan, S.; Li, H.; Meng, L.; Luo, Y.; Ou-Yang, C. Prognostic value of cardiac cycle efficiency in children undergoing cardiac surgery: A prospective observational study. Br. J. Anaesth. 2020, 125, 321–329. [Google Scholar] [CrossRef] [PubMed]
- De Jong, R.H.; Nace, R.A. Nerve impulse conduction and cutaneous receptor responses during general anesthesia. Anesthesiology 1967, 28, 851–855. [Google Scholar] [CrossRef]
- Townsend, H.S.; Goodman, S.B.; Schurman, D.J.; Hackel, A.; Brock-Utne, J.G. Tourniquet release: Systemic and metabolic effects. Acta Anaesthesiol. Scand. 1996, 40, 1234–1237. [Google Scholar] [CrossRef]
Total | GA Group | CSEA Group | p | |
---|---|---|---|---|
Number of Patients, n (%) | 43 (100.0) | 22 (51.2) | 21 (48.8) | |
Age, years | 70 ± 9 | 67 ± 9 | 70 ± 9 | 0.077 |
Woman, n (%) | 34 (79.1) | 17 (77.3) | 17 (81.0) | 1.000 |
BMI, kg m−2 | 30.4 ± 4.8 | 30.8 ± 5.2 | 30.0 ± 4.4 | 0.276 |
ASA ≥ 2, n (%) | 38 (88.4) | 20 (90.9) | 18 (85.7) | 0.181 |
EF (preoperative), % | 60 (55–65) | 60 (59–65) | 60 (55–65) | 0.212 |
Comorbidities, n (%) | ||||
HT | 31 (72.1) | 17 (77.3) | 14 (66.7) | 0.438 |
DM | 19 (44.2) | 9 (40.9) | 10 (47.6) | 0.658 |
CAD | 13 (30.2) | 8 (36.4) | 5 (23.8) | 0.370 |
COPD | 9 (20.9) | 5 (22.7) | 4 (19.0) | 0.767 |
CVD | 5 (11.6) | 4 (18.2) | 1 (4.8) | 0.345 |
CRF | 2 (4.7) | 1 (4.5) | 1 (4.8) | 1.000 |
Tourniquet duration, min | 96 ± 15 | 96 ± 17 | 96 ± 13 | 0.958 |
Before Tourniquet Inflation (T2) | After Tourniquet Inflation (T3) | p | Before Tourniquet Deflation (T8) | After Tourniquet Deflation (T9) | p | |
---|---|---|---|---|---|---|
In all patients (n = 43) | ||||||
SAP (mmHg) | 104 (90 to 121) | 135 (117 to 153) | <0.001 | 145 ± 29 | 113 ± 22 | <0.001 |
SVI (mL/m2) | 42 ± 12 | 41 ± 12 | 0.167 | 42 ± 12 | 39 ± 12 | 0.096 |
Ea (mmHg mL−1) | 0.91 (0.71 to 1.14) | 1.23 (0.96 to 1.60) | <0.001 | 1.18 (1.08 to 1.75) | 0.95 (0.81 to 1.37) | <0.001 |
dP/dtmax (mmHg s−1) | 0.84 ± 0.28 | 1.08 ± 0.34 | <0.001 | 1.22 ± 0.43 | 0.93 ± 0.40 | <0.001 |
CPO (W) | 0.68 (0.57 to 0.80) | 0.88 (0.74 to 1.11) | <0.001 | 0.95 (0.83 to 1.23) | 0.73 (0.57 to 0.84) | <0.001 |
CCE (unit) | 0.27 (−0.01 to 0.41) | −0.10 (−0.52 to 0.26) | <0.001 | −0.12 (−0.43 to 0.17) | 0.08 (−0.20 to 0.32) | 0.024 |
In GA group (n = 22) | ||||||
SAP (mmHg) | 94 ± 13 | 136 ± 30 | <0.001 | 154 ± 28 | 106 ± 24 | <0.001 |
SVI (mL/m2) | 40 ± 12 | 38 ± 11 | 0.259 | 38 ± 12 | 35 ± 11 | 0.106 |
Ea (mmHg mL−1) | 0.80 (0.68 to 1.25) | 1.51 (1.15 to 1.67) | <0.001 | 1.58 (1.16 to 2.13) | 0.97 (0.81 to 1.61) | <0.001 |
dP/dtmax (mmHg s−1) | 0.69 ± 0.25 | 1.06 ± 0.44 | <0.001 | 1.28 ± 0.50 | 0.75 ± 0.28 | <0.001 |
CPO (W) | 0.60 ± 0.11 | 0.95 ± 0.27 | <0.001 | 1.13 (0.82 to 1.36) | 0.65 (0.47 to 0.77) | <0.001 |
CCE (unit) | 0.08 ± 0.38 | −0.52 ± 0.42 | <0.001 | −0.40 (−0.65 to −0.17) | 0.05 (−0.33 to 0.18) | 0.024 |
In CSEA group (n = 21) | ||||||
SAP (mmHg) | 121 (107 to 143) | 135 (120 to 148) | <0.001 | 132 (118 to 147) | 119 (110 to 122) | <0.001 |
SVI (mL/m2) | 45 ± 11 | 44 ± 12 | 0.445 | 46 ± 11 | 42 ± 12 | 0.055 |
Ea (mmHg mL−1) | 0.92 (0.82 to 1.05) | 1.00 (0.88 to 1.24) | <0.001 | 1.10 (0.91 to 1.22) | 0.95 (0.83 to 1.27) | 0.118 |
dP/dtmax (mmHg s−1) | 1.00 ± 0.22 | 1.09 ± 0.19 | 0.003 | 1.16 ± 0.35 | 1.12 ± 0.42 | 0.369 |
CPO (W) | 0.85 ± 0.20 | 0.93 ± 0.27 | 0.043 | 0.92 (0.81 to 1.01) | 0.80 (0.68 to 0.93) | 0.008 |
CCE (unit) | 0.30 ± 0.18 | 0.16 ± 0.25 | <0.001 | 0.17 (−0.11 to 0.37) | 0.28 (0.09 to 0.40) | 0.375 |
After the Tourniquet Inflation (T3 Values Minus T2 Values) | After the Tourniquet Deflation (T9 Values Minus T8 Values) | |||||
---|---|---|---|---|---|---|
GA (n = 22) | CSEA (n = 21) | p | GA (n = 22) | CSEA (n = 21) | p | |
Delta-SAP (mmHg) | 51 (17 to 59) | 10 (5 to 15) | <0.001 | −48 ± 34 | −15 ± 14 | <0.001 |
Delta-SVI (mL/m2) | −2 ± 9 | −1 ± 6 | 0.626 | −3 ± 10 | −4 ± 9 | 0.588 |
Delta-Ea (mmHg mL−1) | 0.53 (0.03 to 0.81) | 0.16 (0.07 to 0.24) | 0.042 | −0.46 ± 0.43 | −0.09 ± 0.29 | 0.002 |
Delta-dP/dtmax (mmHg s−1) | 0.40 (0.09 to 0.50) | 0.05 (0.01 to 0.21) | <0.001 | −0.45 (−0.91 to −0.19) | −0.05 (−0.12 to 0.02) | <0.001 |
Delta-CPO (W) | 0.35 ± 0.24 | 0.08 ± 0.17 | <0.001 | −0.41 (−0.65 to −0.25) | −0.09 (−0.27 to −0.01) | <0.001 |
Delta-CCE (unit) | -0.57 ± 0.50 | -0.14 ± 0.16 | <0.001 | 0.30 (-0.05 to 0.62) | 0.03 (-0.09 to 0.32) | 0.061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seker, M.; Aktas Yildirim, S.; Ulugol, H.; Gucyetmez, B.; Toraman, F. Cardiovascular Effects of Tourniquet Application with Cardiac Cycle Efficiency: A Prospective Observational Study. J. Clin. Med. 2024, 13, 2745. https://doi.org/10.3390/jcm13102745
Seker M, Aktas Yildirim S, Ulugol H, Gucyetmez B, Toraman F. Cardiovascular Effects of Tourniquet Application with Cardiac Cycle Efficiency: A Prospective Observational Study. Journal of Clinical Medicine. 2024; 13(10):2745. https://doi.org/10.3390/jcm13102745
Chicago/Turabian StyleSeker, Merve, Serap Aktas Yildirim, Halim Ulugol, Bulent Gucyetmez, and Fevzi Toraman. 2024. "Cardiovascular Effects of Tourniquet Application with Cardiac Cycle Efficiency: A Prospective Observational Study" Journal of Clinical Medicine 13, no. 10: 2745. https://doi.org/10.3390/jcm13102745
APA StyleSeker, M., Aktas Yildirim, S., Ulugol, H., Gucyetmez, B., & Toraman, F. (2024). Cardiovascular Effects of Tourniquet Application with Cardiac Cycle Efficiency: A Prospective Observational Study. Journal of Clinical Medicine, 13(10), 2745. https://doi.org/10.3390/jcm13102745