Dynamic Evaluation of Vitamin D Metabolism in Post-Bariatric Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Laboratory Measurements
2.3. Other Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. Med. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Wortsman, J.; Matsuoka, L.Y.; Chen, T.C.; Lu, Z.; Holick, M.F. Decreased bioavailability of vitamin D in obesity. Am. J. Clin. Nutr. 2000, 72, 690–693. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.; Dolnikowski, G.; Seyoum, E.; Harris, S.S.; Booth, S.L.; Peterson, J.; Saltzman, E.; Dawson-Hughes, B. Vitamin D3 in fat tissue. Endocrine 2008, 33, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Drincic, A.T.; Armas, L.A.; van Diest, E.E.; Heaney, R.P. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity 2012, 20, 1444–1448. [Google Scholar] [CrossRef] [PubMed]
- Carrelli, A.; Bucovsky, M.; Horst, R.; Cremers, S.; Zhang, C.; Bessler, M.; Schrope, B.; Evanko, J.; Blanco, J.; Silverberg, S.J.; et al. Vitamin D Storage in Adipose Tissue of Obese and Normal Weight Women. J. Bone Miner. Res. 2017, 32, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Kull, M.; Kallikorm, R.; Lember, M. Body mass index determines sunbathing habits: Implications on vitamin D levels. Intern. Med. J. 2009, 39, 256–258. [Google Scholar] [CrossRef] [PubMed]
- Roizen, J.D.; Long, C.; Casella, A.; O’Lear, L.; Caplan, I.; Lai, M.; Sasson, I.; Singh, R.; Makowski, A.J.; Simmons, R.; et al. Obesity Decreases Hepatic 25-Hydroxylase Activity Causing Low Serum 25-Hydroxyvitamin D. J. Bone Miner. Res. 2019, 34, 1068–1073. [Google Scholar] [CrossRef] [PubMed]
- Elkhwanky, M.; Kummu, O.; Piltonen, T.T.; Laru, J.; Morin-Papunen, L.; Mutikainen, M.; Tavi, P.; Hakkola, J. Obesity Represses CYP2R1, the Vitamin D 25-Hydroxylase, in the Liver and Extrahepatic Tissues. JBMR Plus 2020, 4, e10397. [Google Scholar] [CrossRef]
- Giustina, A.; di Filippo, L.; Facciorusso, A.; Adler, R.A.; Binkley, N.; Bollerslev, J.; Bouillon, R.; Casanueva, F.F.; Cavestro, G.M.; Chakhtoura, M.; et al. Vitamin D status and supplementation before and after Bariatric Surgery: Recommendations based on a systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2023, 24, 1011–1029. [Google Scholar] [CrossRef]
- Carlin, A.M.; Rao, D.S.; Meslemani, A.M.; Genaw, J.A.; Parikh, N.J.; Levy, S.; Bhan, A.; Talpos, G.B. Prevalence of vitamin D depletion among morbidly obese patients seeking gastric bypass surgery. Surg. Obes. Relat. Dis. 2006, 2, 98–103, discussion 104. [Google Scholar] [CrossRef]
- Wei, J.-H.; Lee, W.-J.; Chong, K.; Lee, Y.-C.; Chen, S.-C.; Huang, P.-H.; Lin, S.-J. High Incidence of Secondary Hyperparathyroidism in Bariatric Patients: Comparing Different Procedures. Obes. Surg. 2018, 28, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Salman, M.A.; Salman, A.; Elewa, A.; Rabiee, A.; Tourky, M.; Shaaban, H.E.-D.; Issa, M.; AbdAlla, A.; Khattab, M.; Refaat, A.; et al. Secondary Hyperparathyroidism Before and After Bariatric Surgery: A Prospective Study with 2-Year Follow-Up. Obes. Surg. 2022, 32, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Hamoui, N.; Kim, K.; Anthone, G.; Crookes, P.F. The significance of elevated levels of parathyroid hormone in patients with morbid obesity before and after bariatric surgery. Arch. Surg. 2003, 138, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Kamycheva, E.; Sundsfjord, J.; Jorde, R. Serum parathyroid hormone level is associated with body mass index. The 5th Tromso study. Eur. J. Endocrinol. 2004, 151, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Hultin, H.; Edfeldt, K.; Sundbom, M.; Hellman, P. Left-shifted relation between calcium and parathyroid hormone in obesity. J. Clin. Endocrinol. Metab. 2010, 95, 3973–3981. [Google Scholar] [CrossRef] [PubMed]
- Shapses, S.A.; Lee, E.J.; Sukumar, D.; Durazo-Arvizu, R.; Schneider, S.H. The Effect of obesity on the relationship between serum parathyroid hormone and 25-hydroxyvitamin D in women. J. Clin. Endocrinol. Metab. 2013, 98, E886–E890. [Google Scholar] [CrossRef] [PubMed]
- Barzin, M.; Ebadinejad, A.; Vahidi, F.; Khalaj, A.; Mahdavi, M.; Valizadeh, M.; Hosseinpanah, F. The mediating role of bariatric surgery in the metabolic relationship between parathyroid hormone and 25-hydroxyvitamin D. Osteoporos. Int. 2022, 33, 2585–2594. [Google Scholar] [CrossRef] [PubMed]
- Salazar, D.A.; Ferreira, M.J.S.; Neves, J.S.; Pedro, J.M.P.; Guerreiro, V.A.; Viana, S.e.S.; Mendonça, F.; Silva, M.M.; Belo, S.P.; Sande, A.V.; et al. Variable Thresholds of Vitamin D Plasma Levels to Suppress PTH: The Effect of Weight and Bariatric Surgery. Obes. Surg. 2020, 30, 1551–1559. [Google Scholar] [CrossRef]
- Konradsen, S.; Ag, H.; Lindberg, F.; Hexeberg, S.; Jorde, R. Serum 1,25-dihydroxy vitamin D is inversely associated with body mass index. Eur. J. Nutr. 2008, 47, 87–91. [Google Scholar] [CrossRef]
- Parikh, S.J.; Edelman, M.; Uwaifo, G.I.; Freedman, R.J.; Semega-Janneh, M.; Reynolds, J.; Yanovski, J.A. The relationship between obesity and serum 1,25-dihydroxy vitamin D concentrations in healthy adults. J. Clin. Endocrinol. Metab. 2004, 89, 1196–1199. [Google Scholar] [CrossRef]
- Bell, N.H.; Epstein, S.; Greene, A.; Shary, J.; Oexmann, M.J.; Shaw, S. Evidence for alteration of the vitamin D-endocrine system in obese subjects. J. Clin. Investig. 1985, 76, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Grethen, E.; McClintock, R.; Gupta, C.E.; Jones, R.; Cacucci, B.M.; Diaz, D.; Fulford, A.D.; Perkins, S.M.; Considine, R.V.; Peacock, M. Vitamin D and hyperparathyroidism in obesity. J. Clin. Endocrinol. Metab. 2011, 96, 1320–1326. [Google Scholar] [CrossRef] [PubMed]
- Kerstetter, J.; Caballero, B.; O’Brien, K.; Wurtman, R.; Allen, L. Mineral homeostasis in obesity: Effects of euglycemic hyperinsulinemia. Metabolism 1991, 40, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, G.; Soffiati, M.; Giavarina, D.; Tató, L. Mineral metabolism in obese children. Acta Paediatr. Scand. 1988, 77, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Hey, H.; Stokholm, K.H.; Lund, B.; Sørensen, O.H. Vitamin D deficiency in obese patients and changes in circulating vitamin D metabolites following jejunoileal bypass. Int. J. Obes. 1982, 6, 473–479. [Google Scholar]
- Abbasi, A.A.; Amin, M.; Smiertka, J.K.; Grunberger, G.; MacPherson, B.; Hares, M.; Lutrzykowski, M.; Najar, A. Abnormalities of vitamin D and calcium metabolism after surgical treatment of morbid obesity: A study of 136 patients. Endocr. Pract. 2007, 13, 131–136. [Google Scholar] [CrossRef]
- De Prisco, C.; Levine, S.N. Metabolic bone disease after gastric bypass surgery for obesity. Am. J. Med. Sci. 2005, 329, 57–61. [Google Scholar] [CrossRef]
- Wu, K.C.; Cao, S.; Weaver, C.M.; King, N.J.; Patel, S.; Kim, T.Y.; Black, D.M.; Kingman, H.; Shafer, M.M.; Rogers, S.J.; et al. Intestinal Calcium Absorption Decreases After Laparoscopic Sleeve Gastrectomy Despite Optimization of Vitamin D Status. J. Clin. Endocrinol. Metab. 2023, 108, 351–360. [Google Scholar] [CrossRef]
- Sinha, N.; Shieh, A.; Stein, E.M.; Strain, G.; Schulman, A.; Pomp, A.; Gagner, M.; Dakin, G.; Christos, P.; Bockman, R.S. Increased PTH and 1.25(OH)2D levels associated with increased markers of bone turnover following bariatric surgery. Obesity 2011, 19, 2388–2393. [Google Scholar] [CrossRef]
- Fleischer, J.; Stein, E.M.; Bessler, M.; Della Badia, M.; Restuccia, N.; Olivero-Rivera, L.; McMahon, D.J.; Silverberg, S.J. The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. J. Clin. Endocrinol. Metab. 2008, 93, 3735–3740. [Google Scholar] [CrossRef]
- Herrera-Martínez, A.D.; Castillo-Peinado, L.L.S.; Molina-Puerta, M.J.; Calañas-Continente, A.; Membrives, A.; Castilla, J.; Cardenosa, M.C.; Casado-Díaz, A.; Gálvez-Moreno, M.A.; Gahete, M.D.; et al. Bariatric surgery and calcifediol treatment, Gordian knot of severe-obesity-related comorbidities treatment. Front. Endocrinol. 2023, 14, 1243906. [Google Scholar] [CrossRef] [PubMed]
- Pelczyńska, M.; Grzelak, T.; Sperling, M.; Bogdański, P.; Pupek-Musialik, D.; Czyżewska, K. Impact of 25-hydroxyvitamin D, free and bioavailable fractions of vitamin D, and vitamin D binding protein levels on metabolic syndrome components. Arch. Med. Sci. 2017, 4, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, T.; Osmancevic, A.; Jansson, N.; Hulthén, L.; Holmäng, A.; Larsson, I. Increased vitamin D-binding protein and decreased free 25(OH)D in obese women of reproductive age. Eur. J. Nutr. 2014, 53, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Holmlund-Suila, E.; Pekkinen, M.; Ivaska, K.K.; Andersson, S.; Mäkitie, O.; Viljakainen, H. Obese young adults exhibit lower total and lower free serum 25-hydroxycholecalciferol in a randomized vitamin D intervention. Clin. Endocrinol. 2016, 85, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Marques-Pamies, M.; López-Molina, M.; Pellitero, S.; Santillan, C.S.; Martínez, E.; Moreno, P.; Tarascó, J.; Granada, M.L.; Puig-Domingo, M. Differential Behavior of 25(OH)D and f25(OH)D3 in Patients with Morbid Obesity After Bariatric Surgery. Obes. Surg. 2021, 31, 3990–3995. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Fan, X.-T.; Li, S.-Z.; Zhai, T.; Dong, J. Changes in Bone Metabolism After Sleeve Gastrectomy Versus Gastric Bypass: A Meta-Analysis. Obes. Surg. 2020, 30, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Thode, J.; Juul-Jørgensen, B.; Bhatia, H.M.; Kaerulf-Nielsen, M.; Bartels, P.D.; Fogh-Andersen, N.; Siggaard-Andersen, O. Comparison of serum total calcium, albumin-corrected total calcium, and ionized calcium in 1213 patients with suspected calcium disorders. Scand. J. Clin. Lab. Investig. 1989, 49, 217–223. [Google Scholar] [CrossRef]
- Usoltseva, L.; Ioutsi, V.; Panov, Y.; Antsupova, M.; Rozhinskaya, L.; Melnichenko, G.; Mokrysheva, N. Serum Vitamin D Metabolites by HPLC-MS/MS Combined with Differential Ion Mobility Spectrometry: Aspects of Sample Preparation without Derivatization. Int. J. Mol. Sci. 2023, 24, 8111. [Google Scholar] [CrossRef]
- Dedov, I.I.; Mel’nichenko, G.A.; Mokrysheva, N.G.; Pigarova, E.A.; Povaliaeva, A.A.; Rozhinskaya, L.Y.; Belaya, Z.E.; Dzeranova, L.K.; Karonova, T.L.; Suplotova, L.A.; et al. Draft federal clinical practice guidelines for the diagnosis, treatment, and prevention of vitamin D deficiency. Osteoporos. Bone Dis. 2021, 24, 4–26. [Google Scholar] [CrossRef]
- Dirks, N.F.; Martens, F.; Vanderschueren, D.; Billen, J.; Pauwels, S.; Ackermans, M.T.; Endert, E.; Heijer, M.D.; Blankenstein, M.A.; Heijboer, A.C. Determination of human reference values for serum total 1,25-dihydroxyvitamin D using an extensively validated 2D ID-UPLC–MS/MS method. J. Steroid Biochem. Mol. Biol. 2016, 164, 127–133. [Google Scholar] [CrossRef]
- Tang, J.C.; Nicholls, H.; Piec, I.; Washbourne, C.J.; Dutton, J.J.; Jackson, S.; Greeves, J.; Fraser, W.D. Reference intervals for serum 24,25-dihydroxyvitamin D and the ratio with 25-hydroxyvitamin D established using a newly developed LC–MS/MS method. J. Nutr. Biochem. 2017, 46, 21–29. [Google Scholar] [CrossRef] [PubMed]
- James, H.; Lorentz, P.; Collazo-Clavell, M.L. Patient-Reported Adherence to Empiric Vitamin/Mineral Supplementation and Related Nutrient Deficiencies After Roux-en-Y Gastric Bypass. Obes. Surg. 2016, 26, 2661–2666. [Google Scholar] [CrossRef] [PubMed]
- Qadhi, A.H.; Almuqati, A.H.; Alamro, N.S.; Azhri, A.S.; Azzeh, F.S.; Azhar, W.F.; Alyamani, R.A.; Almohmadi, N.H.; Alkholy, S.O.; Alhassani, W.E.; et al. The effect of bariatric surgery on dietary Behaviour, dietary recommendation Adherence, and micronutrient deficiencies one year after surgery. Prev. Med. Rep. 2023, 35, 102343. [Google Scholar] [CrossRef] [PubMed]
- Henfridsson, P.; Laurenius, A.; Wallengren, O.; Beamish, A.J.; Dahlgren, J.; Flodmark, C.-E.; Marcus, C.; Olbers, T.; Gronowitz, E.; Ellegard, L. Micronutrient intake and biochemistry in adolescents adherent or nonadherent to supplements 5 years after Roux-en-Y gastric bypass surgery. Surg. Obes. Relat. Dis. 2019, 15, 1494–1502. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.; Kwon, Y.; Kwon, J.; Kim, D.; Park, S.; Hwang, J.; Lee, C.M.; Park, S. Micronutrient status in bariatric surgery patients receiving postoperative supplementation per guidelines: Insights from a systematic review and meta-analysis of longitudinal studies. Obes. Rev. 2021, 22, e13249. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, M.; Rahimi, F.; Boschetti, S.; Devecchi, A.; De Francesco, A.; Mancino, M.V.; Toppino, M.; Morino, M.; Fanni, G.; Ponzo, V.; et al. Pre-operative micronutrient deficiencies in patients with severe obesity candidates for bariatric surgery. J. Endocrinol. Investig. 2021, 44, 1413–1423. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, L.F.; de Azevedo, L.G.; da Mota Santana, J.; De Sales, L.P.C.; Pereira-Santos, M. Obesity and overweight decreases the effect of vitamin D supplementation in adults: Systematic review and meta-analysis of randomized controlled trials. Rev. Endocr. Metab. Disord. 2020, 21, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, C.; Daly, R.M.; Carpentier, A.; Lu, Z.X.; Shore-Lorenti, C.; Sikaris, K.; Jean, S.; Ebeling, P.R. Effects of combined calcium and vitamin D supplementation on insulin secretion, insulin sensitivity and β-cell function in multi-ethnic vitamin D-deficient adults at risk for type 2 diabetes: A pilot randomized, placebo-controlled trial. PLoS ONE 2014, 9, e109607. [Google Scholar] [CrossRef]
- Quesada-Gomez, J.M.; Bouillon, R. Is calcifediol better than cholecalciferol for vitamin D supplementation? Osteoporos. Int. 2018, 29, 1697–1711. [Google Scholar] [CrossRef]
- Brancatella, A.; Cappellani, D.; Vignali, E.; Canale, D.; Marcocci, C. Calcifediol Rather Than Cholecalciferol for a Patient Submitted to Malabsortive Bariatric Surgery: A Case Report. J. Endocr. Soc. 2017, 1, 1079–1084. [Google Scholar] [CrossRef]
- Gagnon, C.; Schafer, A.L. Bone Health After Bariatric Surgery. JBMR Plus 2018, 2, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; DeLuca, H.F. Measurement of mammalian 25-hydroxyvitamin D3 24R-and 1 alpha-hydroxylase. Proc. Natl. Acad. Sci. USA 1981, 78, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, R. Obesity and androgens: Facts and perspectives. Fertil. Steril. 2006, 85, 1319–1340. [Google Scholar] [CrossRef] [PubMed]
- Guha, C.; Osawa, M.; Werner, P.A.; Galbraith, R.M.; Paddock, G.V. Regulation of human Gc (vitamin d-binding) protein levels: Hormonal and cytokine control of gene expression in vitro. Hepatology 1995, 21, 1675–1681. [Google Scholar] [CrossRef]
- Bouillon, R. Genetic and Racial Differences in the Vitamin D Endocrine System. Endocrinol. Metab. Clin. N. Am. 2017, 46, 1119–1135. [Google Scholar] [CrossRef]
- Nielson, C.M.; Jones, K.S.; Chun, R.F.; Jacobs, J.M.; Wang, Y.; Hewison, M.; Adams, J.S.; Swanson, C.M.; Lee, C.G.; Vanderschueren, D.; et al. Free 25-hydroxyvitamin D: Impact of vitamin d binding protein assays on racial-genotypic associations. J. Clin. Endocrinol. Metab. 2016, 101, 2226–2234. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. Dietary Reference Intakes for Calcium and Vitamin D; Ross, A.C., Taylor, C.L., Yaktine, A.L., Del Valle, H.B., Eds.; National Academies Press: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Nikooyeh, B.; Neyestani, T.R. The effects of vitamin D-fortified foods on circulating 25(OH)D concentrations in adults: A systematic review and meta-analysis. Br. J. Nutr. 2022, 127, 1821–1838. [Google Scholar] [CrossRef]
- Dunlop, E.; E Kiely, M.; James, A.P.; Singh, T.; Pham, N.M.; Black, L.J. Vitamin D Food Fortification and Biofortification Increases Serum 25-Hydroxyvitamin D Concentrations in Adults and Children: An Updated and Extended Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Nutr. 2021, 151, 2622–2635. [Google Scholar] [CrossRef]
Parameter | Description | Value |
---|---|---|
IS | Ion Spray Voltage | 5500 V |
GS1 | Gas 1 Pressure | 50 psi |
GS2 | Gas 2 Pressure | 60 psi |
Cur | Curtain Gas Pressure | 28 psi |
TEM | Source Heater Temperature | 650 °C |
SV | Separation Voltage | 3800 V |
COV | Compensation Voltage | 6.8 V |
OFS | Offset Voltage | −20 V |
IHT | Interface Heater Temperature | 150 °C |
Analyte | Transition Type | Q1 | Q3 | CE, V | DP, V | CXP, V |
---|---|---|---|---|---|---|
1,25(OH)2D3 | quantifier | 399.3 | 135.1 | 28 | 89 | 16 |
qualifier | 399.3 | 381.3 | 19 | 89 | 14 | |
24,25(OH)2D3 | quantifier | 417.3 | 399.3 | 13 | 66 | 15 |
qualifier | 417.3 | 381.3 | 15 | 66 | 14 | |
25(OH)D3 | quantifier | 401.3 | 383.3 | 13 | 59 | 15 |
qualifier | 401.3 | 365.4 | 17 | 59 | 13 | |
3-epi-25(OH)D3 | quantifier | 401.29 | 383.2 | 14 | 110 | 9 |
qualifier | 401.29 | 365.3 | 17 | 110 | 9 | |
25(OH)D2 | quantifier | 413.3 | 355.3 | 15 | 110 | 7 |
qualifier | 413.3 | 395.3 | 13 | 110 | 7 | |
1,25(OH)2D3-d6 | IS | 405.3 | 135.0 | 30 | 170 | 12 |
24,25(OH)2D3-d6 | IS | 423.3 | 387.5 | 16 | 150 | 7 |
25(OH)D3-d6 | IS | 407.4 | 389.3 | 12 | 120 | 11 |
3-epi-25(OH)D3-d3 | IS | 404.4 | 368.3 | 18 | 150 | 6 |
Parameter | Study Group (n = 30) | Reference Group (n = 30) | p |
---|---|---|---|
Age, years | 45.0 (39.0; 56.0) | 42.5 (30.0; 59.0) | 0.383 |
Sex, female/male | 19(63%)/11(37%) | 19(63%)/11(37%) | 1.0 |
Baseline BMI, kg/m2 | 46.9 (40.5; 51.3) | 25.6 (21.6; 28.3) | * <0.001 |
Baseline 25(OH)D3, ng/mL | 11.9 (6.8; 22.2) | 12.2 (10.2; 18.5) | 0.744 |
Laboratory Parameter | Study Group (n = 30) | Reference Group (n = 30) | p (Mann–Whitney) | Reference Range |
---|---|---|---|---|
25(OH)D3, ng/mL | 11.9 (6.8; 22.2) | 12.2 (10.2; 18.5) | 0.744 | >30 a |
3-epi-25(OH)D3, ng/mL | 1.1 (0.8; 2.4) | 1.0 (0.5; 1.7) | 0.194 | Not available |
1,25(OH)2D3, pg/mL | 20 (10; 37) | 39 (33; 50) | * <0.001 | 25–66 b |
24,25(OH)2D3, ng/mL | 0.8 (0.5; 1.4) | 0.8 (0.5; 1.5) | 0.994 | 0.5–5.6 b |
25(OH)D3/24,25(OH)2D3 | 15.3 (12.1; 20.9) | 16.9 (10.8; 25.9) | 0.581 | 7–23 b |
Free 25(OH)D, pg/mL | 5.2 (4.1; 6.5) | 4.2 (3.8; 5.5) | 0.129 | 2.4–35 c |
DBP, mg/L | 328 (288; 401) | 248 (217; 284) | * <0.001 | 176–623 c |
FGF-23, pmol/L | 1.1 (0.7; 1.4) | 0.9 (0.5; 1.2) | 0.319 | Not available |
Albumin-adjusted calcium, mmol/L | 2.24 (2.20; 2.32) | 2.31 (2.25; 2.35) | * 0.009 | 2.15–2.55 c |
Phosphorus, mmol/L | 1.15 (1.09; 1.31) | 1.16 (1.00; 1.30) | 0.589 | 0.74–1.52 c |
PTH, pg/mL | 41.4 (31.5; 57.8) | 40.7 (31.1; 52.2) | 0.912 | 15–65 c |
Creatinine, µmol/L | 67.7 (61.6; 77.7) | 69.9 (65.1; 79.2) | 0.352 | 63–110 (male) 50–98 (female) c |
Magnesium, mmol/L | 0.79 (0.72; 0.82) | 0.82 (0.78; 0.85) | * 0.043 | 0.7–1.05 c |
Parameter | Baseline (n = 30) | 3 Months (n = 25) | 6 Months (n = 21) | p (Friedman ANOVA) | p (Wilcoxon) ** | Reference Range |
---|---|---|---|---|---|---|
Actual visit time, days from surgery | - | 101 (90; 119) | 206 (192; 236) | - | - | - |
BMI, kg/m2 | 46.9 (40.5; 51.3) | 37.1 (30.9; 41.6) | 35.8 (30.5; 38.9) | * <0.001 | p1–2 < 0.001 p2–3 < 0.001 p1–3 < 0.001 | Not available |
25(OH)D3, ng/mL | 11.9 (6.8; 22.2) | 24.5 (14.7; 29.5) | 17.9 (12.4; 21.0) | 0.052 | p1–2 = 0.023 p2–3 = 0.030 p1–3 = 0.711 | 30–100 a |
3-epi-25(OH)D3, ng/mL | 1.1 (0.8; 2.4) | 3.3 (1.9; 4.7) | 1.2 (0.9; 2.1) | 0.056 | p1–2 = 0.053 p2–3 = 0.009 p1–3 = 0.286 | Not available |
1,25(OH)2D3, pg/mL | 20 (10; 37) | 38 (31; 52) | 49 (29; 59) | * <0.001 | p1–2 = 0.023 p2–3 = 0.594 p1–3 < 0.001 | 25–66 b |
24,25(OH)2D3, ng/mL | 0.8 (0.5; 1.4) | 1.5 (0.9; 2.1) | 1.1 (0.9; 1.6) | 0.355 | - | 0.5–5.6 b |
25(OH)D3/24,25(OH)2D3 | 15.3 (12.1; 20.9) | 16.5 (11.9; 22.3) | 14.2 (12.4; 16.2) | 0.458 | - | 7–23 b |
Free 25(OH)D, pg/mL | 5.2 (4.1; 6.5) | 6.6 (5.5; 7.9) | 5.3 (3.8; 5.8) | 0.838 | - | 2.4–35 c |
DBP, mg/L | 328 (288; 401) | 342 (314; 385) | 370 (329; 452) | 0.327 | - | 176–623 c |
FGF-23, pmol/L | 1.1 (0.7; 1.4) | 1.3 (1.0; 1.7) | 1.0 (0.7; 1.9) | 0.589 | - | Not available |
Albumin-adjusted calcium, mmol/L | 2.24 (2.20; 2.32) | 2.31 (2.22; 2.35) | 2.24 (2.20; 2.28) | 0.080 | - | 2.15–2.55 c |
Phosphorus, mmol/L | 1.15 (1.09; 1.31) | 1.22 (1.08; 1.29) | 1.27 (1.20; 1.38) | 0.299 | - | 0.74–1.52 c |
PTH, pg/mL | 41.4 (31.5; 57.8) | 42.5 (34.3; 58.1) | 42.8 (34.1; 65.1) | 0.678 | - | 15–65 c |
Creatinine, µmol/L | 67.7 (61.6; 77.7) | 63.4 (59.2; 71.0) | 62.1 (56.4; 65.9) | * 0.002 | p1–2 = 0.492 p2–3 = 0.005 p1–3 < 0.001 | 63–110 (male) 50–98 (female) c |
Magnesium, mmol/L | 0.79 (0.72; 0.82) | 0.76 (0.73; 0.84) | 0.76 (0.72; 0.82) | 0.790 | - | 0.7–1.05 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Povaliaeva, A.; Zhukov, A.; Tomilova, A.; Bondarenko, A.; Ovcharov, M.; Antsupova, M.; Ioutsi, V.; Shestakova, E.; Shestakova, M.; Pigarova, E.; et al. Dynamic Evaluation of Vitamin D Metabolism in Post-Bariatric Patients. J. Clin. Med. 2024, 13, 7. https://doi.org/10.3390/jcm13010007
Povaliaeva A, Zhukov A, Tomilova A, Bondarenko A, Ovcharov M, Antsupova M, Ioutsi V, Shestakova E, Shestakova M, Pigarova E, et al. Dynamic Evaluation of Vitamin D Metabolism in Post-Bariatric Patients. Journal of Clinical Medicine. 2024; 13(1):7. https://doi.org/10.3390/jcm13010007
Chicago/Turabian StylePovaliaeva, Alexandra, Artem Zhukov, Alina Tomilova, Axenia Bondarenko, Maksim Ovcharov, Mariya Antsupova, Vitaliy Ioutsi, Ekaterina Shestakova, Marina Shestakova, Ekaterina Pigarova, and et al. 2024. "Dynamic Evaluation of Vitamin D Metabolism in Post-Bariatric Patients" Journal of Clinical Medicine 13, no. 1: 7. https://doi.org/10.3390/jcm13010007
APA StylePovaliaeva, A., Zhukov, A., Tomilova, A., Bondarenko, A., Ovcharov, M., Antsupova, M., Ioutsi, V., Shestakova, E., Shestakova, M., Pigarova, E., Rozhinskaya, L., & Mokrysheva, N. (2024). Dynamic Evaluation of Vitamin D Metabolism in Post-Bariatric Patients. Journal of Clinical Medicine, 13(1), 7. https://doi.org/10.3390/jcm13010007