Impact of Preoperative Frailty on Outcomes in Patients with Cervical Spondylotic Myelopathy Undergoing Anterior vs. Posterior Cervical Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Patient Population
2.2. Modified Frailty Index (mFI)
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Patient Demographics and Hospital Characteristics
3.2. Admission and Patient Comorbidities
3.3. Adverse Events
3.4. Postoperative Inpatient Outcomes
3.5. Multivariate Regression for Healthcare Utilization for ACDF
3.6. Multivariate Regression for Healthcare Utilization for PCDF
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Diagnosis or Procedure | ICD-10 Codes |
---|---|
Inclusion | |
ACDF | 0RG10A0, 0RG20A0 |
Cervical Laminectomy | 00NW0ZZ |
Cervical Internal Fixation | 0RH104Z |
Exclusion | |
Traumatic spinal fracture | S12.0x, S12.1x, S12.2x, S12.4x, S12.5x, S12.6x, S12.8x, S17.x, S22.0x, S32.0x, S32.1x |
Neoplasms of vertebral column, spinal cord, meninges of spinal cord | C41.2, C41.9, C70.1, C70.9, C72.0, C72.1, C72.9 |
Percutaneous/Endoscopic Posterior cervical fusion, Posterior approach to Anterior Column | 0RG207J, 0RG20AJ, 0RG20JJ, 0RG20KJ, 0RG2371, 0RG237J, 0RG23AJ, 0RG23J1, 0RG23JJ, 0RG23K1, 0RG23KJ, 0RG2471, 0RG247J, 0RG24AJ, 0RG24J1, 0RG24JJ, 0RG24K1, 0RG24KJ, 0RG107J, 0RG10AJ, 0RG10JJ, 0RG10KJ, 0RG1371, 0RG137J, 0RG13AJ, 0RG13J1, 0RG13JJ, 0RG13K1, 0RG13KJ, 0RG1471, 0RG147J, 0RG14AJ, 0RG14J1, 0RG14JJ, 0RG14K1, 0RG14KJ |
Appendix B
Comorbidities in mFI-11 | ICD-10 Codes |
---|---|
Functional status | H54, R26.0-R26.9, R27.0-R27.9, R41, R41.81, R54, S72, Z73, Z74.1, Z73.6, Z74 |
History of hypertension requiring medication | I10, I11, I12, I13, I15 |
History of chronic obstructive pulmonary disease or pneumonia | J12, J13, J14, J15, J16, J17, J18, J43, J44 |
History of impaired sensorium | A81.0, F00-F03, F01, F04, F05, F06, F10, F11-F19, G20, G30, H35 |
History of diabetes mellitus | E10, E11, E13, E14 |
History of myocardial infarction | I21, I22, I25 |
History of congestive heart failure | I50, U80.2 |
History of stroke with neurologic deficit | I61, I63, I69 |
History of TIA or stroke without neurological deficit | G45 |
History of PCI, angina, or stenting | I20 |
History of peripheral vascular disease or ischemic rest pain | I70.2, I73, I77.9, I77.1 |
Appendix C
Diagnosis or Procedure | ICD-10 Codes |
---|---|
Affective disorder | F30.x, F31.x, F32.x, F33.x, F34.x, F41.x |
Smoking history | F17210, F17213, F17290, F17293 |
Cervicalgia | M542 |
Headache | G441, R51, G43909, G43919, G43901, G43911 |
Dorsalgia | M54, M540, M5400, M5401, M5402, M5403, M5404, M5405, M5406, M5407, M5408, M5409M541, M5410, M5411, M5412, M5413, M5414, M5415, M5416, M5417, M5418, M542, M543, M5430, M5431, M5432, M544, M5440, M5441, M5442, M545, M546, M548, M5481, M5489, M549 |
Fusion of 1 cervical level | 0RG10A0, 0RG1071, 0RG10J1, 0RG10K1 |
Fusion of 2 or more cervical levels | 0RG20A0, 0RG2071, 0RG20J1, 0RG20K1 |
CSF leak or dural tear | G96.0, G96.1, G96.11 |
Acute kidney injury | N170, N171, N172, N178, N179 |
Acute post-hemorrhagic anemia | D62 |
Post-operative pain | G8918 |
Acute respiratory failure | J810, J952, J9582, J95821, J95822, J95831, J960, J9600, J9601, J9602, J962, J9620, J9621, J9622 |
Circulatory complications | I97, I970, I971, I9711, I97110, I97111, I9712, I97120, I97121, I9713, I97130, I97131, I9719, I97190, I97191, I972, I973, I974, I9741, I97410, I97411, I97418, I9742, I975, I9751, I9752, I976, I9761, I97610, I97611, I97618, I9762, I97620, I97621, I97622, I9763, I97630, I97631, I97638, I9764, I97640, I97641, I97648, I977, I9771, I97710, I97711, I9779, I97790, I97791, I978, I9781, I97810, I97811, I9782, I97820, I97821, I9788, I9789 |
Mechanical ventilation | 09HN7BZ, 09HN8BZ, 0BH13EZ, 0BH17EZ, 0BH18EZ, 5A19054, 5A1935Z, 5A1945Z, 5A1955Z |
Nervous system complications | G97.82 |
UTI | N39.0 |
Sepsis | A41, A410, A4101, A4102, A411, A412, A413, A414, A415, A4150, A4151, A4152, A4153, A4159, A418, A4181, A4189, A419 |
Dysphagia | R13, R130, R131, R1310, R1311, R1312, R1313, R1314, R1319 |
Mechanical device complication | T84216, T84216A, T84218, T84218A, T84226, T84226A, T84228, T84228A, T84296, T84296A, T84298, T84298A, T8431, T84310, T84310A, T84318, T84318A, T8432, T84320, T84320A, T84328, T84328A, T8439, T84390, T84390A, T84398, T84398A |
Displacement of internal fixation device of vertebrae | T84226A |
References
- Theodore, N. Degenerative Cervical Spondylosis. N. Engl. J. Med. 2020, 383, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Baron, E.M.; Young, W.F. Cervical spondylotic myelopathy: A brief review of its pathophysiology, clinical course, and diagnosis. Neurosurgery 2007, 60, S35–S41. [Google Scholar] [CrossRef] [PubMed]
- Young, W.F. Cervical spondylotic myelopathy: A common cause of spinal cord dysfunction in older persons. Am. Fam. Physician 2000, 62, 1064–1070, 1073. [Google Scholar] [PubMed]
- Sobański, D.; Staszkiewicz, R.; Stachura, M.; Gadzieliński, M.; Grabarek, B.O. Presentation, Diagnosis, and Management of Lower Back Pain Associated with Spinal Stenosis: A Narrative Review. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2023, 29, e939237-1. [Google Scholar] [CrossRef] [PubMed]
- Rowland, L.P. Surgical treatment of cervical spondylotic myelopathy: Time for a controlled trial. Neurology 1992, 42, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.C.; Chan, L.; Maiman, D.J.; Kreuter, W.; Deyo, R.A. Complications and mortality associated with cervical spine surgery for degenerative disease in the United States. Spine 2007, 32, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.G.; Turner, D.A.; Pietrobon, R. National trends in surgical procedures for degenerative cervical spine disease: 1990–2000. Neurosurgery 2005, 57, 753–758, discussion 753-8. [Google Scholar] [CrossRef]
- Marquez-Lara, A.; Nandyala, S.V.; Fineberg, S.J.; Singh, K. Current trends in demographics, practice, and in-hospital outcomes in cervical spine surgery: A national database analysis between 2002 and 2011. Spine 2014, 39, 476–481. [Google Scholar] [CrossRef]
- Neifert, S.N.; Martini, M.L.; Yuk, F.; McNeill, I.T.; Caridi, J.M.; Steinberger, J.; Oermann, E.K. Predicting Trends in Cervical Spinal Surgery in the United States from 2020 to 2040. World Neurosurg. 2020, 141, e175–e181. [Google Scholar] [CrossRef]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef]
- Panayi, A.; Orkaby, A.; Sakthivel, D.; Endo, Y.; Varon, D.; Roh, D.; Orgill, D.; Neppl, R.; Javedan, H.; Bhasin, S.; et al. Impact of frailty on outcomes in surgical patients: A systematic review and meta-analysis. Am. J. Surg. 2019, 218, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N.; Goldschmidt, E.; Taylor, T.; Roy, S.; Dunn, S.C.A.; Bilderback, A.; Friedlander, R.M.; Kanter, A.S.; Okonkwo, D.O.; Gerszten, P.C.; et al. Impact of Frailty on Outcomes Following Spine Surgery: A Prospective Cohort Analysis of 668 Patients. Neurosurgery 2021, 88, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, S.; Aalberg, J.J.; Soriano, R.P.; Divino, C.M. New 5-Factor Modified Frailty Index Using American College of Surgeons NSQIP Data. J. Am. Coll. Surg. 2018, 226, 173–181.e8. [Google Scholar] [CrossRef] [PubMed]
- Tsiouris, A.; Hammoud, Z.T.; Velanovich, V.; Hodari, A.; Borgi, J.; Rubinfeld, I. A modified frailty index to assess morbidity and mortality after lobectomy. J. Surg. Res. 2013, 183, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Elsamadicy, A.A.; Freedman, I.G.; Koo, A.B.; David, W.B.; Reeves, B.C.; Havlik, J.; Pennington, Z.; Kolb, L.; Shin, J.H.; Sciubba, D.M. Modified-frailty index does not independently predict complications, hospital length of stay or 30-day readmission rates following posterior lumbar decompression and fusion for spondylolisthesis. Spine J. 2021, 21, 1812–1821. [Google Scholar] [CrossRef] [PubMed]
- Flexman, A.M.; Charest-Morin, R.; Stobart, L.; Street, J.; Ryerson, C.J. Frailty and postoperative outcomes in patients undergoing surgery for degenerative spine disease. Spine J. 2016, 16, 1315–1323. [Google Scholar] [CrossRef] [PubMed]
- Yagi, M.; Michikawa, T.; Hosogane, N.; Fujita, N.; Okada, E.; Suzuki, S.; Tsuji, O.; Nagoshi, N.; Asazuma, T.; Tsuji, T.; et al. The 5-Item Modified Frailty Index Is Predictive of Severe Adverse Events in Patients Undergoing Surgery for Adult Spinal Deformity. Spine 2019, 44, E1083–E1091. [Google Scholar] [CrossRef]
- Elsamadicy, A.A.; Havlik, J.L.; Reeves, B.; Sherman, J.; Koo, A.B.; Pennington, Z.; Hersh, A.M.; Sandhu, M.R.S.; Kolb, L.; Lo, S.-F.L.; et al. Assessment of Frailty Indices and Charlson Comorbidity Index for Predicting Adverse Outcomes in Patients Undergoing Surgery for Spine Metastases: A National Database Analysis. World Neurosurg. 2022, 164, e1058–e1070. [Google Scholar] [CrossRef]
- Pierce, K.E.B.; Naessig, S.B.; Kummer, N.B.; Larsen, K.B.; Ahmad, W.; Passfall, L.B.; Krol, O.B.; Bortz, C.B.; Alas, H.B.; Brown, A.B.; et al. The Five-item Modified Frailty Index is Predictive of 30-day Postoperative Complications in Patients Undergoing Spine Surgery. Spine 2021, 46, 939–943. [Google Scholar] [CrossRef]
- Passias, P.G.; Jalai, C.M.; Worley, N.; Vira, S.; Hasan, S.; Horn, S.R.; Segreto, F.A.; Bortz, C.A.; White, A.P.; Gerling, M.; et al. Predictors of Hospital Length of Stay and 30-Day Readmission in Cervical Spondylotic Myelopathy Patients: An Analysis of 3057 Patients Using the ACS-NSQIP Database. World Neurosurg. 2018, 110, e450–e458. [Google Scholar] [CrossRef]
- De la Garza-Ramos, R.; Goodwin, C.R.; Abu-Bonsrah, N.; Jain, A.; Miller, E.K.; Neuman, B.J.; Protopsaltis, T.S.; Passias, P.G.; Sciubba, D.M. Prolonged length of stay after posterior surgery for cervical spondylotic myelopathy in patients over 65years of age. J. Clin. Neurosci. 2016, 31, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Elsamadicy, A.A.; Koo, A.B.; Lee, M.; David, W.B.; Kundishora, A.J.; Robert, S.M.; Kuzmik, G.A.; Coutinho, P.O.; Kolb, L.; Laurans, M.; et al. Associated risk factors for extended length of stay following anterior cervical discectomy and fusion for cervical spondylotic myelopathy. Clin. Neurol. Neurosurg. 2020, 195, 105883. [Google Scholar] [CrossRef]
- Wilson, J.R.F.; Badhiwala, J.H.; Moghaddamjou, A.; Yee, A.; Wilson, J.R.; Fehlings, M.G. Frailty Is a Better Predictor than Age of Mortality and Perioperative Complications after Surgery for Degenerative Cervical Myelopathy: An Analysis of 41,369 Patients from the NSQIP Database 2010–2018. J. Clin. Med. 2020, 9, 3491. [Google Scholar] [CrossRef] [PubMed]
- Pazniokas, J.; Gandhi, C.; Theriault, B.; Schmidt, M.; Cole, C.; Al-Mufti, F.; Santarelli, J.; Bowers, C.A. The immense heterogeneity of frailty in neurosurgery: A systematic literature review. Neurosurg. Rev. 2021, 44, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, A.M.; Ueno, R.; Tiruvoipati, R.M.; Darvall, J.F.; Srikanth, V.M.; Bailey, M.P.; Pilcher, D.M.M.F.F.; Bellomo, R.M. Comparing the Clinical Frailty Scale and an International Classification of Diseases-10 Modified Frailty Index in Predicting Long-Term Survival in Critically Ill Patients. Crit. Care Explor. 2022, 4, e0777. [Google Scholar] [CrossRef] [PubMed]
- Naftchi, A.F.; Vellek, J.; Stack, J.; Spirollari, E.; Vazquez, S.; Das, A.; Greisman, J.D.; Stadlan, Z.; Tarawneh, O.H.; Zeller, S.; et al. Frailty as a Superior Predictor of Dysphagia and Surgically Placed Feeding Tube Requirement After Anterior Cervical Discectomy and Fusion Relative to Age. Dysphagia 2022, 38, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Audat, Z.A.; Fawareh, M.D.; Radydeh, A.M.; Obeidat, M.M.; Odat, M.A.; Bashaireh, K.M.; Barbarawi, M.M.; Nusairat, M.T.; Ibraheem, A.B.; Audat, M.Z. Anterior versus posterior approach to treat cervical spondylotic myelopathy, clinical and radiological results with long period of follow-up. SAGE Open Med. 2018, 6, 2050312118766199. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, B.D.; Jacobs, W.B.; Norvell, D.C.; Hermsmeyer, J.T.; Chapman, J.R.; Brodke, D.S. Anterior versus posterior approach for treatment of cervical spondylotic myelopathy: A systematic review. Spine 2013, 38, S173–S182. [Google Scholar] [CrossRef]
- Luo, J.; Cao, K.; Huang, S.; Li, L.; Yu, T.; Cao, C.; Zhong, R.; Gong, M.; Zhou, Z.; Zou, X. Comparison of anterior approach versus posterior approach for the treatment of multilevel cervical spondylotic myelopathy. Eur. Spine J. 2015, 24, 1621–1630. [Google Scholar] [CrossRef]
- Kato, S.; Ganau, M.; Fehlings, M.G. Surgical decision-making in degenerative cervical myelopathy-Anterior versus posterior approach. J. Clin. Neurosci. 2018, 58, 7–12. [Google Scholar] [CrossRef]
- Zhu, B.; Xu, Y.; Liu, X.; Liu, Z.; Dang, G. Anterior approach versus posterior approach for the treatment of multilevel cervical spondylotic myelopathy: A systemic review and meta-analysis. Eur. Spine J. 2013, 22, 1583–1593. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Ruan, W.; Liu, Z.; Li, Y.; Cai, L. Anterior versus posterior approach for the treatment of cervical compressive myelopathy due to ossification of the posterior longitudinal ligament: A systematic review and meta-analysis. Int. J. Surg. 2016, 27, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Hitchon, P.W.; Woodroffe, R.W.; Noeller, J.A.; Helland, L.; Hramakova, N.; Nourski, K.V. Anterior and posterior approaches for cervical myelopathy: Clinical and radiographic outcomes. Spine 2019, 44, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Wilkerson, C.G.; Sherrod, B.A.; Alvi, M.A.; Asher, A.L.; Coric, D.; Virk, M.S.; Fu, K.-M.; Foley, K.T.; Park, P.; Upadhyaya, C.D.; et al. Differences in Patient-Reported Outcomes Between Anterior and Posterior Approaches for Treatment of Cervical Spondylotic Myelopathy: A Quality Outcomes Database Analysis. World Neurosurg. 2022, 160, e436–e441. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, B.; Dong, J.; Feng, F.; Chen, R.; Xie, P.; Rong, L. A Comparison of the Anterior Approach and the Posterior Approach in Treating Multilevel Cervical Myelopathy: A Meta-Analysis. Clin. Spine Surg. 2017, 30, 65–76. [Google Scholar] [CrossRef] [PubMed]
- El-Ghandour, N.M.F.; Soliman, M.A.R.; Ezzat, A.A.M.; Mohsen, A.; Zein-Elabedin, M. The safety and efficacy of anterior versus posterior decompression surgery in degenerative cervical myelopathy: A prospective randomized trial. J. Neurosurg. Spine 2020, 33, 288–296. [Google Scholar] [CrossRef]
- Ghogawala, Z.; Terrin, N.; Dunbar, M.R.; Breeze, J.L.; Freund, K.M.; Kanter, A.S.; Mummaneni, P.V.; Bisson, E.F.; Barker, F.G.; Schwartz, J.S.; et al. Effect of Ventral vs Dorsal Spinal Surgery on Patient-Reported Physical Functioning in Patients With Cervical Spondylotic Myelopathy: A Randomized Clinical Trial. JAMA 2021, 325, 942–951. [Google Scholar] [CrossRef]
- Badhiwala, J.H.; Khan, O.; Wegner, A.; Jiang, F.; Wilson, J.R.F.; Morgan, B.R.; Ibrahim, G.M.; Wilson, J.R.; Fehlings, M.G. A partial least squares analysis of functional status, disability, and quality of life after surgical decompression for degenerative cervical myelopathy. Sci. Rep. 2020, 10, 16132. [Google Scholar] [CrossRef]
- Momtaz, D.; Prabhakar, G.; Gonuguntla, R.; Ahmad, F.; Ghali, A.; Kotzur, T.; Nagel, S.; Chaput, C. The 8-item Modified Frailty Index Is an Effective Risk Assessment Tool in Anterior Cervical Decompression and Fusion. Glob. Spine J. 2022. [Google Scholar] [CrossRef]
- Elsamadicy, A.A.; Koo, A.B.; Sarkozy, M.; David, W.B.; Reeves, B.C.; Patel, S.; Hansen, J.; Sandhu, M.R.S.; Hengartner, A.C.; Hersh, A.; et al. Leveraging HFRS to assess how frailty affects healthcare resource utilization after elective ACDF for CSM. Spine J. 2023, 23, 124–135. [Google Scholar] [CrossRef]
- Shin, J.I.; Kothari, P.; Phan, K.; Kim, J.S.; Leven, D.; Lee, N.J.; Cho, S.K. Frailty Index as a Predictor of Adverse Postoperative Outcomes in Patients Undergoing Cervical Spinal Fusion. Spine 2017, 42, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, M.J.; Tran, K.; Conaway, W.; Karamian, B.A.; Goswami, K.; Li, S.; O’Connor, P.; Brush, P.; Canseco, J.; Kaye, I.D.; et al. Modified Frailty Index as a Predictor of Postoperative Complications and Patient-Reported Outcomes after Posterior Cervical Decompression and Fusion. Asian Spine J. 2023, 17, 313. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, G.; Wang, C.; Cyriac, M.; Amdur, R.; O’Brien, J. Complications, Readmissions, and Reoperations in Posterior Cervical Fusion. Spine 2016, 41, 1477–1483. [Google Scholar] [CrossRef] [PubMed]
- Young, R.; Cottrill, E.; Pennington, Z.; Ehresman, J.; Ahmed, A.K.; Kim, T.; Jiang, B.; Lubelski, D.; Zhu, A.M.; Wright, K.S.; et al. Experience with an Enhanced Recovery After Spine Surgery protocol at an academic community hospital. J. Neurosurg. Spine 2020, 34, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Bansal, T.; Sharan, A.D.; Garg, B. Enhanced recovery after surgery (ERAS) protocol in spine surgery. J. Clin. Orthop. Trauma 2022, 31, 101944. [Google Scholar] [CrossRef] [PubMed]
- Elsarrag, M.; Soldozy, S.; Patel, P.; Norat, P.; Sokolowski, J.D.; Park, M.S.; Tvrdik, P.; Kalani, M.Y.S. Enhanced recovery after spine surgery: A systematic review. Neurosurg. Focus 2019, 46, E3. [Google Scholar] [CrossRef] [PubMed]
- Debono, B.; Corniola, M.V.; Pietton, R.; Sabatier, P.; Hamel, O.; Tessitore, E. Benefits of Enhanced Recovery After Surgery for fusion in degenerative spine surgery: Impact on outcome, length of stay, and patient satisfaction. Neurosurg. Focus 2019, 46, E6. [Google Scholar] [CrossRef]
- Soffin, E.M.; Wetmore, D.S.; Barber, L.A.; Vaishnav, A.S.; Beckman, J.D.; Albert, T.J.; Gang, C.H.; Qureshi, S.A. An enhanced recovery after surgery pathway: Association with rapid discharge and minimal complications after anterior cervical spine surgery. Neurosurg. Focus 2019, 46, E9. [Google Scholar] [CrossRef]
- Debono, B.; Sabatier, P.; Boniface, G.; Bousquet, P.; Lescure, J.-P.; Garnaud, V.; Hamel, O.; Lonjon, G. Implementation of enhanced recovery after surgery (ERAS) protocol for anterior cervical discectomy and fusion: A propensity score-matched analysis. Eur. Spine J. 2021, 30, 560–567. [Google Scholar] [CrossRef]
Pre-Frail (n = 16,665) | Frail (n = 12,985) | Severely Frail (n = 8340) | p-Value (Totals) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ACDF (n = 11,655) | PCDF (n = 5010) | p-Value | ACDF (n = 8470) | PCDF (n = 4515) | p-Value | ACDF (n = 5170) | PCDF (n = 3170) | p-Value | ||
Age (Years) | ||||||||||
Mean ± SD | 61.06 ± 11.11 | 64.67 ± 10.96 | <0.001 | 63.07 ± 10.00 | 66.21 ± 10.25 | <0.001 | 64.44 ± 9.46 | 67.74 ± 9.29 | <0.001 | <0.001 |
Female (%) | 50.4 | 43.2 | <0.001 | 45.3 | 38.0 | <0.001 | 37.8 | 33.1 | 0.057 | <0.001 |
Race (%) | <0.001 | 0.007 | 0.182 | 0.042 | ||||||
White | 76.0 | 69.1 | 73.4 | 67.2 | <0.001 | 73.6 | 69.6 | |||
Black | 13.8 | 17.7 | 15.9 | 21.0 | 16.8 | 19.4 | ||||
Hispanic | 5.8 | 6.5 | 6.3 | 7.4 | 5.2 | 7.1 | ||||
Other | 4.3 | 6.6 | 4.3 | 4.4 | 4.5 | 3.9 | ||||
Income Quartile (%) | 0.002 | 0.007 | 0.547 | <0.001 | ||||||
0–25th | 26.7 | 23.1 | 31.8 | 29.4 | 33.2 | 30.7 | ||||
26–50th | 27.3 | 24.2 | 26.5 | 22.0 | 27.4 | 27.5 | ||||
51–75th | 25.7 | 27.1 | 24.8 | 27.0 | 24.8 | 24.8 | ||||
76–100th | 20.3 | 25.6 | 16.9 | 20.7 | 14.6 | 17.0 | ||||
Healthcare Coverage (%) | <0.001 | <0.001 | 0.019 | <0.001 | ||||||
Medicare | 44.8 | 55.7 | 51.4 | 60.9 | 60.8 | 67.5 | ||||
Medicaid | 9.8 | 8.3 | 10.8 | 9.4 | 11.4 | 11.2 | ||||
Private Insurance | 38.9 | 30.2 | 30.6 | 23.5 | 21.6 | 15.6 | ||||
Other | 6.5 | 5.8 | 7.2 | 6.2 | 6.2 | 5.7 | ||||
Hospital Bed Size (%) | 0.014 | <0.001 | 0.079 | <0.001 | ||||||
Small | 21.3 | 18.1 | 21.1 | 17.1 | 16.0 | 14.7 | ||||
Medium | 26.2 | 22.8 | 29.1 | 22.1 | 27.0 | 22.6 | ||||
Large | 52.5 | 59.2 | 49.8 | 60.8 | 57.1 | 62.8 | ||||
Hospital Region (%) | <0.001 | <0.001 | <0.001 | <0.001 | ||||||
Northeast | 11.7 | 19.1 | 11.8 | 17.1 | 9.3 | 17.4 | ||||
Midwest | 17.3 | 22.5 | 17.8 | 25.2 | 23.4 | 28.9 | ||||
South | 48.5 | 35.9 | 52.1 | 38.1 | 50.5 | 36.8 | ||||
West | 22.5 | 22.6 | 18.3 | 19.6 | 16.8 | 17.0 | ||||
Hospital Type (%) | <0.001 | <0.001 | <0.001 | <0.001 | ||||||
Rural | 2.3 | 2.1 | 2.8 | 2.1 | 3.3 | 5.5 | ||||
Urban Non-Teaching | 23.6 | 11.9 | 20.8 | 9.9 | 22.4 | 11.4 | ||||
Urban Teaching | 74.1 | 86.0 | 76.3 | 88.0 | 74.3 | 83.1 |
Pre-Frail (n = 16,665) | Frail (n = 12,985) | Severely Frail (n = 8340) | p-Value (Totals) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ACDF (n = 11,655) | PCDF (n = 5010) | p-Value | ACDF (n = 8470) | PCDF (n = 4515) | p-Value | ACDF (n = 5170) | PCDF (n = 3170) | p-Value | ||
Functional status | 2.2 | 4.2 | 0.001 | 5.5 | 10.9 | <0.001 | 16.0 | 22.1 | 0.002 | <0.001 |
Hypertension | 60.5 | 59.6 | 0.610 | 80.5 | 79.4 | 0.519 | 86.9 | 83.3 | 0.039 | <0.001 |
History of COPD or pneumonia | 4.1 | 3.4 | 0.368 | 14.7 | 12.3 | 0.094 | 41.9 | 39.1 | 0.264 | <0.001 |
Impaired sensorium | 18.1 | 14.3 | 0.007 | 30.4 | 29.0 | 0.456 | 50.7 | 49.5 | 0.647 | <0.001 |
Diabetes | 11.2 | 13.9 | 0.032 | 46.9 | 44.6 | 0.255 | 63.2 | 58.4 | 0.046 | <0.001 |
History of MI | 2.4 | 2.8 | 0.438 | 15.3 | 17.2 | 0.224 | 46.4 | 47.9 | 0.540 | <0.001 |
History of CHF | 0.4 | 0.7 | 0.315 | 3.1 | 2.3 | 0.245 | 14.9 | 17.5 | 0.173 | <0.001 |
History of stroke | 0.2 | 0.5 | 0.168 | 1.2 | 1.8 | 0.274 | 5.1 | 6.3 | 0.313 | <0.001 |
History of TIA | 0.1 | 0.0 | 0.257 | 0.1 | 0.0 | 0.466 | 0.1 | 0.5 | 0.128 | 0.135 |
History of PCI | 0.0 | 0.1 | 0.127 | 0.1 | 0.0 | 0.465 | 0.3 | 0.5 | 0.544 | 0.001 |
PVD | 0.7 | 0.6 | 0.674 | 2.2 | 2.5 | 0.614 | 6.8 | 8.0 | 0.327 | <0.001 |
Deficiency anemias | 0.9 | 1.5 | 0.098 | 1.3 | 2.1 | 0.115 | 1.8 | 3.8 | 0.015 | <0.001 |
Alcohol use | 1.0 | 1.4 | 0.362 | 2.4 | 4.3 | 0.008 | 3.8 | 6.3 | 0.014 | <0.001 |
Paralysis | 1.8 | 6.8 | <0.001 | 3.2 | 6.6 | <0.001 | 4.1 | 8.0 | 0.001 | 0.001 |
Affective disorder | 26.9 | 25.5 | 0.407 | 29.5 | 25.0 | 0.015 | 34.6 | 33.1 | 0.534 | <0.001 |
Smoking history | 12.3 | 9.3 | 0.015 | 19.5 | 18.1 | 0.379 | 30.7 | 31.4 | 0.758 | <0.001 |
Cervicalgia | 0.9 | 1.8 | 0.042 | 0.7 | 0.7 | 0.898 | 0.6 | 0.3 | 0.446 | 0.027 |
Headache | 3.9 | 3.5 | 0.527 | 3.4 | 2.7 | 0.291 | 3.4 | 1.4 | 0.013 | 0.077 |
Dorsalgia | 11.6 | 11.4 | 0.871 | 12.0 | 12.3 | 0.852 | 12.2 | 11.4 | 0.619 | 0.766 |
Pre-Frail (n = 16,665) | Frail (n = 12,985) | Severely Frail (n = 8340) | p-Value (Totals) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ACDF (n = 11,655) | PCDF (n = 5010) | p-Value | ACDF (n = 8470) | PCDF (n = 4515) | p-Value | ACDF (n = 5170) | PCDF (n = 3170) | p-Value | ||
Acute kidney injury | 1.4 | 3.6 | <0.001 | 1.7 | 3.4 | 0.005 | 4.7 | 6.8 | 0.088 | <0.001 |
Acute post-hemorrhagic anemia | 2.4 | 5.1 | <0.001 | 3.1 | 7.4 | <0.001 | 3.1 | 7.4 | <0.001 | 0.005 |
Post-operative pain | 1.7 | 3.5 | 0.002 | 1.4 | 2.8 | 0.009 | 2.2 | 5.4 | 0.001 | 0.005 |
Acute respiratory failure | 1.4 | 1.8 | 0.403 | 2.3 | 2.4 | 0.834 | 6.2 | 6.2 | 0.975 | <0.001 |
Circulatory complications | 0.3 | 0.9 | 0.023 | 0.4 | 0.3 | 0.751 | 1.3 | 1.7 | 0.424 | <0.001 |
Mechanical ventilation | 0.7 | 0.9 | 0.518 | 1.5 | 1.1 | 0.375 | 3.3 | 2.8 | 0.612 | <0.001 |
Nervous system complications | 1.2 | 2.6 | 0.003 | 0.9 | 2.1 | 0.009 | 0.9 | 2.1 | 0.040 | 0.597 |
UTI | 1.5 | 2.8 | 0.017 | 2.1 | 5.0 | <0.001 | 3.4 | 6.0 | 0.010 | <0.001 |
Sepsis | 0.1 | 0.7 | 0.002 | 0.4 | 0.3 | 0.928 | 1.3 | 1.1 | 0.780 | <0.001 |
Dysphagia | 8.3 | 2.3 | <0.001 | 9.9 | 3.1 | <0.001 | 13.1 | 3.9 | <0.001 | <0.001 |
Any complication | 15.4 | 19.3 | 0.008 | 18.8 | 20.6 | 0.289 | 25.3 | 31.2 | 0.011 | <0.001 |
Number of complications | 0.021 | 0.182 | 0.020 | <0.001 | ||||||
0 | 84.4 | 80.7 | 81.2 | 78.8 | 75.2 | 69.1 | ||||
1 | 12.7 | 14.7 | 14.9 | 15.4 | 16.8 | 21.8 | ||||
2 | 2.0 | 3.6 | 3.0 | 4.1 | 4.5 | 6.3 | ||||
≥3 | 0.9 | 1.0 | 1.0 | 1.7 | 3.5 | 2.8 |
Pre-Frail (n = 16,665) | Frail (n = 12,985) | Severely Frail (n = 8340) | p-Value (Totals) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ACDF (n = 11,655) | PCDF (n = 5010) | p-Value | ACDF (n = 8470) | PCDF (n = 4515) | p-Value | ACDF (n = 5170) | PCDF (n = 3170) | p-Value | ||
Length of stay (days) | ||||||||||
Mean ± SD | 2.3 ± 2.7 | 4.1 ± 4.1 | <0.001 | 2.7 ± 3.3 | 5.0 ± 7.8 | <0.001 | 4.0 ± 5.6 | 6.2 ± 6.1 | <0.001 | <0.001 |
Median [IQR] | 1 [1, 2] | 3 [2, 5] | <0.001 | 2 [1, 3] | 3 [2, 6] | <0.001 | 2 [1, 5] | 4 [3, 8] | <0.001 | <0.001 |
Disposition (%) | <0.001 | <0.001 | <0.001 | <0.001 | ||||||
Routine | 90.8 | 71.1 | 85.2 | 59.9 | 76.2 | 53.0 | ||||
Non-Routine | 9.0 | 28.7 | 14.7 | 39.6 | 22.6 | 46.4 | ||||
Other | 0.2 | 0.2 | 0.2 | 0.4 | 1.2 | 0.6 |
Extended LOS (>3 Days) | p-Value | Non-Routine Discharge | p-Value | |
---|---|---|---|---|
mFI-11 | ||||
Pre-Frail | Reference | |||
Frail | 1.39 (1.15, 1.68) | <0.001 | 1.49 (1.21, 1.84) | <0.001 |
Severely Frail | 2.25 (1.83, 2.76) | <0.001 | 2.22 (1.77, 2.79) | <0.001 |
Age | 1.00 (0.99, 1.01) | 0.382 | 1.04 (1.03, 1.06) | <0.001 |
Female sex | 0.99 (0.84, 1.16) | 0.888 | 0.96 (0.81, 1.15) | 0.691 |
Race | ||||
White | Reference | |||
Black | 2.08 (1.67, 2.58) | <0.001 | 2.29 (1.80, 2.91) | <0.001 |
Hispanic | 1.72 (1.27, 2.34) | <0.001 | 1.62 (1.13, 2.31) | 0.008 |
Other | 1.75 (1.19, 2.56) | 0.004 | 1.48 (1.00, 2.19) | 0.049 |
Income Quartile | ||||
0–25th | Reference | |||
26–50th | 0.93 (0.76, 1.15) | 0.510 | 1.05 (0.82, 1.33) | 0.673 |
51–75th | 0.84 (0.68, 1.04) | 0.117 | 1.02 (0.79, 1.32) | 0.867 |
76–100th | 0.68 (0.52, 0.89) | 0.005 | 0.73 (0.54, 0.99) | 0.040 |
Healthcare Coverage | ||||
Medicare | Reference | |||
Medicaid | 1.20 (0.89, 1.61) | 0.225 | 1.05 (0.71, 1.53) | 0.821 |
Private Insurance | 0.71 (0.58, 0.88) | 0.002 | 0.58 (0.45, 0.76) | <0.001 |
Other | 1.05 (0.75, 1.46) | 0.792 | 0.57 (0.37, 0.86) | 0.007 |
Hospital Bed Size | ||||
Small | Reference | |||
Medium | 1.39 (1.05, 1.83) | 0.020 | Removed | - |
Large | 2.00 (1.56, 2.57) | <0.001 | Removed | - |
Hospital Region | ||||
Northeast | ||||
Midwest | Removed | - | Removed | - |
South | Removed | - | Removed | - |
West | Removed | - | Removed | - |
Hospital Type | ||||
Rural | Reference | |||
Urban Non-Teaching | Removed | - | 0.91 (0.51, 1.63) | 0.747 |
Urban Teaching | Removed | - | 1.08 (0.62, 1.89) | 0.783 |
Fusion Levels | ||||
One level | Reference | |||
Two or more | Removed | - | Removed | - |
Number of Complications | ||||
0 | Reference | |||
1 | 4.79 (3.98, 5.78) | <0.001 | 2.82 (2.27, 3.51) | <0.001 |
2 | 15.16 (10.19, 22.57) | <0.001 | 5.49 (3.75, 8.02) | <0.001 |
>2 | 50.14 (23.33, 107.78) | <0.001 | 13.74 (8.02, 23.54) | <0.001 |
Length of Stay | - | - | - | - |
Extended LOS (>6 Days) | p-Value | Non-Routine Discharge | p-Value | |
---|---|---|---|---|
mFI-11 | ||||
Pre-Frail | Reference | |||
Frail | 1.58 (1.23, 2.03) | <0.001 | 1.55 (1.26, 1.90) | <0.001 |
Severely Frail | 2.45 (1.88, 3.20) | <0.001 | 1.63 (1.28, 2.07) | <0.001 |
Age | 1.02 (1.01, 1.04) | 0.002 | 1.06 (1.05, 1.07) | <0.001 |
Female sex | 0.96 (0.77, 1.20) | 0.719 | 1.26 (1.04, 1.52) | 0.016 |
Race | ||||
White | Reference | |||
Black | 1.89 (1.45, 2.45) | <0.001 | 1.71 (1.35, 2.17) | <0.001 |
Hispanic | 1.35 (0.92, 1.98) | 0.122 | 1.37 (0.96, 1.96) | 0.079 |
Other | 1.19 (0.72, 1.96) | 0.498 | 1.06 (0.71, 1.59) | 0.766 |
Income Quartile | ||||
0–25th | Reference | |||
26–50th | Removed | - | Removed | - |
51–75th | Removed | - | Removed | - |
76–100th | Removed | - | Removed | - |
Healthcare Coverage | ||||
Medicare | Reference | |||
Medicaid | 1.75 (1.15, 2.68) | 0.010 | 0.95 (0.65, 1.38) | 0.786 |
Private Insurance | 1.14 (0.82, 1.57) | 0.441 | 0.59 (0.45, 0.77) | <0.001 |
Other | 1.47 (0.91, 2.35) | 0.113 | 0.60 (0.39, 0.92) | 0.020 |
Hospital Bed Size | ||||
Small | Reference | |||
Medium | 1.47 (1.01, 2.16) | 0.047 | 1.44 (1.04, 1.99) | 0.026 |
Large | 1.58 (1.13, 2.23) | 0.008 | 1.40 (1.05, 1.87) | 0.021 |
Hospital Region | ||||
Northeast | Reference | |||
Midwest | Removed | - | 0.76 (0.57, 1.02) | 0.071 |
South | Removed | - | 0.67 (0.52, 0.87) | 0.003 |
West | Removed | - | 0.65 (0.49, 0.87) | 0.004 |
Hospital Type | ||||
Rural | Reference | |||
Urban Non-Teaching | Removed | - | Removed | - |
Urban Teaching | Removed | - | Removed | - |
Fusion Levels | ||||
One level | Reference | |||
Two or more | Removed | - | Removed | - |
Number of Complications | ||||
0 | Reference | |||
1 | 3.51 (2.75, 4.51) | <0.001 | 2.63 (2.08, 3.33) | <0.001 |
2 | 7.13 (4.69, 10.82) | <0.001 | 4.09 (2.66, 6.30) | <0.001 |
>2 | 39.60 (14.85, 105.56) | <0.001 | 8.29 (3.96, 17.35) | <0.001 |
Length of Stay | Removed | - | Removed | - |
Authors | Study Type | Key Findings |
---|---|---|
Wilson JRF et al., 2020 [23] | Retrospective study | MFI-defined frailty was a more effective predictor of poor outcomes than age alone, with increasing frailty being associated with increased incidence of perioperative complications, increased hospital LOS, and NRD. |
Audat ZA et al., 2018 [27] | Retrospective study | NDI score and radiographic outcomes were similar between anterior and posterior approach cohorts at five year follow-up. |
Lawrence BD et al., 2013 [28] | Systematic review | There was no clear generalizable advantage to either an anterior or posterior approach for multilevel CSM with respect to treatment effectiveness or safety. |
Luo J et al., 2015 [29] | Meta-analysis | No clear conclusion could be reached regarding which approach is more efficacious for multilevel CSM. |
Kato S et al., 2018 [30] | Review | Authors suggest choosing a surgical approach based on radiographic features contributing to spinal cord compression. |
Zhu B et al., 2013 [31] | Systematic review and meta-analysis | In cases of CSM due to disc herniation, an anterior approach may be preferred. |
Feng F et al., 2016 [32] | Systematic review and meta-analysis | A posterior approach may be ideal in CSM related to ligamentum flavum ossification due to the relative ease of accessing these structures, although the anterior approach had better overall postoperative neural function. |
Hitchon PW et al., 2019 [33] | Retrospective cohort study | The anterior approach saw benefits in hospital LOS and restoration of physiologic cervical lordosis compared to the posterior approach, despite similar outcomes in complications, quality of life, and sagittal balance. |
Wilkerson CF et al., 2022 [34] | Retrospective study | The anterior approach was associated with greater improvements in NDI score at both the 3-month and 12-month follow-ups. |
Chen Z et al., 2017 [35] | Meta-analysis | The anterior approach was associated with better postoperative neurologic function. |
El-Ghandour NMF et al., 2020 [36] | RCT | The anterior approach was superior with respect to postoperative pain, NDI score, and hospital LOS, though the posterior approach was associated with reduced incidence of postoperative dysphagia and shorter operative time. |
Ghogawala Z et al., 2021 [37] | RCT | While postoperative complications were significantly more common in the anterior surgery group (including dysphagia, new neurological deficit, 30-day readmission, and reoperation), there were no significant differences in patient-reported outcomes at one year follow-up. |
Badhiwala JH et al., 2020 [38] | Post hoc analysis | Frailty and comorbidities negatively impact functional outcomes in CSM patients undergoing decompression. |
Momtaz D et al., 2022 [39] | Retrospective study | Patient frailty was associated with postoperative AEs, readmission, and reoperation following ACDF. |
Elsamadicy AA et al., 2023 [40] | Retrospective cohort study | Patient frailty was associated with greater AE risk, prolonged hospital LOS, increased rate of NRD, and higher admission costs. |
Shin JI et al., 2017 [41] | Retrospective cohort study | MFI-11-defined frailty was an independent predictor of life-threatening single/multiorgan dysfunction in both the ACDF and posterior cervical fusion cohorts. |
Lambrechts MJ et al., 2017 [42] | Retrospective cohort study | While mFI-11-defined frailty did not significantly impact complication rates, 90-day readmission rates, reoperation rates, or patient-reported outcome measures, patients with severe frailty were significantly more likely to experience longer LOS and NRD. |
Medvedev G et al., 2016 [43] | Retrospective study | In patients who underwent posterior cervical fusion, frailty was predictive of blood transfusion, prolonged extubation greater than 48 h, reintubation, readmission, and reoperation. |
Young R et al., 2020 [44] | Observational | Patients undergoing elective cervical or lumbar surgeries had lower postoperative opioid use and LOS after ERAS implementation. |
Bansal T et al., 2022 [45] | Narrative review | Across many spine surgeries, ERAS protocols reduce health care utilization and involve multimodal pain management and early mobilization. |
Elsarrag M et al., 2019 [46] | Systematic review | ERAS protocols may decrease LOS, costs, and pain in spine surgery. |
Debono B et al., 2019 [47] | Retrospective study | Use of ERAS protocols in patients with ACDF, anterior lumbar interbody fusion, and posterior lumbar fusion led to decreased LOS and improved patient satisfaction. |
Soffin EM et al., 2019 [48] | Retrospective study | Implementation of a multidisciplinary ERAS protocol was feasible and safe, with no 90-day readmissions, among patients who underwent ACDF or cervical arthroplasty. |
Debono B et al., 2021 [49] | Retrospective study | ERAS protocol implementation was associated with a significant reduction in hospital LOS, without increasing risk of postoperative complications. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsamadicy, A.A.; Sayeed, S.; Sherman, J.J.Z.; Craft, S.; Reeves, B.C.; Lo, S.-F.L.; Shin, J.H.; Sciubba, D.M. Impact of Preoperative Frailty on Outcomes in Patients with Cervical Spondylotic Myelopathy Undergoing Anterior vs. Posterior Cervical Surgery. J. Clin. Med. 2024, 13, 114. https://doi.org/10.3390/jcm13010114
Elsamadicy AA, Sayeed S, Sherman JJZ, Craft S, Reeves BC, Lo S-FL, Shin JH, Sciubba DM. Impact of Preoperative Frailty on Outcomes in Patients with Cervical Spondylotic Myelopathy Undergoing Anterior vs. Posterior Cervical Surgery. Journal of Clinical Medicine. 2024; 13(1):114. https://doi.org/10.3390/jcm13010114
Chicago/Turabian StyleElsamadicy, Aladine A., Sumaiya Sayeed, Josiah J. Z. Sherman, Samuel Craft, Benjamin C. Reeves, Sheng-Fu Larry Lo, John H. Shin, and Daniel M. Sciubba. 2024. "Impact of Preoperative Frailty on Outcomes in Patients with Cervical Spondylotic Myelopathy Undergoing Anterior vs. Posterior Cervical Surgery" Journal of Clinical Medicine 13, no. 1: 114. https://doi.org/10.3390/jcm13010114
APA StyleElsamadicy, A. A., Sayeed, S., Sherman, J. J. Z., Craft, S., Reeves, B. C., Lo, S.-F. L., Shin, J. H., & Sciubba, D. M. (2024). Impact of Preoperative Frailty on Outcomes in Patients with Cervical Spondylotic Myelopathy Undergoing Anterior vs. Posterior Cervical Surgery. Journal of Clinical Medicine, 13(1), 114. https://doi.org/10.3390/jcm13010114