Emerging Therapeutic Options for Refractory Pulmonary Sarcoidosis: The Evidence and Proposed Mechanisms of Action
Abstract
1. Introduction
1.1. What Is Sarcoidosis?
1.2. Pathobiology of Granuloma Formation
1.3. Who Needs Treatment?
1.4. What Is Considered Refractory Sarcoidosis
2. Treatment Options for Refractory Sarcoidosis
2.1. TNF-Inhibitors
2.1.1. Rationale
2.1.2. Clinical Evidence
2.1.3. Adverse Effects and Clinical Monitoring
2.2. Anti-CD20
2.2.1. Rationale
2.2.2. Clinical Evidence
2.2.3. Adverse Effects and Clinical Monitoring
2.3. JAK-Inhibitors
2.3.1. Rationale
2.3.2. Clinical Evidence
2.3.3. Adverse Effects and Clinical Monitoring
2.4. Anti-IL6
2.4.1. Rationale
2.4.2. Clinical Evidence
2.4.3. Adverse Effects and Clinical Monitoring
2.5. Anti-IL-1
2.5.1. Rationale
2.5.2. Clinical Evidence
2.5.3. Adverse Effects and Clinical Monitoring
2.6. Neuropilin-2 Immunomodulator
2.6.1. Rationale
2.6.2. Clinical Evidence
2.6.3. Adverse Effects and Clinical Monitoring
2.7. mTOR Inhibitor
2.7.1. Rationale
2.7.2. Clinical Evidence
2.7.3. Adverse Effects and Clinical Monitoring
2.8. GM-CSF Inhibitor
2.8.1. Rationale
2.8.2. Clinical Evidence
2.8.3. Adverse Effects and Clinical Monitoring
2.9. Anti-Fibrotic Therapy
2.9.1. Rationale
2.9.2. Clinical Evidence
2.9.3. Adverse Events and Clinical Monitoring
3. Conclusions
Therapy | Clinical Evidence | Route | Side Effects | Clinical Monitoring |
---|---|---|---|---|
TNF Inhibitors | ||||
Infliximab | RTCs [34,35] | IV | Hypersensitivity reaction, infection, paradoxical adverse events, hepatotoxicity | Initial: hepatitis serologies, TB screen |
Ongoing LFT, CBC | ||||
Adalimumab | Case series [39] | SQ | Hypersensitivity reaction, infection, paradoxical adverse events, hepatotoxicity | Initial: hepatitis serologies, TB screen |
Clinical trial [40] | Ongoing: LFT, CBC | |||
Anti-CD20 | ||||
Rituximab | Case series [59] | IV | Infusion reaction, infection, severe COVID-19 infections, PML | Initial: hepatitis serologies, TB screen |
Clinical trial [60] | Ongoing: CBC, IgG levels | |||
JAK Inhibitor | ||||
Tofacitinib | Case report [77] | PO | Infection, Cytopenia, Hyperlipidemia, GI perforation, VTE, Diarrhea, hypertension, major adverse cardiovascular events, infection | Initial: TB screen, hepatitis serologies |
Ongoing clinical trial (NCT03910543) | Ongoing: CBC, BMP, LFT, lipid panel | |||
Baricitinib | Case report [79] | PO | Infection, Cytopenia, Hyperlipidemia, GI perforation, VTE, Infection | Initial: TB screen, hepatitis serologies |
Ongoing: CBC, BMP, LFT, lipid panel | ||||
Ruxolitinib | Case report [78] | PO | Hypertension, hyperlipidemia, cytopenias, GI distress, dizziness, elevated aminotransferases, cough, dyspnea, muscle pain, fever | Initial: TB screen, |
Ongoing: CBC, LFT, lipid panel, BMP, blood pressure | ||||
Anti-IL6 | ||||
Tocilizumab | Case series [101] | IV/SQ | Hypersensitivity reaction, infection, headache, hypertension, constipation, hyperlipidemia, GI tract perforation | Initial: TB screen, lipid panel at baseline and 4–8 weeks after initiation |
Ongoing LFT, CBC | ||||
Anti-IL6 Receptor | ||||
Sarilumab | Ongoing clinical trial (NCT04008069) | SQ | Hypersensitivity reaction, infection, headache, hypertension, constipation, hyperlipidemia, GI perforation | Initial: TB screen, lipid panel at baseline and 4-8 weeks after initiation |
Ongoing: LFT, CBC | ||||
Neuropilin 2 Immunomodulator | ||||
Efzofitimod | Ongoing clinical trial (NCT05415137) | IV | Under investigation | Under investigation |
Anti-IL1β | ||||
Canakinumab | Ongoing clinical trial (NCT02888080) | SQ | Gout flares, diarrhea, nausea, abdominal pain, cytopenias, injection site reaction, headache, muscle cramps | Initial: TB screen |
Ongoing: CBC | ||||
Anti-IL1 | ||||
Anakinra | Ongoing clinical trial (NCT04017936) | SQ | Infection, injection site reaction, headache, arthralgias | Initial: TB screen |
Ongoing: CBC | ||||
mTOR inhibitor | ||||
Sirolimus | Case report [131] | PO | Edema, hyperlipidemia, diarrhea, cytopenias, arthralgias, increased serum creatinine | Lipid panel, urine protein creatinine ratio, BMP, CBC, serum drug level, blood pressure |
Anti-GM-CSF | ||||
Namilumab | Ongoing clinical trial (NCT05314517) | SQ | Under investigation | Under investigation |
Anti-fibrotic | ||||
Pirfenidone | Ongoing clinical trial (NCT03260556) | PO | Rash, abdominal pain, diarrhea, anorexia, nausea, vomiting, fatigue, dizziness, URI, increased aminotransferases | LFT |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sève, P.; Pacheco, Y.; Durupt, F.; Jamilloux, Y.; Gerfaud-Valentin, M.; Isaac, S.; Boussel, L.; Calender, A.; Androdias, G.; Valeyre, D.; et al. Sarcoidosis: A Clinical Overview from Symptoms to Diagnosis. Cells 2021, 10, 766. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Judson, M.A.; Baughman, R.P. Management of Advanced Pulmonary Sarcoidosis. Am. J. Respir. Crit. Care Med. 2022, 205, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Facco, M.; Cabrelle, A.; Teramo, A.; Olivieri, V.; Gnoato, M.; Teolato, S.; Ave, E.; Gattazzo, C.; Fadini, G.P.; Calabrese, F.; et al. Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax 2011, 66, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Broos, C.E.; van Nimwegen, M.; Hoogsteden, H.C.; Hendriks, R.W.; Kool, M.; Blink, B.v.D. Granuloma Formation in Pulmonary Sarcoidosis. Front. Immunol. 2013, 4, 437. [Google Scholar] [CrossRef] [PubMed]
- Tana, C.; Donatiello, I.; Caputo, A.; Tana, M.; Naccarelli, T.; Mantini, C.; Ricci, F.; Ticinesi, A.; Meschi, T.; Cipollone, F.; et al. Clinical Features, Histopathology and Differential Diagnosis of Sarcoidosis. Cells 2021, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Sakthivel, P.; Bruder, D. Mechanism of granuloma formation in sarcoidosis. Curr. Opin. Hematol. 2017, 24, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Richmond, B.W.; Ploetze, K.; Isom, J.; Chambers-Harris, I.; Braun, N.A.; Taylor, T.; Abraham, S.; Mageto, Y.; Culver, D.A.; Oswald-Richter, K.A.; et al. Sarcoidosis Th17 cells are ESAT-6 antigen specific but demonstrate reduced IFN-γ expression. J. Clin. Immunol. 2013, 33, 446–455. [Google Scholar] [CrossRef]
- Grunewald, J.; Grutters, J.C.; Arkema, E.V. Sarcoidosis. Nat. Rev. Dis. Primers 2019, 5, 45. [Google Scholar] [CrossRef]
- Su, R.; Li, M.M.; Bhakta, N.R.; Solberg, O.D.; Darnell, E.P.; Ramstein, J.; Garudadri, S.; Ho, M.; Woodruff, P.G.; Koth, L.L. Longitudinal analysis of sarcoidosis blood transcriptomic signatures and disease outcomes. Eur. Respir. J. 2014, 44, 985–993. [Google Scholar] [CrossRef]
- Bonham, C.A.; Strek, M.E.; Patterson, K.C. From granuloma to fibrosis: Sarcoidosis associated pulmonary fibrosis. Curr. Opin. Pulm. Med. 2016, 22, 484–491. [Google Scholar] [CrossRef]
- Patterson, K.C.; Hogarth, K.; Husain, A.N.; Sperling, A.I.; Niewold, T.B. The clinical and immunologic features of pulmonary fibrosis in sarcoidosis. Transl. Res. 2012, 160, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Pabst, S.; Fränken, T.; Schönau, J.; Stier, S.; Nickenig, G.; Meyer, R.; Skowasch, D.; Grohé, C. Transforming growth factor-{beta} gene polymorphisms in different phenotypes of sarcoidosis. Eur. Respir. J. 2011, 38, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Weeratunga, P.; Moller, D.R.; Ho, L.-P. Immune mechanisms in fibrotic pulmonary sarcoidosis. Eur. Respir. Rev. 2022, 31, 220178. [Google Scholar] [CrossRef] [PubMed]
- Baughman, R.; Judson, M.; Teirstein, A.; Yeager, H.; Rossman, M.; Knatterud, G.; Thompson, B. Presenting characteristics as predictors of duration of treatment in sarcoidosis. QJM 2006, 99, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Baughman, R.P.; Nagai, S.; Balter, M.; Costabel, U.; Drent, M.; Du Bois, R.; Grutters, J.C.; Judson, M.A.; Lambiri, I.; Lower, E.E.; et al. Defining the clinical outcome status (COS) in sarcoidosis: Results of WASOG Task Force. Sarcoidosis Vasc. Diffus. Lung Dis. 2011, 28, 56–64. [Google Scholar]
- Baughman, R.P.; Nunes, H. Therapy for sarcoidosis: Evidence-based recommendations. Expert Rev. Clin. Immunol. 2012, 8, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Judson, M.A.; Boan, A.D.; Lackland, D.T. The clinical course of sarcoidosis: Presentation, diagnosis, and treatment in a large white and black cohort in the United States. Sarcoidosis Vasc. Diffus. Lung Dis. 2012, 29, 119–127. [Google Scholar]
- Judson, M.A. The treatment of pulmonary sarcoidosis. Respir. Med. 2012, 106, 1351–1361. [Google Scholar] [CrossRef]
- Rahaghi, F.F.; Baughman, R.P.; Saketkoo, L.A.; Sweiss, N.J.; Barney, J.B.; Birring, S.S.; Costabel, U.; Crouser, E.D.; Drent, M.; Gerke, A.K.; et al. Delphi consensus recommendations for a treatment algorithm in pulmonary sarcoidosis. Eur. Respir. Rev. 2020, 29, 190146. [Google Scholar] [CrossRef]
- El Jammal, T.; Jamilloux, Y.; Gerfaud-Valentin, M.; Valeyre, D.; Sève, P. Refractory Sarcoidosis: A Review. Ther. Clin. Risk Manag. 2020, 16, 323–345. [Google Scholar] [CrossRef]
- Bazzoni, F.; Beutler, B. The Tumor Necrosis Factor Ligand and Receptor Families. N. Engl. J. Med. 1996, 334, 1717–1725. [Google Scholar] [CrossRef] [PubMed]
- Baughman, R.P.; Iannuzzi, M. Tumour Necrosis Factor in Sarcoidosis and its Potential for Targeted Therapy. BioDrugs 2003, 17, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Müller-Quernheim, J.; Pfeifer, S.; Männel, D.; Strausz, J.; Ferlinz, R. Lung-restricted Activation of the Alveolar Macrophage/Monocyte System in Pulmonary Sarcoidosis. Am. Rev. Respir. Dis. 1992, 145, 187–192. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zheng, L.; Teschler, H.; Guzman, J.; Hübner, K.; Striz, I.; Costabel, U. Alveolar macrophage TNF-alpha release and BAL cell phenotypes in sarcoidosis. . Am. J. Respir. Crit. Care Med. 1995, 152, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Ziegenhagen, M.W.; Benner, U.K.; Zissel, G.; Zabel, P.; Schlaak, M.; Müller-Quernheim, J. Sarcoidosis: TNF- α Release from Alveolar Macrophages and Serum Level of sIL-2R Are Prognostic Markers. Am. J. Respir. Crit. Care Med. 1997, 156, 1586–1592. [Google Scholar] [CrossRef] [PubMed]
- Roach, D.R.; Bean, A.G.D.; Demangel, C.; France, M.P.; Briscoe, H.; Britton, W.J. TNF Regulates Chemokine Induction Essential for Cell Recruitment, Granuloma Formation, and Clearance of Mycobacterial Infection. J. Immunol. 2002, 168, 4620–4627. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.A.A.D.; Silva, M.V.D.; Barros, C.C.O.; Alexandre, P.B.D.; Timóteo, R.P.; Catarino, J.S.; Sales-Campos, H.; Machado, J.R.; Rodrigues, D.B.; Oliveira, C.J.; et al. TNF-α blockade impairs in vitro tuberculous granuloma formation and down modulate Th1, Th17 and Treg cytokines. PLoS ONE 2018, 13, e0194430. [Google Scholar] [CrossRef]
- Sasaki, M.; Namioka, Y.; Ito, T.; Izumiyama, N.; Fukui, S.; Watanabe, A.; Kashima, M.; Sano, M.; Shioya, T.; Miura, M. Role of ICAM-1 in the aggregation and adhesion of human alveolar macrophages in response to TNF-α and INF-γ. Mediat. Inflamm. 2001, 10, 510527. [Google Scholar] [CrossRef]
- Medica, I.; Kastrin, A.; Maver, A.; Peterlin, B. Role of genetic polymorphisms in ACE and TNF-α gene in sarcoidosis: A meta-analysis. J. Hum. Genet. 2007, 52, 836–847. [Google Scholar] [CrossRef]
- Utz, J.P.; Limper, A.H.; Kalra, S.; Specks, U.; Scott, J.P.; Vuk-Pavlovic, Z.; Schroeder, D.R. Etanercept for the Treatment of Stage II and III Progressive Pulmonary Sarcoidosis. Chest 2003, 124, 177–185. [Google Scholar] [CrossRef]
- Khanna, D.; Liebling, M.R.; Louie, J.S. Etanercept ameliorates sarcoidosis arthritis and skin disease. J. Rheumatol. 2003, 30, 1864–1867. [Google Scholar] [PubMed]
- Callejas-Rubio, J.L.; López-Pérez, L.; Ortego-Centeno, N. Tumor necrosis factor-alpha inhibitor treatment for sarcoidosis. Ther. Clin. Risk Manag. 2008, 4, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Doty, J.D.; Mazur, J.E.; Judson, M.A. Treatment of Sarcoidosis With Infliximab. Chest 2005, 127, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Rossman, M.D.; Newman, L.S.; Baughman, R.P.; Teirstein, A.; Weinberger, S.E.; Miller, W.; Sands, B.E. A double-blinded, randomized, placebo-controlled trial of infliximab in subjects with active pulmonary sarcoidosis. Sarcoidosis Vasc. Diffus. Lung Dis. 2006, 23, 201–208. [Google Scholar]
- Baughman, R.P.; Drent, M.; Kavuru, M.; Judson, M.A.; Costabel, U.; Du Bois, R.; Albera, C.; Brutsche, M.; Davis, G.; Donohue, J.F.; et al. Infliximab Therapy in Patients with Chronic Sarcoidosis and Pulmonary Involvement. Am. J. Respir. Crit. Care Med. 2006, 174, 795–802. [Google Scholar] [CrossRef]
- Judson, M.A.; Baughman, R.P.; Costabel, U.; Mack, M.; Barnathan, E.S. The potential additional benefit of infliximab in patients with chronic pulmonary sarcoidosis already receiving corticosteroids: A retrospective analysis from a randomized clinical trial. Respir. Med. 2014, 108, 189–194. [Google Scholar] [CrossRef][Green Version]
- Judson, M.A.; Baughman, R.P.; Costabel, U.; Flavin, S.; Lo, K.H.; Kavuru, M.S.; Drent, M.; The Centocor T48 Sarcoidosis Investigators. Efficacy of infliximab in extrapulmonary sarcoidosis: Results from a randomised trial. Eur. Respir. J. 2008, 31, 1189–1196. [Google Scholar] [CrossRef]
- Sakkat, A.; Cox, G.; Khalidi, N.; Larche, M.; Beattie, K.; Renzoni, E.A.; Morar, N.; Kouranos, V.; Kolb, M.; Hambly, N. Infliximab therapy in refractory sarcoidosis: A multicenter real-world analysis. Respir. Res. 2022, 23, 54. [Google Scholar] [CrossRef]
- Kamphuis, L.S.; Lam-Tse, W.-K.; Dik, W.A.; van Daele, P.L.; van Biezen, P.; Kwekkeboom, D.J.; Kuijpers, R.W.; Hooijkaas, H.; van Laar, J.A.; Bastiaans, J.; et al. Efficacy of Adalimumab in Chronically Active and Symptomatic Patients with Sarcoidosis. Am. J. Respir. Crit. Care Med. 2011, 184, 1214–1216. [Google Scholar] [CrossRef]
- Sweiss, N.J.; Noth, I.; Mirsaeidi, M.; Zhang, W.; Naureckas, E.T.; Hogarth, D.K.; Strek, M.; Caligiuri, P.; Machado, R.F.; Niewold, T.B.; et al. Efficacy Results of a 52-week Trial of Adalimumab in the Treatment of Refractory Sarcoidosis. Sarcoidosis Vasc. Diffus. Lung Dis. 2014, 31, 46–54. [Google Scholar]
- Crommelin, H.A.; van der Burg, L.M.; Vorselaars, A.D.; Drent, M.; van Moorsel, C.H.; Rijkers, G.T.; Deneer, V.H.; Grutters, J.C. Efficacy of adalimumab in sarcoidosis patients who developed intolerance to infliximab. Respir. Med. 2016, 115, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Pariser, R.J.; Paul, J.; Hirano, S.; Torosky, C.; Smith, M. A double-blind, randomized, placebo-controlled trial of adalimumab in the treatment of cutaneous sarcoidosis. J. Am. Acad. Dermatol. 2013, 68, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Wendling, D.; Prati, C. Paradoxical effects of anti-TNF-α agents in inflammatory diseases. Expert Rev. Clin. Immunol. 2014, 10, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Daïen, C.I.; Monnier, A.; Claudepierre, P.; Constantin, A.; Eschard, J.-P.; Houvenagel, E.; Samimi, M.; Pavy, S.; Pertuiset, E.; Toussirot, E.; et al. Sarcoid-like granulomatosis in patients treated with tumor necrosis factor blockers: 10 cases. Rheumatology 2009, 48, 883–886. [Google Scholar] [CrossRef]
- Toussirot, É.; Aubin, F. Paradoxical reactions under TNF-α blocking agents and other biological agents given for chronic im-mune-mediated diseases: An analytical and comprehensive overview. RMD Open 2016, 2, e000239. [Google Scholar] [CrossRef] [PubMed]
- Fouache, D.; Goëb, V.; Massy-Guillemant, N.; Avenel, G.; Bacquet-Deschryver, H.; Kozyreff-Meurice, M.; Ménard, J.-F.; Muraine, M.; Savoye, G.; Le Loët, X.; et al. Paradoxical adverse events of anti-tumour necrosis factor therapy for spondyloarthropathies: A retrospective study. Rheumatology 2009, 48, 761–764. [Google Scholar] [CrossRef] [PubMed]
- Solovic, I.; Sester, M.; Gomez-Reino, J.J.; Rieder, H.L.; Ehlers, S.; Milburn, H.J.; Kampmann, B.; Hellmich, B.; Groves, R.; Schreiber, S.; et al. The risk of tuberculosis related to tumour necrosis factor antagonist therapies: A TBNET consensus statement. Eur. Respir. J. 2010, 36, 1185–1206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Fan, W.; Yang, G.; Xu, Z.; Wang, J.; Cheng, Q.; Yu, M. Risk of tuberculosis in patients treated with TNF-α antagonists: A systematic review and meta-analysis of randomised controlled trials. BMJ Open 2017, 7, e012567. [Google Scholar] [CrossRef]
- Robert, M.; Miossec, P. Reactivation of latent tuberculosis with TNF inhibitors: Critical role of the beta 2 chain of the IL-12 receptor. Cell. Mol. Immunol. 2021, 18, 1644–1651. [Google Scholar] [CrossRef]
- Charpin, C.; Guis, S.; Colson, P.; Borentain, P.; Mattéi, J.-P.; Alcaraz, P.; Balandraud, N.; Thomachot, B.; Roudier, J.; Gérolami, R. Safety of TNF-blocking agents in rheumatic patients with serology suggesting past hepatitis B state: Results from a cohort of 21 patients. Arthritis Res. Ther. 2009, 11, R179. [Google Scholar] [CrossRef]
- Mori, S.; Fujiyama, S. Hepatitis B virus reactivation associated with antirheumatic therapy: Risk and prophylaxis recommendations. World J. Gastroenterol. 2015, 21, 10274–10289. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.-S.; Barber, L.; Akula, S.M.; Sigounas, G.; Kataria, Y.P.; Arce, S. Disturbed Homeostasis and Multiple Signaling Defects in the Peripheral Blood B-Cell Compartment of Patients with Severe Chronic Sarcoidosis. Clin. Vaccine Immunol. 2011, 18, 1306–1316. [Google Scholar] [CrossRef] [PubMed]
- Kamphuis, L.S.; van Zelm, M.C.; Lam, K.H.; Rimmelzwaan, G.F.; Baarsma, G.S.; Dik, W.A.; Thio, H.B.; van Daele, P.L.; van Velthoven, M.E.; Batstra, M.R.; et al. Perigranuloma Localization and Abnormal Maturation of B Cells. Am. J. Respir. Crit. Care Med. 2013, 187, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Le, V.; Crouser, E.D. Potential immunotherapies for sarcoidosis. Expert Opin. Biol. Ther. 2018, 18, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Saussine, A.; Tazi, A.; Feuillet, S.; Rybojad, M.; Juillard, C.; Bergeron, A.; Dessirier, V.; Bouhidel, F.; Janin, A.; Bensussan, A.; et al. Active Chronic Sarcoidosis is Characterized by Increased Transitional Blood B Cells, Increased IL-10-Producing Regulatory B Cells and High BAFF Levels. PLoS ONE 2012, 7, e43588. [Google Scholar] [CrossRef] [PubMed]
- Ueda-Hayakawa, I.; Tanimura, H.; Osawa, M.; Iwasaka, H.; Ohe, S.; Yamazaki, F.; Mizuno, K.; Okamoto, H. Elevated serum BAFF levels in patients with sarcoidosis: Association with disease activity. Rheumatology 2013, 52, 1658–1666. [Google Scholar] [CrossRef] [PubMed]
- Pescovitz, M.D. Rituximab, an Anti-CD20 Monoclonal Antibody: History and Mechanism of Action. Am. J. Transplant. 2006, 6, 859–866. [Google Scholar] [CrossRef]
- Belkhou, A.; Younsi, R.; El Bouchti, I.; El Hassani, S. Rituximab as a treatment alternative in sarcoidosis. Jt. Bone Spine 2008, 75, 511–512. [Google Scholar] [CrossRef]
- Cinetto, F.; Compagno, N.; Scarpa, R.; Malipiero, G.; Agostini, C. Rituximab in refractory sarcoidosis: A single centre experience. Clin. Mol. Allergy 2015, 13, 19. [Google Scholar] [CrossRef][Green Version]
- Sweiss, N.J.; Lower, E.E.; Mirsaeidi, M.; Dudek, S.; Garcia, J.G.N.; Perkins, D.; Finn, P.W.; Baughman, R.P. Rituximab in the treatment of refractory pulmonary sarcoidosis. Eur. Respir. J. 2014, 43, 1525–1528. [Google Scholar] [CrossRef]
- Maloney, D.G.; Liles, T.M.; Czerwinski, D.K.; Waldichuk, C.; Rosenberg, J.; Grillo-Lopez, A.; Levy, R. Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 1994, 84, 2457–2466. [Google Scholar] [CrossRef] [PubMed]
- Boye, J.; Elter, T.; Engert, A. An overview of the current clinical use of the anti-CD20 monoclonal antibody rituximab. Ann. Oncol. 2003, 14, 520–535. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, P.; Grillo-López, A.J.; Link, B.K.; Levy, R.; Czuczman, M.S.; Williams, M.E.; Heyman, M.R.; Bence-Bruckler, I.; White, C.A.; Cabanillas, F.; et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: Half of patients respond to a four-dose treatment program. J. Clin. Oncol. 1998, 16, 2825–2833. [Google Scholar] [CrossRef] [PubMed]
- Lower, E.; Sturdivant, M.; Grate, L.; Baughman, R.P. Use of third-line therapies in advanced sarcoidosis. Clin. Exp. Rheumatol. 2020, 38, 834–840. [Google Scholar] [PubMed]
- Alkadi, A.; Alduaiji, N.; Alrehaily, A. Risk of tuberculosis reactivation with rituximab therapy. Int. J. Health Sci. 2017, 11, 41–44. [Google Scholar]
- Chandrashekhar, P.; Kaul, A.; Bhaduaria, D.; Prasad, N.; Behera, M.; Kushwaha, R.; Patel, M.; Yachha, M.; Srivastava, A. Risk of tuberculosis among renal transplant recipients receiving rituximab therapy. Transpl. Infect. Dis. 2022, 24, e13963. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, Y.; Yamamoto, Y.; Shimono, J.; Ohhigashi, H.; Teshima, T. Hepatitis B virus reactivation with rituximab-containing regimen. World J. Hepatol. 2013, 5, 612–620. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Koo, Y.X.; Tan, D.S.; Tan, B.H.; Quek, R.; Tao, M.; Lim, S.T. Risk of Hepatitis B Virus Reactivation in Patients Who Are Hepatitis B Surface Antigen Negative/Antibody to Hepatitis B Core Antigen Positive and the Role of Routine Antiviral Prophylaxis. J. Clin. Oncol. 2009, 27, 2570–2571. [Google Scholar] [CrossRef]
- Smolen, J.S.; Keystone, E.C.; Emery, P.; Breedveld, F.C.; Betteridge, N.; Burmester, G.R.; Dougados, M.; Ferraccioli, G.; Jaeger, U.; Klareskog, L.; et al. Consensus statement on the use of rituximab in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2007, 66, 143–150. [Google Scholar] [CrossRef]
- Boekel, L.; Wolbink, G.J. Rituximab during the COVID-19 pandemic: Time to discuss treatment options with patients. Lancet Rheumatol. 2022, 4, e154–e155. [Google Scholar] [CrossRef]
- Casulo, C.; Maragulia, J.; Zelenetz, A.D. Incidence of Hypogammaglobulinemia in Patients Receiving Rituximab and the Use of Intravenous Immunoglobulin for Recurrent Infections. Clin. Lymphoma Myeloma Leuk. 2013, 13, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Owen, K.L.; Brockwell, N.K.; Parker, B.S. JAK-STAT Signaling: A Double-Edged Sword of Immune Regulation and Cancer Progression. Cancers 2019, 11, 2002. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther. 2021, 6, 402. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, J.T.; Pasadhika, S.; Crouser, E.D.; Choi, D.; Harrington, C.A.; Lewis, J.A.; Austin, C.R.; Diebel, T.N.; Vance, E.E.; Braziel, R.M.; et al. Hypothesis: Sarcoidosis is a STAT1-mediated disease. Clin. Immunol. 2009, 132, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhao, X.; Wang, J.; Zong, M.; Yang, H. Bioinformatics analysis of gene expression profile data to screen key genes involved in pulmonary sarcoidosis. Gene 2017, 596, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Casanova, N.; Pouladi, N.; Wang, T.; Lussier, Y.; Knox, K.S.; Garcia, J.G. Identification of Jak-STAT signaling involvement in sarcoidosis severity via a novel microRNA-regulated peripheral blood mononuclear cell gene signature. Sci. Rep. 2017, 7, 4237. [Google Scholar] [CrossRef] [PubMed]
- Damsky, W.; Thakral, D.; Emeagwali, N.; Galan, A.; King, B. Tofacitinib Treatment and Molecular Analysis of Cutaneous Sarcoidosis. N. Engl. J. Med. 2018, 379, 2540–2546. [Google Scholar] [CrossRef] [PubMed]
- Rotenberg, C.; Besnard, V.; Brillet, P.-Y.; Giraudier, S.; Nunes, H.; Valeyre, D. Dramatic response of refractory sarcoidosis under ruxolitinib in a patient with associated JAK2-mutated polycythemia. Eur. Respir. J. 2018, 52, 1801482. [Google Scholar] [CrossRef]
- Scheinberg, M.; Maluf, F.; Wagner, J. Steroid-resistant sarcoidosis treated with baricitinib. Ann. Rheum. Dis. 2020, 79, 1259–1260. [Google Scholar] [CrossRef]
- Damsky, W.; Young, B.D.; Sloan, B.; Miller, E.J.; Obando, J.A.; King, B. Treatment of Multiorgan Sarcoidosis With Tofacitinib. ACR Open Rheumatol. 2020, 2, 106–109. [Google Scholar] [CrossRef]
- Damsky, W.; Wang, A.; Kim, D.J.; Young, B.D.; Singh, K.; Murphy, M.J.; Daccache, J.; Clark, A.; Ayasun, R.; Ryu, C.; et al. Inhibition of type 1 immunity with tofacitinib is associated with marked improvement in longstanding sarcoidosis. Nat. Commun. 2022, 13, 3140. [Google Scholar] [CrossRef] [PubMed]
- Gadina, M.; Johnson, C.; Schwartz, D.; Bonelli, M.; Hasni, S.; Kanno, Y. Translational and clinical advances in JAK-STAT bi-ology: The present and future of jakinibs. J. Leukoc. Biol. 2018, 104, 499–514. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Singh, K.; Ibrahim, W.; King, B.; Damsky, W. The Promise of JAK Inhibitors for Treatment of Sarcoidosis and Other In-flammatory Disorders with Macrophage Activation: A Review of the Literature. Yale J. Biol. Med. 2020, 93, 187–195. [Google Scholar] [PubMed]
- Winthrop, K.L.; Park, S.-H.; Gul, A.; Cardiel, M.H.; Gomez-Reino, J.J.; Tanaka, Y.; Kwok, K.; Lukic, T.; Mortensen, E.; de Leon, D.P.; et al. Tuberculosis and other opportunistic infections in tofacitinib-treated patients with rheumatoid arthritis. Ann. Rheum. Dis. 2016, 75, 1133–1138. [Google Scholar] [CrossRef] [PubMed]
- Curtis, J.R.; Xie, F.; Yun, H.; Bernatsky, S.; Winthrop, K.L. Real-world comparative risks of herpes virus infections in tofacitinib and biologic-treated patients with rheumatoid arthritis. Ann. Rheum. Dis. 2016, 75, 1843–1847. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Yun, H.; Bernatsky, S.; Curtis, J.R. Brief Report: Risk of Gastrointestinal Perforation among Rheumatoid Arthritis Patients Receiving Tofacitinib, Tocilizumab, or Other Biologic Treatments. Arthritis Rheumatol. 2016, 68, 2612–2617. [Google Scholar] [CrossRef] [PubMed]
- Mease, P.; Charles-Schoeman, C.; Cohen, S.; Fallon, L.; Woolcott, J.; Yun, H.; Kremer, J.; Greenberg, J.; Malley, W.; Onofrei, A.; et al. Incidence of venous and arterial thromboembolic events reported in the tofacitinib rheumatoid arthritis, psoriasis and psoriatic arthritis development programmes and from real-world data. Ann. Rheum. Dis. 2020, 79, 1400–1413. [Google Scholar] [CrossRef]
- Ytterberg, S.R.; Bhatt, D.L.; Mikuls, T.R.; Koch, G.G.; Fleischmann, R.; Rivas, J.L.; Germino, R.; Menon, S.; Sun, Y.; Wang, C.; et al. ORAL Surveillance Investigators. Cardiovascular and Cancer Risk with Tofacitinib in Rheumatoid Arthritis. N. Engl. J. Med. 2022, 386, 316–326. [Google Scholar] [CrossRef]
- Sahashi, K.; Ina, Y.; Takada, K.; Sato, T.; Yamamoto, M.; Morishita, M. Significance of Interleukin 6 in Patients with Sarcoidosis. Chest 1994, 106, 156–160. [Google Scholar] [CrossRef]
- Girgis, R.E.; Basha, M.A.; Maliarik, M.; Popovich, J.; Iannuzzi, M.C. Cytokines in the bronchoalveolar lavage fluid of patients with active pulmonary sarcoidosis. Am. J. Respir. Crit. Care Med. 1995, 152, 71–75. [Google Scholar] [CrossRef]
- Takizawa, H.; Satoh, M.; Okazaki, H.; Matsuzaki, G.; Suzuki, N.; Ishii, A.; Suko, M.; Okudaira, H.; Morita, Y.; Ito, K. Increased IL-6 and IL-8 in bronchoalveolar lavage fluids (BALF) from patients with sarcoidosis: Correlation with the clinical parameters. Clin. Exp. Immunol. 1997, 107, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Kamimura, D.; Ishihara, K.; Hirano, T. IL-6 signal transduction and its physiological roles: The signal orchestration model. Rev. Physiol. Biochem. Pharmacol. 2003, 149, 1–38. [Google Scholar] [PubMed]
- Heinrich, P.C.; Behrmann, I.; Haan, S.; Hermanns, H.M.; Müller-Newen, G.; Schaper, F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 2003, 374, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Dienz, O.; Rincon, M. The effects of IL-6 on CD4 T cell responses. Clin. Immunol. 2009, 130, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Kimura, A.; Kishimoto, T. IL-6: Regulator of Treg/Th17 balance. Eur. J. Immunol. 2010, 40, 1830–1835. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Lu, Z.; Jiang, C.; Liu, J.; Wang, Y.; Xu, Z. Imbalance between Th17 and Regulatory T-Cells in Sarcoidosis. Int. J. Mol. Sci. 2013, 14, 21463–21473. [Google Scholar] [CrossRef] [PubMed]
- Ramstein, J.; Broos, C.E.; Simpson, L.J.; Ansel, K.M.; Sun, S.A.; Ho, M.E.; Woodruff, P.G.; Bhakta, N.R.; Christian, L.; Nguyen, C.P.; et al. IFN-γ–Producing T-Helper 17.1 Cells Are Increased in Sarcoidosis and Are More Prevalent than T-Helper Type 1 Cells. Am. J. Respir. Crit. Care Med. 2016, 193, 1281–1291. [Google Scholar] [CrossRef]
- Heinrich, P.C.; Castell, J.V.; Andus, T. Interleukin-6 and the acute phase response. Biochem. J. 1990, 265, 621–636. [Google Scholar] [CrossRef]
- Chen, E.S.; Song, Z.; Willett, M.H.; Heine, S.; Yung, R.C.; Liu, M.C.; Groshong, S.D.; Zhang, Y.; Tuder, R.M.; Moller, D.R. Serum Amyloid A Regulates Granulomatous Inflammation in Sarcoidosis through Toll-like Receptor-2. Am. J. Respir. Crit. Care Med. 2010, 181, 360–373. [Google Scholar] [CrossRef]
- Chen, E.S.; Moller, D.R. Sarcoidosis—Scientific progress and clinical challenges. Nat. Rev. Rheumatol. 2011, 7, 457–467. [Google Scholar] [CrossRef]
- Sharp, M.; Donnelly, S.C.; Moller, D.R. Tocilizumab in sarcoidosis patients failing steroid sparing therapies and anti-TNF agents. Respir. Med. X 2019, 1, 100004. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.C.; Horomanski, A.; Wang, Y.; Yuhan, L.; Parsafar, S.; Fairchild, R.; Mooney, J.J.; Raj, R.; Witteles, R.; Genovese, M.C. A dou-ble-blind, placebo-controlled, randomized withdrawal trial of sarilumab for the treatment of glucocorticoid-dependent sar-coidosis. Rheumatology, 2023; kead373, Epub ahead of print. [Google Scholar] [CrossRef]
- Scott, L.J. Tocilizumab: A Review in Rheumatoid Arthritis. Drugs 2017, 77, 1865–1879. [Google Scholar] [CrossRef] [PubMed]
- Strangfeld, A.; Richter, A.; Siegmund, B.; Herzer, P.; Rockwitz, K.; Demary, W.; Aringer, M.; Meißner, Y.; Zink, A.; Listing, J. Risk for lower intestinal perforations in patients with rheumatoid arthritis treated with tocilizumab in comparison to treatment with other biologic or conventional synthetic DMARDs. Ann. Rheum. Dis. 2017, 76, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011, 117, 3720–3732. [Google Scholar] [CrossRef] [PubMed]
- Hunninghake, G.W. Release of interleukin-1 by alveolar macrophages of patients with active pulmonary sarcoidosis. Am. Rev. Respir. Dis. 1984, 129, 569–572. [Google Scholar] [PubMed]
- Mikuniya, T.; Nagai, S.; Takeuchi, M.; Mio, T.; Hoshino, Y.; Miki, H.; Shigematsu, M.; Hamada, K.; Izumi, T. Significance of the Interleukin-1 Receptor Antagonist/Interleukin-1β Ratio as a Prognostic Factor in Patients with Pulmonary Sarcoidosis. Respiration 2000, 67, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Wikén, M.; Grunewald, J.; Eklund, A.; Wahlström, J. Higher Monocyte Expression of TLR2 and TLR4, and Enhanced Pro-inflammatory Synergy of TLR2 with NOD2 Stimulation in Sarcoidosis. J. Clin. Immunol. 2009, 29, 78–89. [Google Scholar] [CrossRef]
- Facco, M.; Baesso, I.; Miorin, M.; Bortoli, M.; Cabrelle, A.; Boscaro, E.; Gurrieri, C.; Trentin, L.; Zambello, R.; Calabrese, F.; et al. Expression and role of CCR6/CCL20 chemokine axis in pulmonary sarcoidosis. J. Leukoc. Biol. 2007, 82, 946–955. [Google Scholar] [CrossRef]
- Starner, T.D.; Barker, C.K.; Jia, H.P.; Kang, Y.; McCray, P.B. CCL20 Is an Inducible Product of Human Airway Epithelia with Innate Immune Properties. Am. J. Respir. Cell Mol. Biol. 2003, 29, 627–633. [Google Scholar] [CrossRef]
- Kron, J.; Crawford, T.; Mihalick, V.; Bogun, F.; Jordan, J.H.; Koelling, T.; Syed, H.; Syed, A.; Iden, T.; Polly, K.; et al. Interleukin-1 blockade in cardiac sarcoidosis: Study design of the multimodality assessment of granulomas in cardiac sarcoidosis: Anakinra Randomized Trial (MAGiC-ART). J. Transl. Med. 2021, 19, 460. [Google Scholar] [CrossRef]
- Kilic, B.; Guler, Y.; Azman, F.N.; Bostanci, E.; Ugurlu, S. Efficacy and safety of anti-interleukin-1 treatment in familial Mediterranean fever patients: A systematic review and meta-analysis. Rheumatology 2023, kead514, Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Krause, K.; Tsianakas, A.; Wagner, N.; Fischer, J.; Weller, K.; Metz, M.; Church, M.K.; Maurer, M. Efficacy and safety of canakinumab in Schnitzler syndrome: A multicenter randomized placebo-controlled study. J. Allergy Clin. Immunol. 2017, 139, 1311–1320. [Google Scholar] [CrossRef]
- Fleischmann, R.M.; Tesser, J.; Schiff, M.H.; Schechtman, J.; Burmester, G.-R.; Bennett, R.; Modafferi, D.; Zhou, L.; Bell, D.; Appleton, B. Safety of extended treatment with anakinra in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2006, 65, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Woese, C.R.; Olsen, G.J.; Ibba, M.; Söll, D. Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process. Microbiol. Mol. Biol. Rev. 2000, 64, 202–236. [Google Scholar] [CrossRef] [PubMed]
- Mahler, M.; Miller, F.W.; Fritzler, M.J. Idiopathic inflammatory myopathies and the anti-synthetase syndrome: A comprehensive review. Autoimmun. Rev. 2014, 13, 367–371. [Google Scholar] [CrossRef]
- Galindo-Feria, A.S.; Notarnicola, A.; Lundberg, I.E.; Horuluoglu, B. Aminoacyl-tRNA Synthetases: On Anti-Synthetase Syndrome and Beyond. Front. Immunol. 2022, 13, 866087. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.J.; Wang, F.; Xu, Z.; Lo, W.S.; Lau, C.F.; Chiang, K.P.; Nangle, L.A.; Ashlock, M.A.; Mendlein, J.D.; Yang, X.L.; et al. Secreted histidyl-tRNA synthetase splice variants elaborate major epitopes for autoantibodies in inflammatory myositis. J. Biol. Chem. 2014, 289, 19269–19275. [Google Scholar] [CrossRef]
- Kron, M.A.; Metwali, A.; Vodanovic-Jankovic, S.; Elliott, D. Nematode asparaginyl-tRNA synthetase resolves intestinal inflammation in mice with T-cell transfer colitis. Clin. Vaccine Immunol. 2013, 20, 276–281. [Google Scholar] [CrossRef]
- Kim, S.B.; Kim, H.R.; Park, M.C.; Cho, S.; Goughnour, P.C.; Han, D.; Yoon, I.; Kim, Y.; Kang, T.; Song, E.; et al. Caspase-8 controls the secretion of inflammatory lysyl-tRNA synthetase in exosomes from cancer cells. J. Cell Biol. 2017, 216, 2201–2216. [Google Scholar] [CrossRef]
- Adams, R.A.; Fernandes-Cerqueira, C.; Notarnicola, A.; Mertsching, E.; Xu, Z.; Lo, W.S.; Ogilvie, K.; Chiang, K.P.; Ampudia, J.; Rosengren, S.; et al. Serum-circulating His-tRNA synthetase inhibits organ-targeted immune responses. Cell. Mol. Immunol. 2021, 18, 1463–1475. [Google Scholar] [CrossRef]
- Roy, S.; Bag, A.K.; Singh, R.K.; Talmadge, J.E.; Batra, S.K.; Datta, K. Multifaceted Role of Neuropilins in the Immune System: Potential Targets for Immunotherapy. Front. Immunol. 2017, 8, 1228. [Google Scholar] [CrossRef] [PubMed]
- Tordjman, R.; Lepelletier, Y.; Lemarchandel, V.; Cambot, M.; Gaulard, P.; Hermine, O.; Roméo, P.-H. A neuronal receptor, neuropilin-1, is essential for the initiation of the primary immune response. Nat. Immunol. 2002, 3, 477–482. [Google Scholar] [CrossRef]
- Takamatsu, H.; Takegahara, N.; Nakagawa, Y.; Tomura, M.; Taniguchi, M.; Friedel, R.H.; Rayburn, H.; Tessier-Lavigne, M.; Yoshida, Y.; Okuno, T.; et al. Semaphorins guide the entry of dendritic cells into the lymphatics by activating myosin II. Nat. Immunol. 2010, 11, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Casazza, A.; Laoui, D.; Wenes, M.; Rizzolio, S.; Bassani, N.; Mambretti, M.; Deschoemaeker, S.; Van Ginderachter, J.A.; Tamagnone, L.; Mazzone, M. Impeding Macrophage Entry into Hypoxic Tumor Areas by Sema3A/Nrp1 Signaling Blockade Inhibits Angiogenesis and Restores Antitumor Immunity. Cancer Cell 2013, 24, 695–709. [Google Scholar] [CrossRef]
- Aung, N.Y.; Ohe, R.; Meng, H.; Kabasawa, T.; Yang, S.; Kato, T.; Yamakawa, M. Specific Neuropilins Expression in Alveolar Macrophages among Tissue-Specific Macrophages. PLoS ONE 2016, 11, e0147358. [Google Scholar] [CrossRef] [PubMed]
- Baughman, R.P.; Niranjan, V.; Walker, G.; Burkart, C.; Paz, S.; Chong, Y.E.; Siefker, D.; Sun, E.; Nangle, L.; Förster, S.; et al. Efzofitimod: A novel anti-inflammatory agent for sarcoidosis. Sarcoidosis Vasc. Diffus. Lung Dis. 2023, 40, e2023011. [Google Scholar]
- Culver, D.A.; Aryal, S.; Barney, J.; Hsia, C.C.; James, W.E.; Maier, L.A.; Marts, L.T.; Obi, O.N.; Sporn, P.H.; Sweiss, N.J.; et al. Efzofitimod for the Treatment of Pulmonary Sarcoidosis. Chest 2023, 163, 881–890. [Google Scholar] [CrossRef]
- Weichhart, T.; Hengstschläger, M.; Linke, M. Regulation of innate immune cell function by mTOR. Nat. Rev. Immunol. 2015, 15, 599–614. [Google Scholar] [CrossRef]
- Linke, M.; Pham, H.T.T.; Katholnig, K.; Schnöller, T.; Miller, A.; Demel, F.; Schütz, B.; Rosner, M.; Kovacic, B.; Sukhbaatar, N.; et al. Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression. Nat. Immunol. 2017, 18, 293–302. [Google Scholar] [CrossRef]
- Gupta, N.; Bleesing, J.H.; McCormack, F.X. Successful Response to Treatment with Sirolimus in Pulmonary Sarcoidosis. Am. J. Respir. Crit. Care Med. 2020, 202, e119–e120. [Google Scholar] [CrossRef]
- Baker, M.C.; Vágó, E.; Liu, Y.; Lu, R.; Tamang, S.; Horváth-Puhó, E.; Sørensen, H.T. Sarcoidosis incidence after mTOR inhibitor treatment. Semin. Arthritis Rheum. 2022, 57, 152102. [Google Scholar] [CrossRef]
- McCormack, F.X.; Inoue, Y.; Moss, J.; Singer, L.G.; Strange, C.; Nakata, K.; Barker, A.F.; Chapman, J.T.; Brantly, M.L.; Stocks, J.M.; et al. Efficacy and Safety of Sirolimus in Lymphangioleiomyomatosis. N. Engl. J. Med. 2011, 364, 1595–1606. [Google Scholar] [CrossRef]
- Adams, D.M.; Trenor, C.C.; Hammill, A.M.; Vinks, A.A.; Patel, M.N.; Chaudry, G.; Wentzel, M.S.; Mobberley-Schuman, P.S.; Campbell, L.M.; Brookbank, C.; et al. Efficacy and Safety of Sirolimus in the Treatment of Complicated Vascular Anomalies. Pediatrics 2016, 137, e20153257. [Google Scholar] [CrossRef]
- Hamilton, J.A. GM-CSF in inflammation. J. Exp. Med. 2020, 217, e20190945. [Google Scholar] [CrossRef]
- Itoh, A.; Yamaguchi, E.; Kuzumaki, N.; Okazaki, N.; Furuya, K.; Abe, S.; Kawakami, Y. Expression of Granulocyte-macrophage Colony-stimulating Factor mRNA by Inflammatory Cells in the Sarcoid Lung. Am. J. Respir. Cell Mol. Biol. 1990, 3, 245–249. [Google Scholar] [CrossRef]
- Itoh, A.; Yamaguchi, E.; Furuya, K.; Hizawa, N.; Ohnuma, N.; Kawakami, Y.; Kuzumaki, N. Correlation of GM-CSF mRNA in bronchoalveolar fluid with indices of clinical activity in sarcoidosis. . Thorax 1993, 48, 1230–1234. [Google Scholar] [CrossRef]
- Patterson, K.C.; Franek, B.S.; Müller-Quernheim, J.; Sperling, A.I.; Sweiss, N.J.; Niewold, T.B. Circulating cytokines in sarcoidosis: Phenotype-specific alterations for fibrotic and non-fibrotic pulmonary disease. Cytokine 2013, 61, 906–911. [Google Scholar] [CrossRef]
- Terao, I.; Hashimoto, S.; Horie, T. Effect of GM-CSF on TNF-Alpha and IL-1-Beta Production by Alveolar Macrophages and Peripheral Blood Monocytes from Patients with Sarcoidosis. Int. Arch. Allergy Immunol. 2009, 102, 242–248. [Google Scholar] [CrossRef]
- Taylor, P.C.; for the NEXUS Study Group; Saurigny, D.; Vencovsky, J.; Takeuchi, T.; Nakamura, T.; Matsievskaia, G.; Hunt, B.; Wagner, T.; Souberbielle, B. Efficacy and safety of namilumab, a human monoclonal antibody against granulocyte-macrophage colony-stimulating factor (GM-CSF) ligand in patients with rheumatoid arthritis (RA) with either an inadequate response to background methotrexate therapy or an inadequate response or intolerance to an anti-TNF (tumour necrosis factor) biologic therapy: A randomized, controlled trial. Arthritis Res. Ther. 2019, 21, 101. [Google Scholar] [CrossRef]
- Zhang, C.; Chan, K.M.; Schmidt, L.A.; Myers, J.L. Histopathology of Explanted Lungs from Patients with a Diagnosis of Pulmonary Sarcoidosis. Chest 2016, 149, 499–507. [Google Scholar] [CrossRef]
- Xu, L.; Kligerman, S.; Burke, A. End-stage Sarcoid Lung Disease Is Distinct from Usual Interstitial Pneumonia. Am. J. Surg. Pathol. 2013, 37, 593–600. [Google Scholar] [CrossRef]
- Mostard, R.L.; Verschakelen, J.A.; van Kroonenburgh, M.J.; Nelemans, P.J.; Wijnen, P.A.; Vöö, S.; Drent, M. Severity of pulmonary involvement and 18F-FDG PET activity in sarcoidosis. Respir. Med. 2013, 107, 439–447. [Google Scholar] [CrossRef]
- Flaherty, K.R.; Wells, A.U.; Cottin, V.; Devaraj, A.; Walsh, S.L.; Inoue, Y.; Richeldi, L.; Kolb, M.; Tetzlaff, K.; Stowasser, S.; et al. Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. N. Engl. J. Med. 2019, 381, 1718–1727. [Google Scholar] [CrossRef]
- Judson, M.A. Antifibrotic drugs for pulmonary sarcoidosis: A treatment in search of an indication. Respir. Med. 2021, 180, 106371. [Google Scholar] [CrossRef]
- Gulati, S.; Luckhardt, T.R. Updated Evaluation of the Safety, Efficacy and Tolerability of Pirfenidone in the Treatment of Idiopathic Pulmonary Fibrosis. Drug Healthc. Patient Saf. 2020, 12, 85–94. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelson, N.C.; Kogan, R.; Condos, R.; Hena, K.M. Emerging Therapeutic Options for Refractory Pulmonary Sarcoidosis: The Evidence and Proposed Mechanisms of Action. J. Clin. Med. 2024, 13, 15. https://doi.org/10.3390/jcm13010015
Nelson NC, Kogan R, Condos R, Hena KM. Emerging Therapeutic Options for Refractory Pulmonary Sarcoidosis: The Evidence and Proposed Mechanisms of Action. Journal of Clinical Medicine. 2024; 13(1):15. https://doi.org/10.3390/jcm13010015
Chicago/Turabian StyleNelson, Nathaniel C., Rebecca Kogan, Rany Condos, and Kerry M. Hena. 2024. "Emerging Therapeutic Options for Refractory Pulmonary Sarcoidosis: The Evidence and Proposed Mechanisms of Action" Journal of Clinical Medicine 13, no. 1: 15. https://doi.org/10.3390/jcm13010015
APA StyleNelson, N. C., Kogan, R., Condos, R., & Hena, K. M. (2024). Emerging Therapeutic Options for Refractory Pulmonary Sarcoidosis: The Evidence and Proposed Mechanisms of Action. Journal of Clinical Medicine, 13(1), 15. https://doi.org/10.3390/jcm13010015