The Assessment of the Rank of Torque Control during Incisor Retraction and Its Impact on the Resorption of Maxillary Central Incisor Roots According to Incisive Canal Anatomy—Systematic Review
Abstract
:1. Introduction
Objective
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources and Search Strategy
- Root resorption incisive canal;
- Root resorption nasopalatine canal;
- Incisive canal retraction;
- Nasopalatine canal retraction.
2.4. Study Selection
2.5. Data Collection and Data Items
2.6. Risk of Bias in Individual Studies
2.7. Summary Measures, Synthesis of Results and Additional Analyses
3. Results
3.1. Group Population
3.2. Age and Gender
3.3. Treatment Strategy
3.4. Risk Analysis
3.5. Changes in the Length of the Central Incisor Roots in Contact with the Incisive Canal
3.6. Risk of Bias
3.7. Analysis of Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PICO | Population, Intervention, Comparison, Outcome |
RCT | Randomised Clinical Trial |
CCT | Controlled Clinical Prospective Trial |
ROBINS-I | Risk of Bias In Non-Randomised Studies of Interventions |
CBCT | Cone Beam Computed Tomography |
TISAD | Temporary Intraoral Skeletal Anchorage Device (orthodontic mini-implant) |
References
- Yu, J.H.; Nguyen, T.; Kim, Y.I.; Hwang, S.; Kim, K.H.; Chung, C.J. Morphologic changes of the incisive canal and its proximity to maxillary incisor roots after anterior tooth movement. Am. J. Orthod. Dentofac. Orthop. 2022, 161, 396–403.e1. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, S. Contact of the incisive canal and upper central incisors causing root resorption after retraction with orthodontic mini-implants: A CBCT study. Angle Orthod. 2019, 89, 200–205. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.J.; Nguyen, T.; Lee, J.H.; Kim, K.H. Incisive canal remodelling following maximum anterior retraction reduces apical root resorption. Orthod. Craniofac. Res. 2021, 24 (Suppl. S1), 59–65. [Google Scholar] [CrossRef] [PubMed]
- Proffit William, R.; Ackerman James, L. Diagnosis and Treatment Planning in Orthodontics (Chapter 1). In Orthodontics: Current Principles and Techniques, 2nd ed.; Graber Thomas, M., Vanarsdall Robert, L., Eds.; Mosby: St. Louis, MO, USA, 1994; p. 3e95. [Google Scholar]
- Ono, T. Should the “envelope of discrepancy” be revised in the era of three-dimensional imaging? J. World Fed. Orthod. 2020, 9, S59–S66. [Google Scholar] [CrossRef] [PubMed]
- Kaley, J.; Phillips, C. Factors related to root resorption in edgewise practice. Angle Orthod. 1991, 61, 125–132. [Google Scholar] [CrossRef]
- Parker, R.J.; Harris, E.F. Directions of orthodontic tooth movements associated with external apical root resorption of the maxillary central incisor. Am. J. Orthod. Dentofac. Orthop. 1998, 114, 677–683. [Google Scholar] [CrossRef]
- Yu, J.H.; Shu, K.W.; Tsai, M.T.; Hsu, J.T.; Chang, H.W.; Tung, K.L. A cone-beam computed tomography study of orthodontic apical root resorption. J. Dent. Sci. 2013, 8, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Goldin, B. Labial root torque: Effect on the maxilla and incisor root apex. Am. J. Orthod. Dentofac. Orthop. 1989, 95, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Mohandesan, H.; Ravanmehr, H.; Valaei, N. A radiographic analysis of external apical root resorption of maxillary incisors during active orthodontic treatment. Eur. J. Orthod. 2007, 29, 134–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weltman, B.; Vig, K.W.; Fields, H.W.; Shanker, S.; Kaizar, E.E. Root resorption associated with orthodontic tooth movement: A systematic review. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 462–476. [Google Scholar] [CrossRef] [Green Version]
- Sameshima, G.T.; Sinclair, P.M. Predicting and preventing root resorption: Part II. Treatment factors. Am. J. Orthod. Dentofac. Orthop. 2001, 119, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Sameshima, G.T.; Sinclair, P.M. Characteristics of patients with severe root resorption. Orthod. Craniofac. Res. 2004, 7, 108–114. [Google Scholar] [CrossRef]
- Brezniak, N.; Wasserstein, A. Orthodontically induced inflammatory root resorption. Part II: The clinical aspects. Angle Orthod. 2002, 72, 180–184. [Google Scholar] [CrossRef]
- Linge, L.; Linge, B.O. Patient characteristics and treatment variables associated with apical root resorption during orthodontic treatment. Am. J. Orthod. Dentofac. Orthop. 1991, 99, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Handelman, C.S. The anterior alveolus: Its importance in limiting orthodontic treatment and its influence on the occurrence of iatrogenic sequelae. Angle Orthod. 1996, 66, 95–109. [Google Scholar] [CrossRef]
- Horiuchi, A.; Hotokezaka, H.; Kobayashi, K. Correlation between cortical plate proximity and apical root resorption. Am. J. Orthod. Dentofac. Orthop. 1998, 114, 311–318. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [Green Version]
- Nakada, T.; Motoyoshi, M.; Horinuki, E.; Shimizu, N. Cone-beam computed tomography evaluation of the association of cortical plate proximity and apical root resorption after orthodontic treatment. J. Oral. Sci. 2016, 58, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.J.; Choi, Y.J.; Kim, K.H. Approximation and contact of the maxillary central incisor roots with the incisive canal after maxi-mum retraction with temporary anchorage devices: Report of 2 patients. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Imamura, T.; Uesugi, S.; Ono, T. Unilateral maxillary central incisor root resorption after orthodontic treatment for Angle Class II, division 1 malocclusion with significant maxillary midline deviation: A possible correlation with root proximity to the incisive canal. Korean J. Orthod. 2020, 50, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Arnaut, A.; Milanovic, P.; Vasiljevic, M.; Jovicic, N.; Vojinovic, R.; Selakovic, D.; Rosic, G. The Shape of Nasopalatine Canal as a Determining Factor in Therapeutic Approach for Orthodontic Teeth Movement-A CBCT Study. Diagnostics 2021, 11, 2345. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, R.; Lambrichts, I.; Liang, X.; Martens, W.; Mraiwa, N.; Adriaensens, P.; Gelan, J. Neurovascularization of the anterior jaw bones revisited using high-resolution magnetic resonance imaging. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodon. 2007, 103, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Lake, S.; Iwanaga, J.; Kikuta, S.; Oskouian, R.J.; Loukas, M.; Tubbs, R.S. The Incisive Canal: A Comprehensive Review. Cureus 2018, 10, e3069. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, K.; Wójcicka, A.; Iwanicka-Grzegorek, E. Resorpcja zewnętrzna twardych tkanek zęba i kości wyrostka zębodołowego–patomechanizm powstawania. Nowa Stomatol. 2011, 4, 170–174. [Google Scholar]
- Heithersay, G.S. Invasive cervical resorption: An analysis of potential predisposing factors. Quintessence Int. 1999, 30, 83–95. [Google Scholar]
- Pogorzelska, A.; Stróżyńska-Sitkiewicz, A.; Szopiński, K. Orthodontically induced root resorption—A literature review. Nowa Stomatol. 2019, 24, 48–55. [Google Scholar] [CrossRef]
- Nayyer, N.; Tripathi, T.; Ganesh, G.; Rai, P. Impact of photobiomodulation on external root resorption during orthodontic tooth movement in humans—A systematic review and meta-analysis. J. Oral. Biol. Craniofac. Res. 2022, 12, 469–480. [Google Scholar] [CrossRef]
- Milanovic, P.; Vasiljevic, M. Gender Differences in the Morphological Characteristics of the Nasopalatine Canal and the Anterior Maxillary Bone—CBCT Study. Serbian J. Exp. Clin. Res. 2021. ahead of print. [Google Scholar] [CrossRef]
- Thakur, A.R.; Burde, K.; Guttal, K.; Naikmasur, V.G. Anatomy and morphology of the nasopalatine canal using cone-beam computed tomography. Imaging Sci. Dent. 2013, 43, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Bornstein, M.M.; Balsiger, R.; Sendi, P.; von Arx, T. Morphology of the nasopalatine canal and dental implant surgery: A radiographic analysis of 100 consecutive patients using limited cone-beam computed tomography. Clin. Oral Implant. Res. 2011, 22, 295–301. [Google Scholar] [CrossRef]
- Kajan, Z.D.; Kia, J.; Motevasseli, S.; Rezaian, S.R. Evaluation of the nasopalatine canal with cone-beam computed tomography in an Iranian population. Dent Res. J. 2015, 12, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.A.; Kim, S.J.; Choi, Y.J.; Kim, K.H.; Chung, C.J. Morphologic evaluation of the incisive canal and its proximity to the maxillary central incisors using computed tomography images. Angle Orthod. 2016, 86, 571–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Rokhami, R.K.; Sakran, K.A.; Alhammadi, M.S.; Mashrah, M.A.; Cao, B.; Alsomairi, M.A.A.; Al-Worafi, N.A. Proximity of upper central incisors to incisive canal among subjects with maxillary dentoalveolar protrusion in various facial growth patterns. Angle Orthod. 2022, 92, 529–536. [Google Scholar] [CrossRef]
- Matsumura, T.; Ishida, Y.; Kawabe, A.; Ono, T. Quantitative analysis of the relationship between maxillary incisors and the incisive canal by cone-beam computed tomography in an adult Japanese population. Prog. Orthod. 2017, 18, 24. [Google Scholar] [CrossRef] [PubMed]
- Gull, M.A.B.; Maqbool, S.; Mushtaq, M.; Ahmad, A. Evaluation of Morphologic Features and Proximity of Incisive Canal to the Maxillary Central Incisors Using Cone Beam Computed Tomography. IOSR J. Dent. Med. Sci. 2018, 17, 46–50. [Google Scholar]
- Costa, E.D.; de Oliveira Reis, L.; Gaêta-Araujo, H.; Martins, L.A.C.; Oliveira-Santos, C.; Freitas, D.Q. Comparison of distance of upper central incisor root and incisive canal in different sagittal and vertical skeletal patterns and sex: A retrospective CBCT study. Int. Orthod. 2021, 19, 462–470. [Google Scholar] [CrossRef]
- Linjawi, A.I.; Marghalani, H.Y.A. Relationship between maxillary central incisors and incisive canal: A cone-beam computed tomography study. Folia Morphol. 2022, 81, 458–463. [Google Scholar] [CrossRef] [PubMed]
Reference | Patients | Groups | Age (Years Old) | Patients Malocclusion | Treatment Method | Assessment Method | Results |
---|---|---|---|---|---|---|---|
Yu et al., 2022 [1] | n = 67 (M20 F47) | G1 = 32 G2 = 35 G1-control G2- retraction | Mean ± SD G1 = 25.9 ± 5.85 G2 = 26.2 ± 8.34 | Skeletal class I or class II (0° < ANB < 7°) | G1-without pre-molar extractions, <2 mm horizontal maxillary incisor tip movement G2- with pre-molar extractions, >4 mm retraction of the maxillary retraction | Pre- and post-treatment CBCT | Control = root resorption = 1.1 ± 0.75 mm; Retraction group 2.3 ± 1.40 |
Nakada et al., 2016 [20] | n = 30 (M8 F22) | G0 = G1 + G2 + G3 = 30 G1 (Labial movement) = 9 G2 (Palatal movement) = 16 G3 (Midline shift) = 5 | Mean ± SD 21.92 ± 5.83 | n/a | G0 patients who underwent four-bicuspid extraction followed by treatment with multibracket appliances G1 (Labial movement) G2 (Palatal movement) G3 (Midline shift) | Pre- and post-treatment CBCT | Apical root resorption: Mean ± SD = 1.80 ± 0.82 mm Maximum = 3.96 mm; Minimum = 0.18 mm; Resorption in MS group: mesial mean ± SD = 2.49 ± 0.61; distal mean ± SD = 1.51 ± 0.49 mm |
Pan et al., 2019 [2] | n = 33 (M10 F23) | G1 = 33 | Adult (n = 20): Mean ± SD = 25.35 ± 5.12; Teenager (n = 13): Mean ± SD = 12.76 ± 1.09 | Skeletal class I or class II or molar relationship, Convex profile | Extraction of at least two upper premolars; Retraction of the upper anterior teeth with mini-implants (maximum retraction) | Pre- and post-treatment CBCT | Root Length Decrease Noncontact group 1.14 ± 0.83 Contact group 2.63 ± 0.93, p value ≤ 0.01 |
Chung et al., 2015 [21] | n = 2 (F2) | G1 = 2 | Age, years: 19.46 | Skeletal class II malocclusion with a protrusive profile | Extraction of 4 first premolars, retraction using TADs (maximum retraction) | Pre- and post-treatment CBCT and panoramic radiograph | Patient 1 “severe apical root resorption” |
Chung et al., 2021 [3] | n = 34 (M8 F26) | G1 = 34 retraction >4 mm | Mean ± SD 26.7 ± 8.8 | Skeletal class I or class II (0° < ANB < 7°) bimaxillary protrusion | >4 mm retraction of the upper incisor (U1) using TADs (maximum retraction) | Pre- and post-treatment CBCT | Classification (N), Non-invasion (N = 32) Mean ± SD = 0.8 ± 0.96 mm Invasion (N = 36) Mean ± SD = 2.4 ± 1.59 mm IC remodelling (+) (N = 18) Mean ± SD = 3.3 ± 1.54 mm IC remodelling (−) (N = 18) Mean ± SD = 1 ± 0.92 mm |
Imamura et al., 2020 [22] | n = 1 (F1) | G1 = 1 | Age, years: 21 | Angle class I molar, class II canine relationships, overjet 5.3 mm, overbite 6.1 mm, linguoversion of the maxillary incisor (crossbite), Discrepancies = −9.4 mm (maxilla), −5.5 mm (mandible) | Extraction of the bilateral maxillary first premolars and mandible second premolars, TADs in the maxilla (maximum retraction) | Pre- and post-treatment CBCT | Displacement of the roots, right = 2.3 mm; left = 3.1 mm Resorption, right = 3.6 mm; left = 1.8 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuc, A.E.; Kotuła, J.; Nawrocki, J.; Babczyńska, A.; Lis, J.; Kawala, B.; Sarul, M. The Assessment of the Rank of Torque Control during Incisor Retraction and Its Impact on the Resorption of Maxillary Central Incisor Roots According to Incisive Canal Anatomy—Systematic Review. J. Clin. Med. 2023, 12, 2774. https://doi.org/10.3390/jcm12082774
Kuc AE, Kotuła J, Nawrocki J, Babczyńska A, Lis J, Kawala B, Sarul M. The Assessment of the Rank of Torque Control during Incisor Retraction and Its Impact on the Resorption of Maxillary Central Incisor Roots According to Incisive Canal Anatomy—Systematic Review. Journal of Clinical Medicine. 2023; 12(8):2774. https://doi.org/10.3390/jcm12082774
Chicago/Turabian StyleKuc, Anna Ewa, Jacek Kotuła, Jakub Nawrocki, Alicja Babczyńska, Joanna Lis, Beata Kawala, and Michał Sarul. 2023. "The Assessment of the Rank of Torque Control during Incisor Retraction and Its Impact on the Resorption of Maxillary Central Incisor Roots According to Incisive Canal Anatomy—Systematic Review" Journal of Clinical Medicine 12, no. 8: 2774. https://doi.org/10.3390/jcm12082774
APA StyleKuc, A. E., Kotuła, J., Nawrocki, J., Babczyńska, A., Lis, J., Kawala, B., & Sarul, M. (2023). The Assessment of the Rank of Torque Control during Incisor Retraction and Its Impact on the Resorption of Maxillary Central Incisor Roots According to Incisive Canal Anatomy—Systematic Review. Journal of Clinical Medicine, 12(8), 2774. https://doi.org/10.3390/jcm12082774