Innovations in Positron Emission Tomography and State of the Art in the Evaluation of Breast Cancer Treatment Response
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. [18F]FDG PET/CT in Assessing BC’s Response to Therapy
3.2. PET/CT Parameters
3.3. Dedicated PET Scanner
3.4. PET vs. MRI
3.5. PET/CT and PET/MRI
3.6. Subtypes of Breast Cancer
3.6.1. Luminal Subtype
3.6.2. HER2-Positive
3.6.3. Triple-Negative BC
3.6.4. Response to Therapy in Invasive Lobular Breast Cancer
3.7. Response to Therapy in Metastatic Breast Cancer
3.7.1. Assessment of Response to Therapy in BCs with Axillary Metastases
3.7.2. Assessment of Response to Therapy in BC with Bone Metastases
3.8. Assessment of Responses to New Therapies
3.9. Assessment of Response to Therapy and New Radiotracers
3.9.1. Receptor Tracers
3.9.2. Indicator of Proliferation
3.9.3. HER2-Targeted Agents
3.9.4. FAPI
3.9.5. Immunotherapy
3.9.6. PET/MRI
3.9.7. Radiomics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Duclos, V.; Iep, A.; Gomez, L.; Goldfarb, L.; Besson, F.L. PET molecular imaging: A holistic review of current practice and emerging perspectives for diagnosis, therapeutic evaluation and prognosis in clinical oncology. Int. J. Mol. Sci. 2021, 22, 4159. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Umutlu, L.; Kirchner, J.; Bruckmann, N.M.; Morawitz, J.; Antoch, G.; Ingenwerth, M.; Bittner, A.K.; Hoffmann, O.; Haubold, J.; Grueneisen, J.; et al. Multiparametric Integrated 18F-FDG PET/MRI-Based Radiomics for Breast Cancer Phenotyping and Tumor Decoding. Cancers 2021, 13, 2928. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Lin, C.L.; Kao, C.H. Staging/restaging performance of F18-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging in breast cancer: A review and meta-analysis. Eur. J. Radiol. 2018, 107, 158–1650. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; Rotili, A.; Agazzi, G.M.; Botta, F.; Raimondi, S.; Penco, S.; Dominelli, V.; Cremonesi, M.; Jereczek-Fossa, B.A.; Carrafiello, G.; et al. Recent Radiomics Advancements in Breast Cancer: Lessons and Pitfalls for the Next Future. Curr. Oncol. 2021, 28, 2351–2372. [Google Scholar] [CrossRef] [PubMed]
- Miladinova, D. Molecular Imaging in Breast Cancer. Nucl. Med. Mol. Imaging 2019, 53, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.I.; Jung, Y.J.; Kim, D.I.; Lee, S.; Jung, C.S.; Kang, S.K.; Pak, K.; Kim, S.J.; Kim, H.Y. Prognostic value of SUVmax in breast cancer and comparative analyses of molecular subtypes. A systematic review and meta-analysis. Medicine 2021, 100, 31. [Google Scholar]
- Cianfrocca, M.; Goldstein, L.J. Prognostic and predictive factors in early-stage breast cancer. Oncologist 2004, 9, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.; Park, H.S.; Kim, D.; Kim, H.J.; Kim, M.J.; Cho, Y.U.; Yun, M. A hierarchical prognostic model for risk stratification in patients with early breast cancer according to (18) F-fludeoxyglucose uptake and clinicopathological parameters. Cancer Med. 2018, 7, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.J.; Harbeck, N.; Nap, M.; Molina, R.; Nicolini, A.; Senkus, E.; Cardoso, F. Clinical use of biomarkers in breast cancer: Updated guidelines from the European Group on Tumor Markers (EGTM). Eur. J. Cancer 2017, 75, 284–298. [Google Scholar] [CrossRef] [PubMed]
- Heesch, A.; Maurer, J.; Stickeler, E.; Beheshti, M.; Mottaghy, F.M.; Morgenroth, A. Development of Radiotracers for Breast Cancer—The Tumor Microenvironment as an Emerging Target. Cells 2020, 9, 2334. [Google Scholar] [CrossRef] [PubMed]
- Killelea, B.K.; Yang, V.Q.; Mougalian, S.; Horowitz, N.R.; Pusztai, L.; Chagpar, A.B.; Lannin, D.R. Neoadjuvant chemotherapy for breast cancer increases the rate of breast conservation: Results from the National Cancer Database. J. Am. Coll. Surg. 2015, 220, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Brackstone, M.; Palma, D.; Tuck, A.B.; Scott, L.; Potvin, K.; Vandenberg, T.; Perera, F.; D’Souza, D.; Taves, D.; Kornecki, A.; et al. Concurrent neoadjuvant chemotherapy and radiation therapy in locally advanced breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Jeruss, J.S.; Mittendorf, E.A.; Tucker, S.L.; Gonzales-Angulo, A.M.; Buchholz, T.A.; Sahin, A.A.; Cormier, J.A.; Buzdar, A.U.; Hortobagyi, G.N.; Hunt, K.K. Combined use of clinical and pathologic staging variables to define outcomes for breast cancer patients treated with neoadjuvant therapy. J. Clin. Oncol. 2008, 26, 246–252. [Google Scholar] [CrossRef]
- Tateishi, U.; Miyake, M.; Nagaoka, T.; Terauchi, T.; Kubota, K.; Kinoshita, T.; Daisaki, H.; Macapinlac, H.A. Neoadjuvant Chemotherapy in Breast Cancer: Prediction of Pathologic Response with PET/CT and Dynamic Contrast-enhanced MR Imaging—Prospective Assessment. Radiology 2012, 263, 53–63. [Google Scholar] [CrossRef]
- Kaufmann, M.; von Minckwitz, G.; Mamounas, E.P.; Cameron, D.; Carey, L.A.; Cristofanilli, M.; Denkert, C.; Eiermann, W.; Gnant, M.; Harris, J.R.; et al. Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer. Ann. Surg. Oncol. 2012, 19, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Groheux, D.; Cochet, A.; Humbert, O.; Alberini, J.L.; Hindié, E.; Mankoff, D. 18F-FDG PET/CT for Staging and Restaging of Breast Cancer. J. Nucl. Med. 2016, 57, 17S–26S. [Google Scholar] [CrossRef]
- Hong, S.; Li, J.; Wang, S. 18FDG PET-CT for diagnosis of distant metastases in breast cancer patients. A meta-analysis. Surg. Oncol. 2013, 22, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Mghanga, F.P.; Lan, X.; Bakari, K.H.; Li, C.; Zhang, Y. Fluorine-18 fluorodeoxyglucose positron emission tomography-computed tomography in monitoring the response of breast cancer to neoadjuvant chemotherapy: A meta-analysis. Clin Breast Cancer 2013, 13, 271–279. [Google Scholar] [CrossRef]
- Tian, F.; Shen, G.; Deng, Y. The accuracy of 18F-FDG PET/CT in predicting the pathological response to neoadjuvant chemotherapy in patients with breast cancer: A meta-analysis and systematic review. Eur. Radiol. 2017, 27, 4786–4796. [Google Scholar] [CrossRef] [PubMed]
- Sheikhbahaei, S.; Trahan, T.J.; Xiao, J.; Taghipour, M.; Mena, E.; Connolly, R.M. FDG-PET/CT and MRI for Evaluation of Pathologic Response to Neoadjuvant Chemotherapy in Patients With Breast Cancer: A Meta-Analysis of Diagnostic Accuracy Studies. Oncologist 2016, 21, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Groheux, D.; Mankoff, D.; Espié, M.; Hindié, F. ¹⁸F-FDG PET/CT in the early prediction of pathological response in aggressive subtypes of breast cancer: Review of the literature and recommendations for use in clinical trials. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 983–993. [Google Scholar] [CrossRef] [PubMed]
- Riedl, C.C.; Pinker, K.; Ulaner, G.A.; Ong, L.; Baltzer, P.; Jochelson, M.S.; McArthur, H.; Gönen, M.; Dickler, M.; Weber, W.A. Comparison of FDG-PET/CT and contrast-enhanced CT for monitoring therapy response in patients with metastatic breast cancer. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1428–1437. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Wang, X.; Chen, Z. PET/CT Imaging for Monitoring Recurrence and Evaluating Response to Treatment in Breast Cancer. Adv. Clin. Exp. Med. 2016, 25, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Cardoso F, Senkus E, Costa A, Papadopoulos E, Aapro M, Andre F, Harbeck N, Aguilar Lopez B, Barrios CH, Bergh J; et al. 4th ESO-ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 4). Ann. Oncol. 2018, 29, 1634–1657. [Google Scholar] [CrossRef]
- Kitajima, K.; Miyoshi, Y.; Yamano, T.; Odawara, S.; Higuchi, T.; Yamakado, K. Assessment of tumor response to neoadjuvant chemotherapy in patients with breast cancer using MRI and FDG-PET/CT-RECIST 1.1 vs. PERCIST 1.0. Nagoya J. Med. Sci. 2018, 80, 183–197. [Google Scholar]
- Kitajima, K.; Nakatani, K.; Yamaguchi, K.; Nakajo, M.; Tani, A.; Ishibashi, M.; Hosoya, K.; Morita, T.; Kinoshita, T.; Kaida, H.; et al. Response to neoadjuvant chemotherapy for breast cancer judged by PERCIST—multicenter study in Japan. Eur. J. Nucl. Med. Mol. Imaging. 2018, 45, 1661–1671. [Google Scholar] [CrossRef]
- Helland, F.; Hallin Henriksen, M.; Gerke, O.; Vogsen, M.; Høilund-Carlsen, P.F.; Grubbe Hildebrandt, M. FDG-PET/CT Versus Contrast-Enhanced CT for Response Evaluation in Metastatic Breast Cancer: A Systematic Review. Diagnostic 2019, 9, 106. [Google Scholar] [CrossRef]
- Lian, W.; Liu, C.; Gu, B.; Zhang, J.; Lu, L.; Pan, H.; Yao, Z.; Wang, M.; Song, S.; Zhang, Y.; et al. The early prediction of pathological response to neoadjuvant chemotherapy and prognosis: Comparison of PET Response Criteria in Solid Tumors and European Organization for Research and Treatment of Cancer criteria in breast cancer. Nucl. Med. Commun. 2020, 41, 280–287. [Google Scholar] [CrossRef]
- Whisenant, J.; Williams, J.M.; Kang, H.; Arlinghaus, L.R.; Abramson, R.G.; Abramson, V.G.; Fakhoury, K.; Chakravarthy, A.B.; Yankeelov, T.E. Quantitative Comparison of Prone and Supine PERCIST Measurements in Breast Cancer. Tomography 2020, 6, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Hulikal, N.; Gajjala, S.R.; Kalawat, T.; Kadiyala, S.; Kottu, R. Predicting Response to Neoadjuvant Chemotherapy Using 18F FDG PET-CT in Patients with Locally Advanced Breast Cancer. Asian Pac. J. Cancer Prev. 2020, 21, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Choi, J.Y. Prognostic value of 18F-FDG PET and PET/CT for assessment of treatment response to neoadjuvant chemotherapy in breast cancer: A systematic review and metaanalysis. Breast Cancer Res. 2020, 22, 119. [Google Scholar] [CrossRef] [PubMed]
- Garcia Vicente, A.M.; Amo-Salas, M.; Relea Calatayud, F.; Munoz Sanchez Mdel, M.; Pena Pardo, F.J.; Jimenez Londono, G.A.; Alvarez Cabellos, R.; Espinosa Aunion, R.; Soriano Castrejon, A. Prognostic role of early and end-of neoadjuvant treatment 18F-FDG PET/CT in patients with breast cancer. Clin. Nucl. Med. 2016, 41, e313–e322. [Google Scholar] [CrossRef] [PubMed]
- Depardon, E.; Kanoun, S.; Humbert, O.; Bertaut, A.; Riedinger, J.M.; Tal, I.; Vrigneaud, J.M.; Lasserre, M.; Toubeau, M.; Berriolo-Riedinger, A.; et al. FDG PET/CT for prognostic stratification of patients with metastatic breast cancer treated with first line systemic therapy: Comparison of EORTC criteria and PERCIST. PLoS ONE 2018, 13, e0199529. [Google Scholar] [CrossRef]
- Naghavi-Behzad, M.; Oltmann, H.R.; Alamdari, T.A.; Bülow, J.L.; Ljungstrøm, L.; Braad, P.-E.; Asmussen, J.T.; Vogsen, M.; Kodahl, A.R.; Gerke, O.; et al. Clinical Impact of FDG-PET/CT Compared with CE-CT in Response Monitoring of Metastatic Breast Cancer. Cancers 2021, 13, 4080. [Google Scholar] [CrossRef]
- Basnet, B.; Goyal, P.; Mahawar, V.; Bothra, S.J.; Agrawal, C.; Thapa, B.B.; Talwar, V.; Jain, P.; Babu Koyyala, V.P.; Goel, V.; et al. Role of 18F-flurodeoxyglucose positron-emission tomography/computed tomography in the evaluation of early response to neoadjuvant chemotherapy in patients with locally advanced triple-negative breast cancer. Indian. J. Nucl. Med. 2020, 35, 105–109. [Google Scholar] [CrossRef]
- Zhang, F.C.; Xu, H.Y.; Liu, J.J.; Xu, Y.F.; Chen, B.; Yang, Y.J.; Yan, N.N.; Song, S.L.; Lin, Y.M.; Xu, Y.C. 18F FDG PET/CT for the early prediction of the response rate and survival of patients with recurrent or metastatic breast cancer. Oncol. Lett. 2018, 16, 4151–4158. [Google Scholar] [CrossRef]
- Kwon, H.W.; Lee, J.H.; Pahk, K.; Park, K.H.; Kim, S. Clustering subtypes of breast cancer by combining immunohistochemistry profiles and metabolism characteristics measured using FDG PET/CT. Cancer Imaging 2021, 21, 55. [Google Scholar] [CrossRef]
- Garcia-Vicente, A.M.; Pérez-Beteta, J.; Amo-Salas, M.; Molina, D.; Jimenez-Londoño, G.A.; Soriano-Castrejón, A.M.; Pena Pardo, F.J.; Martínez-González, A. Papel predictivo y pronóstico de las variables volumétricas metabólicas obtenidas en la 18F-FDG PET/TC en el cáncer de mama con indicación de quimioterapia neoadyuvante. Rev. Esp. Med. Nucl. Imagen Mol. 2018, 37, 73–79. [Google Scholar] [CrossRef]
- Arslan, E.; Can Trabulus, D.; Mermut, Ö.; Şavlı, T.C.; Çermik, T.F. Alternative volumetric PET parameters for evaluation of breast cancer cases with 18F-FDG PET/CT imaging: Metabolic tumour volume and total lesion glycolysis. J. Med. Imaging Radiat. Oncol. 2021, 65, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Akdeniz, N.; Komek, H.; Kucukoner, M.; Kaplan, M.A.; Urakci, Z.; Oruc, Z.; Işikdoğan, A. The role of basal 18F-FDG PET/CT maximum standard uptake value and maximum standard uptake change in predicting pathological response in breast cancer patients receiving neoadjuvant chemotherapy. Nucl. Med. Commun. 2021, 42, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Vogsen, M.; Bülow, J.L.; Ljungstrøm, L.; Oltmann, H.R.; Alamdari, T.A.; Naghavi-Behzad, M.; Braad, P.-E.; Gerke, O. Hildebrandt MGFDG-PET/CT for Response Monitoring in Metastatic Breast Cancer: The Feasibility Benefits of Applying, P.E.R.C.I.S.T. Diagnostics 2021, 11, 723. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T.; Fujimoto, Y.; Ozawa, H.; Bun, A.; Fukui, R.; Miyagawa, Y.; Imamura, M.; Kitajima, K.; Yamakado, K.; Miyoshi, Y. Significance of Metabolic Tumor Volume at Baseline and Reduction of Mean Standardized Uptake Value in 18F-FDGPET/CT Imaging for Predicting Pathological Complete Response in Breast Cancers Treated with Preoperative Chemotherapy. Ann. Surg. Oncol. 2019, 26, 2175–2183. [Google Scholar] [CrossRef]
- Humbert, O.; Lasserre, M.; Bertaut, A.; Fumoleau, P.; Coutant, C.; Brunotte, F.; Cochet, A. Breast Cancer Blood Flow and Metabolism on Dual- Acquisition 18F-FDG PET: Correlation with Tumor Phenotype and Neoadjuvant Chemotherapy Response. J. Nucl. Med. 2018, 59, 1035–1041. [Google Scholar] [CrossRef]
- Sasada, S.; Masumoto, N.; Goda, N.; Kajitani, K.; Emi, A.; Kadoya, T.; Okada, M. Dedicated breast PET for detecting residual disease after neoadjuvant chemotherapy in operable breast cancer: A prospective cohort study. Eur. J. Surg. Oncol. 2018, 44, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Hathi, D.K.; Li, W.; Seo, Y.; Flavell, R.L.; Kornak, J.; Franc, B.L.; Joe, B.E.; Esserman, L.J.; Hylton, N.M.; Jones, L.F. Evaluation of primary breast cancers using dedicated breast PET and whole-body PET. Sci. Rep. 2020, 10, 21930. [Google Scholar] [CrossRef]
- Tokuda, Y.; Yanagawa, M.; Fujita, Y.; Honma, K.; Tanei, T.; Shimoda, M.; Miyake, T.; Naoi, Y.; Kim, S.J.; Shimazu, K.; et al. Prediction of pathological complete response after neoadjuvant chemotherapy in breast cancer: Comparison of diagnostic performances of dedicated breast PET, whole-body PET, and dynamic contrast-enhanced MRI. Breast Cancer Res. Treat. 2021, 188, 107–115. [Google Scholar] [CrossRef]
- Kalinyak, J.E.; Berg, W.A.; Schilling, K.; Madsen, K.S.; Narayanan, D.; Tartar, M. Breast cancer detection using high-resolution breast PET compared to whole-body PET or PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 260–275. [Google Scholar] [CrossRef]
- Noritake, M.; Narui, K.; Kaneta, T.; Sugae, S.; Sakamaki, K.; Inoue, T.; Ishikawa, T. Evaluation of the response to breast cancer neoadjuvant chemotherapy using 18F-FDG positron emission mammography compared with whole-body 18F-FDG PET: A prospective observational study. Clin. Nucl. Med. 2017, 42, 169–175. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Q.; Bao, J.; Liu, D.; Huang, X.; Wang, J. Direct comparison of PET/CT and MRI to predict the pathological response to neoadjuvant chemotherapy in breast cancer: A meta-analysis. Sci. Rep. 2017, 7, 8479. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yao, L.; Jin, P.; Hu, L.; Li, X.; Guo, T.; Yang, K. MRI and PET/CT for evaluation of the pathological response to neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis. Breast 2018, 40, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, C.; Li, P.; Liu, J.; Huang, G.; Song, S. The Role of 18F-FDG PET/CT and MRI in Assessing Pathological Complete Response to Neoadjuvant Chemotherapy in Patients with Breast Cancer: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2016, 10, 3746232. [Google Scholar]
- Pujara, A.C.; Kim, E.; Axelrod, D.; Melsaether, A.N. PET/MRI in Breast Cancer. J. Magn. Reson. Imaging 2019, 49, 328–342. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.; Im, S.A.; Cheon, G.J.; Park, I.A.; Lee, K.H.; Kim, T.Y.; Kim, Y.S.; Kwon, B.R.; Lee, J.M.; Suh, H.Y.; et al. Integrated (18) F-FDG PET/MRI in breast cancer: Early prediction of response to neoadjuvant chemotherapy. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 328. [Google Scholar] [CrossRef] [PubMed]
- Miyake, K.K.; Nakamoto, Y.; Saji, S.; Sugie, T.; Kurihara, K.; Kanao, S.; Ikeda, D.M.; Toi, M.; Togashi, K. Impact of physiological hormonal fluctuations on (18)F-fluorodeoxyglucose uptake in breast cancer. Breast Cancer Res. Treat. 2018, 169, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Grapin, M.; Coutant, C.; Riedinger, J.-M.; Ladoire, S.; Brunotte, F.; Cochet, A.; Humbert, O. Combination of breast imaging parameters obtained from 18F-FDG PET and CT scan can improve the prediction of breast-conserving surgery after neoadjuvant chemotherapy in luminal/HER2-negative breast cancer. Eur. J. Radiol. 2019, 113, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Boughdad, S.; Champion, L.; Becette, V.; Cherel, P.; Fourme, E.; Lemonnier, J.; Lerebours, F.; Alberini, J.L. Early metabolic response of breast cancer to neoadjuvant endocrine therapy: Comparison to morphological and pathological response. Cancer Imaging 2020, 20, 11. [Google Scholar] [CrossRef]
- Lee, I.H.; Lee, S.J.; Lee, J.; Jung JHPark, H.Y.; Jeong, S.Y.; Lee, S.W.; Chae, Y.S. Utility of (18)F-FDG PET/CT for predicting pathologic complete response in hormone receptor-positive, HER2-negative breast cancer patients receiving neoadjuvant chemotherapy. BMC Cancer 2020, 20, 1106. [Google Scholar] [CrossRef] [PubMed]
- de Cremoux, P.; Biard, L.; Poirot, B.; Bertheau, P.; Teixeira, L.; Lehmann-Che, J.; Bouhidel, F.A.; Merlet, P.; Espié, M.; Resche-Rigon, M.; et al. (18)FDG-PET/CT and molecular markers to predict response to neoadjuvant chemotherapy and outcome in HER2-negative advanced luminal breast cancers patients. Oncotarget 2018, 9, 16343–16353. [Google Scholar] [CrossRef]
- Ducharme, M.; Lapi, S.E. Peptide Based Imaging Agents for HER2 Imaging in Oncology. Mol. Imaging 2020, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Vi, C.; Mandarano, G.; Shigdar, S. Diagnostics and Therapeutics in Targeting HER2 Breast Cancer: A Novel Approach. Int. J. Mol. Sci. 2021, 22, 6163. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Lim, I.; Byun, B.H.; Kim, B.I.; Choi, C.W.; Woo, S.-K.; Kim, K.I.; Lee, K.C.; Kang, J.H.; Seong, M.-K.; et al. A preliminary clinical trial to evaluate 64Cu-NOTA-Trastuzumab as a positron emission tomography imaging agent in patients with breast cancer. EJNMMI Res. 2021, 11, 8. [Google Scholar] [CrossRef]
- Gianni, L.; Pienkowski, T.; Im, Y.-H.; Roman, L.; Tseng, L.-M.; Liu, M.-C.; Lluch, A.; Staroslawska, E.; de la Haba-Rodriguez, J.; Im, S.-A.; et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): A randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012, 13, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.U.; Guo, H.; Yap, J.T.; Mayer, I.A.; Falkson, C.I.; Hobday, T.J.; Dees, E.C.; Richardson, A.L.; Nanda, R.; Rimawi, M.F.; et al. Phase II study of lapatinib in combination with trastuzumab in patients with human epidermal growth factor receptor 2–positive metastatic breast cancer: Clinical outcomes and predictive value of early [18F]Fluorodeoxyglucose Positron Emission Tomography imaging (TBCRC 003). J. Clin. Oncol. 2015, 33, 2623–2631. [Google Scholar] [CrossRef] [PubMed]
- Gebhart, G.; Gámez, C.; Holmes, E.; Robles, J.; Garcia, C.; Cortés, M.; de Azambuja, E.; Fauria, K.; Van Dooren, V.; Aktan, G.; et al. 18F-FDGPET/CT for early prediction of response to neoadjuvant lapatinib trastuzumab their combination in HER2-positive breast cancer: Results from, N.e.o.-A.L.T.T.O. J. Nucl. Med. 2013, 54, 1862–1868. [Google Scholar] [CrossRef] [PubMed]
- Llombart-Cussac, A.; Cortés, J.; Paré, L.; Galván, P.; Bermejo, B.; Martínez, N.; Vidal, M.; Pernas, S.; López, R.; Muñoz, M.; et al. HER2-enriched subtype as a predictor of pathological complete response following trastuzumab and lapatinib without chemotherapy in early-stage HER2-positive breast cancer (PAMELA): An open-label, single-group, multicentre, phase 2 trial. Lancet Oncol. 2017, 18, 545–554. [Google Scholar] [CrossRef]
- Gianni, L.; Bisagni, G.; Colleoni, M.; Del Mastro, L.; Zamagni, C.; Mansutti, M.; Zambetti, M.; Frassoldati, A.; De Fato, R.; Valagussa, P.; et al. Neoadjuvant treatment with trastuzumab and pertuzumab plus palbociclib and fulvestrant in HER2-positive, ER-positive breast cancer (NAPHER2): An exploratory, open-label, phase 2 study. Lancet Oncol. 2018, 19, 249–256. [Google Scholar] [CrossRef]
- Hurvitz, S.A.; Martin, M.; Symmans, W.F.; Jung, K.H.; Huang, C.-S.; Thompson, A.M.; Harbeck, N.; Valero, V.; Stroyakovskiy, D.; Wildiers, H.; et al. Neoadjuvant trastuzumab, pertuzumab, and chemotherapy versus trastuzumab emtansine plus pertuzumab in patients with HER2-positive breast cancer (KRISTINE): A randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 2018, 19, 115–126. [Google Scholar] [CrossRef]
- Gluz, O.; Kolberg-Liedtke, C.; Biehl, C.; Christgen, M.; Kuemmel, S.; Grischke, E.-M.; Augustin, D.; Braun, M.; Potenberg, J.; Graeser, M.; et al. West German Study Group. Predictive value of HER2 expression, early response and tumor infiltrating lymphocytes (TILs) on efficacy of de-escalated pertuzumab+trastuzumab in the neoadjuvant WSG-ADAPT-HER2+/HR- trial [abstract]. In Proceedings of the 2019 San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 10–14 December 2019. [Google Scholar] [CrossRef]
- Schneeweiss, A.; Chia, S.; Hickish, T.; Harvey, V.; Eniu, A.; Hegg, R.; Tausch, C.; Seo, J.H.; Tsai, Y.-F.; Ratnayake, J.; et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: A randomized phase II cardiac safety study (TRYPHAENA). Ann. Oncol. 2013, 24, 2278–2284. [Google Scholar] [CrossRef]
- van Ramshorst, M.S.; van der Voort, A.; van Werkhoven, E.D.; Mandjes, I.A.; Kemper, I.; Dezentjé, V.O.; Oving, I.M.; Honkoop, A.H.; Tick, L.W.; van de Wouw, A.J.; et al. Neoadjuvant chemotherapy with or without anthracyclines in the presence of dual HER2 blockade for HER2-positive breast cancer (TRAIN-2): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2018, 19, 1630–1640. [Google Scholar] [CrossRef] [PubMed]
- Rimawi, M.F.; Mayer, I.A.; Forero, A.; Nanda, R.; Goetz, M.; Rodriguez, A.; Pavlick, A.; Wang, T.; Hilsenbeck, S.; Gutierrez, C.; et al. Multicenter phase II study of neoadjuvant lapatinib and trastuzumab with hormonal therapy and without chemotherapy in patients with human epidermal growth factor receptor 2-overexpressing breast cancer: TBCRC 006. J. Clin. Oncol. 2013, 31, 1726–1731. [Google Scholar] [CrossRef] [PubMed]
- Pérez-García, J.M.; Gebhart, G.; Borrego, M.R.; Stradella, A.; Bermejo, B.; Schmid, P.; Marmé, F.; Escrivá-de-Romani, S.; Calvo, L.; Ribelles, N.; et al. Chemotherapy de-escalation using an 18 F-FDG-PET-based pathological response-adapted strategy in patients with HER2-positive early breast cancer (PHERGain): A multicentre, randomised, open-label, non-comparative, phase 2 trial. Lancet Oncol. 2021, 22, 858–871. [Google Scholar] [CrossRef] [PubMed]
- Couderta, B.; Pierga, J.-Y.; Mouret-Reynier, M.-A.; Kerrou, K.; Ferrero, J.-M.; Petit, T.; Le Du, F.; Dupré, P.-F.; Bachelot, T.; Gabelle, P.; et al. Long-term outcomes in patients with PET-predicted poor-responsive HER2-positive breast cancer treated with neoadjuvant bevacizumab added to trastuzumab and docetaxel: 5-year follow-up of the randomized Avataxher study. EClinicalMedicine 2020, 28, 100566. [Google Scholar] [CrossRef]
- Xie, Y.; Gu, B.; Hu, X.; Zhang, Y.; Zhang, J.; Wang, Z.; Zhao, Y.; Gong, C.; Li, Y.; Yang, Z.; et al. Heterogeneity of targeted lung lesion predicts platinum-based first-line therapy outcomes and overall survival for metastatic triple-negative breast cancer patients with lung metastasis: A “PET biopsy” method. Cancer Manag. Res. 2019, 11, 6019–6027. [Google Scholar] [CrossRef] [PubMed]
- Raccagni, I.; Belloli, S.; Valtorta, S.; Stefano, A.; Presotto, L.; Pascali, C.; Bogni, A.; Tortoreto, M.; Zaffaroni, N.; Daidone, M.G.; et al. [18F]FDG and [18F]FLT PET for the evaluation of response to neo-adjuvant chemotherapy in a model of triple negative breast cancer. PLoS ONE 2018, 13, 0197754. [Google Scholar] [CrossRef]
- Groheux, D.; Biard, L.; Lehmann-Che, J.; Teixeira, L.; Bouhidel, F.A.; Poirot, B.; Bertheau, P.; Merlet, P.; Espié, M.; Resche-Rigon, M.; et al. Tumor metabolism assessed by FDG-PET/CT and tumor proliferation assessed by genomic grade index to predict response to neoadjuvant chemotherapy in triple negative breast cancer. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1279–1288. [Google Scholar] [CrossRef]
- Gong, C.; Ma, G.; Hu, X.; Zhang, Y.; Wang, Z.; Zhang, J.; Zhao, Y.; Li, Y.; Xie, Y.; Yang, Z.; et al. Pretreatment 18F-FDG Uptake Heterogeneity Predicts Treatment Outcome of First-Line Chemotherapy in Patients with Metastatic Triple-Negative Breast Cancer. Oncologist 2018, 23, 1144–1152. [Google Scholar] [CrossRef]
- Schettini, F.; Corona, S.P.; Giudici, F.; Strina, C.; Sirico, M.; Bernocchi, O.; Milani, M.; Ziglioli, N.; Aguggini, S.; Azzini, C.; et al. Clinical, Radiometabolic and Immunologic Effects of Olaparib in Locally Advanced Triple Negative Breast Cancer: The OLTRE Window of Opportunity Trial. Front. Oncol. 2021, 28, 686776. [Google Scholar] [CrossRef]
- Ulaner, G.; Goldman, D.; Corben, A.; Lyashchenko, S.; Gönen, M.; Lewis, J.; Dickler, M. Prospective Clinical Trial of 18F-Fluciclovine PET/CT for Determining the Response to Neoadjuvant Therapy in Invasive Ductal and Invasive Lobular Breast Cancers. J. Nucl. Med. 2017, 58, 1037–1042. [Google Scholar] [CrossRef]
- Ulaner, G.; Jhaveri, K.; Chandarlapaty, S.; Hatzoglou, V.; Riedl, C.; Lewis, J.; Mauguen, A. Head-to-Head Evaluation of 18F-FES and 18F-FDG PET/CT in Metastatic Invasive Lobular Breast Cancer. J. Nucl. Med. 2021, 62, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Koolen, B.B.; Valdés, O.R.; Wesseling, J.; Vogel, W.V.; Vincent, A.D.; Gilhuijs, K.; Rodenhuis, S.; Rutgers, E.; Vrancken Peeters, M.-J. Early assessment of axillary response with 18F-FDG PET/CT during neoadjuvant chemotherapy in stage II-III breast cancer: Implications for surgical management of the axilla. Ann. Surg. Oncol. 2013, 20, 2227–2235. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, Y.; Li, J.; Zhang, N.; Mo, M.; Klimberg, S.; Kaklamani, V.; Cochet, A.; Shao, Z.; Cheng, J.; et al. Subtype-Guided 18F-FDG PET/CT in Tailoring Axillary Surgery Among Patients with Node-Positive Breast Cancer Treated with Neoadjuvant Chemotherapy: A Feasibility Study. Oncologist 2020, 25, e626–e633. [Google Scholar] [CrossRef] [PubMed]
- Samiei, S.; de Mooij, C.; Lobbes, M.; Keymeulen, K.; van Nijnatten, T.; Smidt, M. Diagnostic performance of noninvasive imaging for assessment of axillary pathologic complete response after neoadjuvant systemic therapy in clinically node-positive breast cancer: A systematic review and metaanalysis. Eur. J. Cancer 2020, 138, S61. [Google Scholar] [CrossRef]
- Kim, W.H.; Lee, S.-W.; Kim, H.J.; Chae, Y.S.; Jeong, S.Y.; Jung, J.H.; Park, H.Y.; Lee, W.K. Prediction of Advanced Axillary Lymph Node Metastases (ypN2-3) Using Breast MR imaging and PET/CT after Neoadjuvant Chemotherapy in Invasive Ductal Carcinoma Patients. Sci. Rep. 2018, 8, 3181. [Google Scholar] [CrossRef] [PubMed]
- Turan, U.; Aygun, M.; Duman, B.B.; Kelle, A.P.; Cavus, Y.; Tas, Z.A.; Dirim, A.B.; Irkorucu, O. Efficacy of US, MRI, and F-18 FDG-PET/CT for Detecting Axillary Lymph Node Metastasis after Neoadjuvant Chemotherapy in Breast Cancer Patients. Diagnostics 2021, 11, 2361. [Google Scholar] [CrossRef]
- Samiei, S.; Simons, J.M.; Engelen, S.M.E.; Beets-Tan, R.G.H.; Classe, J.M.; Smidt, M.L. Axillary pathologic complete response after neoadjuvant systemic therapy by breast cancer subtype in patients with initially clinically node-positive disease: A systematic review and meta-analysis. JAMA Surg. 2021, 156, e210891. [Google Scholar] [CrossRef]
- Mougalian, S.S.; Hernandez, M.; Lei, X.; Lynch, S.; Kuerer, H.M.; Symmans, W.F.; Theriault, R.; Fornage, B.; Hsu, L.; Buchholz, T.; et al. Ten-year outcomes of patients with breast cancer with cytologically confrmed axillary lymph node metastases and pathologic complete response after primary systemic chemotherapy. JAMA Oncol. 2016, 2, 508–516. [Google Scholar] [CrossRef]
- de Mooij, C.M.; Mitea, C.; Mottaghy, F.M.; Smidt, M.L.; van Nijnatten, T.J.A. Value of (18)F-FDG PET/CT for predicting axillary pathologic complete response following neoadjuvant systemic therapy in breast cancer patients: Emphasis on breast cancer subtype. EJNMMI Res. 2021, 11, 116. [Google Scholar] [CrossRef]
- Hildebrandt, M.G.; Gerke, O.; Baun, C.; Falch, K.; Hansen, J.A.; Ahangarani Farahani, Z.; Petersen, H.; Larsen, L.B.; Duvnjak, S.; Buskevica, I.; et al. [18F] Fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) in suspected recurrent breast cancer: A prospective comparative study of dual-time-point FDG-PET/CT, contrast-enhanced CT, and bone scintigraphy. J. Clin. Oncol. 2016, 34, 1889–1897. [Google Scholar] [CrossRef]
- Ulaner GAPET/CT for Patients With Breast Cancer: Where Is the Clinical Impact? Am. J. Roentgenol. 2019, 213, 254–265. [CrossRef] [PubMed]
- Peterson, L.M.; O’Sullivan, J.; Wu, Q.V.; Novakova-Jiresova, A.; Jenkins, I.; Lee, J.H.; Shields, A.; Montgomery, S.; Linden, H.M.; Gralow, J.; et al. Prospective Study of Serial (18)F-FDG PET and (18)F-Fluoride PET to Predict Time to Skeletal-Related Events, Time to Progression, and Survival in Patients with Bone-Dominant Metastatic Breast Cancer. J. Nucl. Med. 2018, 59, 1823–1830. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-L.; Liu, T.; Wang, X.-M.; Xu, Y.; Deng, S.-M. Diagnosis of bone metastases: A meta-analysis comparing 18FDG PET, CT, MRI and bone scintigraphy. Eur. Radiol. 2011, 21, 2604–2617. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, M.; Motegi, K.; Umeda, T. A novel biomarker, active whole skeletal total lesion glycolysis (WS-TLG), as a quantitative method to measure bone metastatic activity in breast cancer patients. Ann. Nucl. Med. 2019, 33, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Azad, G.K.; Cousin, F.; Siddique, M.; Taylor, B.; Goh, V.; Cook, G.J.R. Does Measurement of First-Order and Heterogeneity Parameters Improve Response Assessment of Bone Metastases in Breast Cancer Compared to SUV(max) in [(18)F]fluoride and [(18)F]FDG PET? Mol. Imaging Biol. 2019, 21, 781–789. [Google Scholar] [CrossRef]
- Azad, G.K.; Siddique, M.; Taylor, B.; Green, A.; O’Doherty, J.; Gariani, J.; Blake, G.M.; Mansi, J.; Goh, V.; Cook, G.J.R. Is Response Assessment of Breast Cancer Bone Metastases Better with Measurement of (18)F-Fluoride Metabolic Flux Than with Measurement of (18)F-Fluoride PET/CT SUV? J. Nucl. Med. 2019, 60, 322–327. [Google Scholar] [CrossRef]
- Taralli, S.; Lorusso, M.; Scolozzi, V.; Masiello, V.; Marazzi, F.; Calcagni, M.L. Response evaluation with 18 F-FDG PET/CT in metastatic breast cancer patients treated with Palbociclib: First experience in clinical practice. Ann. Nucl. Med. 2019, 33, 193–200. [Google Scholar] [CrossRef]
- Sirico, M.; Bernocchi, O.; Sobhani, N.; Giudici, F.; Corona, S.P.; Vernieri, C.; Nichetti, F.; Cappelletti, M.R.; Milani, M.; Strina, C.; et al. Early Changes of the Standardized Uptake Values (SUVmax) Predict the Efficacy of Everolimus-Exemestane in Patients with Hormone Receptor-Positive Metastatic Breast Cancer. Cancers 2020, 12, 3314. [Google Scholar] [CrossRef]
- Gombos, A.; Venet, D.; Ameye, L.; Vuylsteke, P.; Neven, P.; Richard, V.; Duhoux, F.P.; Laes, J.-F.; Rothe, F.; Sotiriou, C.; et al. FDG positron emission tomography imaging and ctDNA detection as an early dynamic biomarker of everolimus efficacy in advanced luminal breast cancer. npj Breast Cancer 2021, 7, 125. [Google Scholar] [CrossRef]
- Salvatore, B.; Caprio, M.G.; Hill, B.S.; Sarnella, A.; Roviello, G.N.; Zannetti, A. Recent Advances in Nuclear Imaging of Receptor Expression to Guide Targeted Therapies in Breast Cancer. Cancers 2019, 11, 1614. [Google Scholar] [CrossRef]
- Signore, A.; Lauri, C.; Auletta, S.; Varani, M.; Onofrio, L.; Glaudemans, A.W.J.M.; Panzuto, F.; Marchetti, P. Radiopharmaceuticals for Breast Cancer and Neuroendocrine Tumors: Two Examples of How Tissue Characterization May Influence the Choice of Therapy. Cancers 2020, 12, 781. [Google Scholar] [CrossRef]
- He, S.; Wang, M.; Zhang, Y.; Luo, J.; Zhang, Y. Monitoring the Early Response of Fulvestrant Plus Tanshinone IIA Combination Therapy to Estrogen Receptor-Positive Breast Cancer by Longitudinal (18)F-FES PET/CT. Contrast Media Mol. Imaging 2019, 2019, 2374565. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Liu, C.; Shi, Q.; Sun, Y.; Zhang, Y.; Xu, X.; Yuan, H.; Zhang, Y.; Liu, Y.; Liu, G.; et al. The Predictive Value of Early Changes in 18F-Fluoroestradiol Positron Emission Tomography/ Computed Tomography During Fulvestrant 500 mg Therapy in Patients with Estrogen Receptor-Positive Metastatic Breast Cancer. Oncologist 2020, 25, 927–936. [Google Scholar] [CrossRef]
- Boers, J.; Venema, C.M.; de Vries, E.F.J.; Glaudemans, A.; Kwee, T.; Schuuring, E.; Martens, J.; Elias, S.; Hospers, G.; Schröder, C. Molecular imaging to identify patients with metastatic breast cancer who benefit from endocrine treatment combined with cyclin-dependent kinase inhibition. Eur. J. Cancer 2020, 126, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.F.; Ray, K.M.; Li, W.; Chien, A.J.; Mukhtar, R.A.; Esserman, L.J.; Franc, B.L.; Seo, Y.; Pampaloni, M.H.; Joe, B.N.; et al. Initial experience of dedicated breast PET imaging of ER+ breast cancers using [F-18]fluoroestradiol. NPJ Breast Cancer 2019, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Jager, A.; de Vries, E.; Menke-van der Houven van Oordt, C.W.; Neven, P.; Venema, C.; Glaudemans, A.; Wang, Y.; Bagley, R.; Conlan, M.; Aftimos, P. A phase 1b study evaluating the effect of elacestranttreatment on estrogen receptor availability and estradiol binding to the estrogen receptor in metastatic breast cancer lesions using 18F-FES PET/CT imaging. Breast Cancer Res. 2020, 22, 97. [Google Scholar] [CrossRef]
- Linden, H.; Peterson, L.; Fowler, A. Clinical potential of estrogen and progesterone receptor imaging. PET Clin. 2018, 13, 415–422. [Google Scholar] [CrossRef]
- Fantini, L.; Belli, M.L.; Azzali, I.; Loi, E.; Bettinelli, A.; Feliciani, G.; Mezzenga, E.; Fedeli, A.; Asioli, S.; Paganelli, G.; et al. Exploratory Analysis of (18)F-3′-deoxy-3′-fluorothymidine ((18)F-FLT) PET/CT-Based Radiomics for the Early Evaluation of Response to Neoadjuvant Chemotherapy in Patients With Locally Advanced Breast Cancer. Front. Oncol. 2021, 11, 601053. [Google Scholar] [CrossRef]
- Ueberroth, B.; Lawhorn-Crews, J.; Heilbrun, L.; Smith, D.; Akoury, J.; Ali-Fehmi, R.; Eiseler, N.; Shields, A. The use of 3′-deoxy-3′-18F-fluorothymidine (FLT) PET in the assessment of long-term survival in breast cancer patients treated with neoadjuvant chemotherapy. Ann. Nucl. Med. 2019, 33, 383–393. [Google Scholar] [CrossRef]
- Romine, P.E.; Peterson, L.M.; Kurland, B.F.; Byrd, D.W.; Novakova-Jiresova, A.; Muzi, M.; Specht, J.M.; Doot, R.K.; Link, J.M.; Krohn, K.A.; et al. 18F-fluorodeoxyglucose (FDG) PET or 18F-fluorothymidine (FLT) PET to assess early response to aromatase inhibitors (AI) in women with ER+ operable breast cancer in a window-of-opportunity study. Breast Cancer Res. 2001, 23, 88. [Google Scholar] [CrossRef]
- Su, T.P.; Huang, J.S.; Chang, P.H.; Lui, K.W.; Hsieh, J.C.-H.; Ng, S.-H.; Chan, S.-H. Prospective comparison of early interim 18F-FDG-PET with 18F-FLT-PET for predicting treatment response and survival in metastatic breast cancer. BMC Cancer 2021, 21, 908. [Google Scholar] [CrossRef] [PubMed]
- Wesolowski, R.; Stover, D.G.; Lustberg, M.B.; Shoben, A.; Zhao, M.; Mrozek, E.; Layman, R.M.; Macrae, E.; Duan, W.; Zhang, J.; et al. Phase I Study of Veliparib on an Intermittent and Continuous Schedule in Combination with Carboplatin in Metastatic Breast Cancer: A Safety and [18F]-Fluorothymidine Positron Emission Tomography Biomarker Study. Oncologist 2020, 25, e1158–e1169. [Google Scholar] [CrossRef] [PubMed]
- Gebhart, G.; Lamberts, L.E.; Wimana, Z.; Garcia, C.; Emonts, P.; Ameye, L.; Stroobants, S.; Huizing, M.; Aftimos, P.; Tol, J.; et al. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): The ZEPHIR Trial. Ann. Oncol. 2016, 27, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Boers, J.; de Vries, E.; Glaudemans, A.; Hospers, G.; Schröder, C. Application of PET Tracers in Molecular Imaging for Breast Cancer. Curr. Oncol. Rep. 2020, 22, 85. [Google Scholar] [CrossRef]
- Oh, D.Y.; Bang, Y.J. HER2-targeted therapies—A role beyond breast cancer. Nat. Rev. Clin. Oncol. 2020, 17, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Ulaner, G.; Carrasquillo, J.; Riedl, C.; Yeh, R.; Hatzoglou, V.; Ross, D.; Jhaveri, K.; Chandarlapaty, S.; Hyman, D.; Zeglis, B.; et al. Identification of HER2-Positive Metastases in Patients with HER2-Negative Primary Breast Cancer by Using HER2-targeted 89Zr-Pertuzumab PET/CT. Radiology 2020, 296, 370–378. [Google Scholar] [CrossRef]
- Eshet, Y.; Tau, N.; Levanon, K.; Bernstein-Molho, R.; Globus, O.; Itay, A.; Shapira, T.; Oedegaard, C.; Eifer, M.; Davidson, T.; et al. The role of 68 ga-fapi pet/ct in breast cancer response assessment and follow-up. Clin. Nucl. Med. 2023, 48, 685–688. [Google Scholar] [CrossRef]
- Yadav, M.P.; Ballal, S.; Martin, M.; Roesch, F.; Satapathy, S.; Moon, E.S.; Tripathi, M.; Gogia, A.; Bal, C. Therapeutic potential of [(177)lu]lu-dotaga-fapi dimers in metastatic breast cancer patients with limited treatment options: Efficacy and safety assessment. Eur. J. Nucl. Med. Mol. Imaging, 2023; 1–15, [Ahead of print]. [Google Scholar]
- Bensch, F.; van der Veen, E.L.; Lub-de Hooge, M.N.; Jorritsma-Smit, A.; Boellaard, R.; Kok, I.C.; Oosting, S.; Schröder, C.; Hiltermann, T.J.; van der Wekken, A.; et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat. Med. 2018, 24, 1852–1858. [Google Scholar] [CrossRef]
- Seban, R.D.; Arnaud, E.; Loirat, D.; Cabel, L.; Cottu, P.; Djerroudi, L.; Hescot, S.; Loap, P.; Bonneau, C.; Bidard, F.C.; et al. [18f]fdg pet/ct for predicting triple-negative breast cancer outcomes after neoadjuvant chemotherapy with or without pembrolizumab. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 4024–4035. [Google Scholar] [CrossRef]
- Backhaus, P.; Burg, M.C.; Asmus, I.; Pixberg, M.; Büther, F.; Breyholz, H.J.; Yeh, R.; Weigel, S.B.; Stichling, P.; Heindel, W.; et al. Initial results of (68)ga-fapi-46 pet/mri to assess response to neoadjuvant chemotherapy in breast cancer. J. Nucl. Med. 2023, 64, 717–723. [Google Scholar] [CrossRef]
- Clauser, P.; Rasul, S.; Kapetas, P.; Fueger, B.J.; Milos, R.I.; Balber, T.; Berroterán-Infante, N.; Hacker, M.; Helbich, T.H.; Baltzer, P.A.T. Prospective validation of 18f-fluoroethylcholine as a tracer in pet/mri for the evaluation of breast lesions and prediction of lymph node status. La. Radiol. Medica 2023, 128, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, Z.; Yin, G.; Sui, C.; Liu, Z.; Li, X.; Chen, W. Prediction of her2 expression in breast cancer by combining pet/ct radiomic analysis and machine learning. Ann. Nucl. Med. 2022, 36, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, Z.; Bian, H.; Zhang, Y.; Ma, W.; Wang, Z.; Yin, G.; Dai, D.; Chen, W.; Zhu, L.; et al. Predictive value of radiomic signature based on 2-[(18)f]fdg pet/ct in her2 status determination for primary breast cancer with equivocal ihc results. Eur. J. Radiol. 2023, 167, 111050. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sun, X.; Ma, L.; Zhang, H.; Ji, W.; Xia, X.; Lan, X. (18)f-fdg pet/ct radiomics signature and clinical parameters predict progression-free survival in breast cancer patients: A preliminary study. Front. Oncol. 2023, 13, 1149791. [Google Scholar] [CrossRef]
- Sørensen, J.S.; Vilstrup, M.H.; Holm, J.; Vogsen, M.; Bülow, J.L.; Ljungstrøm, L.; Braad, P.E.; Gerke, O.; Hildebrandt, M.G. Interrater Agreement and Reliability of PERCIST and Visual Assessment When Using 18F-FDG-PET/CT for Response Monitoring of Metastatic Breast Cancer. Diagnostics 2020, 10, 1001. [Google Scholar] [CrossRef]
Year | Up to 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |
---|---|---|---|---|---|---|---|
Studies | 30 | 25 | 16 | 24 | 24 | 1 | 7 |
Response Criteria | EORTC | PERCIST |
---|---|---|
Imaging Modality | CT (Computed Tomography), MRI (Magnetic Resonance Imaging), bone scan | PET (Positron Emission Tomography) |
Lesion Assessment | Lesion sizes (uni-/bi-dimensional) | FDG (Fluorodeoxyglucose) uptake |
Response Classification | Complete Response (CR), Partial Response (PR), Stable Disease (SD), Progression (PD) | Complete Metabolic Response (CMR), Partial (PMR), Stable (SMR), Progression (PM) |
Parameters | Measurement of lesion sizes in mm | FDG uptake and distribution in active lesions normalized to healthy tissues |
Progression Evaluation | Increase in lesion diameter, new lesions | Increase in metabolic activity of lesions; new metabolically active lesions |
Utility | Mainly focuses on evaluating tumor lesion sizes | Focuses on changes in metabolism in tumor lesions |
Radiotracer | Radioisotope | Target | Characteristics |
---|---|---|---|
18F-FDG | F-18 | Glucose uptake | Increased uptake in highly metabolic tissues |
18F-FES | F-18 | Estrogen receptor | Binds to estrogen receptors in cancer cells |
18F-FLT | F-18 | Cell proliferation | Marks proliferating cells |
18F-NaF | F-18 | Bone metastases | Used for detecting bone metastases |
89Zr-Trastuzumab | Zr-89 | HER2 receptor | Targets HER2-positive breast cancer |
18F-Fluciclovine | F-18 | Amino acid transport | Used for imaging amino acid transport in tumors |
68Ga-FAPI | Ga-68 | Fibroblast Activation Protein (FAP) | Targets FAP overexpressed in cancer-associated fibroblasts |
18F-Fluoroethylcholine | F-18 | Cellular membrane integrity | Used for imaging cellular membrane turnover |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castorina, L.; Comis, A.D.; Prestifilippo, A.; Quartuccio, N.; Panareo, S.; Filippi, L.; Castorina, S.; Giuffrida, D. Innovations in Positron Emission Tomography and State of the Art in the Evaluation of Breast Cancer Treatment Response. J. Clin. Med. 2024, 13, 154. https://doi.org/10.3390/jcm13010154
Castorina L, Comis AD, Prestifilippo A, Quartuccio N, Panareo S, Filippi L, Castorina S, Giuffrida D. Innovations in Positron Emission Tomography and State of the Art in the Evaluation of Breast Cancer Treatment Response. Journal of Clinical Medicine. 2024; 13(1):154. https://doi.org/10.3390/jcm13010154
Chicago/Turabian StyleCastorina, Luigi, Alessio Danilo Comis, Angela Prestifilippo, Natale Quartuccio, Stefano Panareo, Luca Filippi, Serena Castorina, and Dario Giuffrida. 2024. "Innovations in Positron Emission Tomography and State of the Art in the Evaluation of Breast Cancer Treatment Response" Journal of Clinical Medicine 13, no. 1: 154. https://doi.org/10.3390/jcm13010154
APA StyleCastorina, L., Comis, A. D., Prestifilippo, A., Quartuccio, N., Panareo, S., Filippi, L., Castorina, S., & Giuffrida, D. (2024). Innovations in Positron Emission Tomography and State of the Art in the Evaluation of Breast Cancer Treatment Response. Journal of Clinical Medicine, 13(1), 154. https://doi.org/10.3390/jcm13010154