Correlation of Myocardial Native T1 and Left Ventricular Reverse Remodeling after Valvular Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Assessment of Cardiac Magnetic Resonance Imaging
2.3. Assessment of Echocardiographic Left Ventricular Geometry Parameters
2.4. Surgical Technique
2.5. Statistical Analysis
2.6. Study Endpoint
3. Results
3.1. Demographics and Baseline Characteristics
3.2. Imaging Data and Correlation between T1 Values and Echocardiographic LV Measurements
3.3. Post-Hoc Subgroup Analysis by Valve Pathology
4. Discussion
- (1)
- Our study cohort consisted of patients with different valve pathologies including tricuspid (TAV) and bicuspid (BAV) aortic valve disease and functional mitral valve disease. This could be a confounder to our analysis. However, the development of diffuse myocardial fibrosis and valvular cardiomyopathy has the same pathophysiological background in both TAV and BAV patients. Chronic volume overload results in eccentric LV hypertrophy and LV remodeling, which is independent of valve morphology. Due to the common pathophysiological pathway in TAV and BAV, we analyzed both valve pathologies as a uniform entity, the AR subgroup. Furthermore, we aimed to demonstrate that the correlation between baseline T1 and LV reverse remodeling after valvular surgery is independent of the type of valvular disease (i.e., AR vs. FMR). To evaluate this assumption, we included valve type (i.e., AR vs. FMR) into our Cox regression model. Cox regression model confirmed the correlation between native dichotomized T1 and LV reverse remodeling to be independent of the type of valvular disease (i.e., AR vs. FMR). In other words, the correlation between native T1 mapping and post-surgical LV reverse remodeling was comparable between AR and FMR patients.
- (2)
- Our study cohort included thirteen study patients, who underwent simultaneous CABG surgery. Even though the presence of CAD was the main pathophysiological mechanism leading to cardiomyopathy, none of them had a regional myocardial fibrosis corresponding to the diseased coronary artery territory. Therefore, this patient cohort with CAD represents a very selective patient subgroup with predominantly diffuse myocardial fibrosis.
- (3)
- Four patients underwent redo surgery during the study period, which might have influenced the LV reverse remodeling course as defined by reduction of LVEDV and LVESV. However, the redo surgeries were performed at the first month or after the 6 months follow-up echocardiographic examination. Therefore, in all four cases, there was presumably enough time for the LV to remodel.
- (4)
- The ROC analyses of our study, which we performed to determine the cut-off point of the prediction variable native T1, revealed only acceptable AUC values for reduction of LVEDV and LVESV. In addition, the confidence intervals of AOCs showed a wide range of values due to the low number of study patients.
- (5)
- Analysis and interpretation of echocardiographic measurements of LV remodeling parameters relied on the test-retest variability published by Baron et al. [12].
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iung, B.; Vahanian, A. Epidemiology of valvular heart disease in the adult. Nat. Rev. Cardiol. 2011, 8, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Beyersdorf, F.; Vahanian, A.; Milojevic, M.; Praz, F.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. J. Cardio-Thoracic Surg. 2021, 60, 727–800. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, C.F.; Nigri, M.; Higuchi, M.D.L.; Pomerantzeff, P.M.; Spina, G.S.; Sampaio, R.O.; Tarasoutchi, F.; Grinberg, M.; Rochitte, C.E. Prognostic Significance of Myocardial Fibrosis Quantification by Histopathology and Magnetic Resonance Imaging in Patients with Severe Aortic Valve Disease. J. Am. Coll. Cardiol. 2010, 56, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Murashita, T.; Schaff, H.V.; Suri, R.M.; Daly, R.C.; Li, Z.; Dearani, J.A.; Greason, K.L.; Nishimura, R.A. Impact of Left Ventricular Systolic Function on Outcome of Correction of Chronic Severe Aortic Valve Regurgitation: Implications for Timing of Surgical Intervention. Ann. Thorac. Surg. 2016, 103, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Petersen, J.; Neumann, N.; Naito, S.; Gross, T.S.; Massel, R.; Reichenspurner, H.; Girdauskas, E. Persistence of Reduced Left Ventricular Function after Aortic Valve Surgery for Aortic Valve Regurgitation: Bicuspid versus Tricuspid. Thorac. Cardiovasc. Surg. 2019, 69, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Nakamori, S.; Dohi, K.; Ishida, M.; Goto, Y.; Imanaka-Yoshida, K.; Omori, T.; Goto, I.; Kumagai, N.; Fujimoto, N.; Ichikawa, Y.; et al. Native T1 Mapping and Extracellular Volume Mapping for the Assessment of Diffuse Myocardial Fibrosis in Dilated Cardiomyopathy. JACC Cardiovasc. Imaging 2018, 11, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Messroghli, D.R.; Moon, J.C.; Ferreira, V.M.; Grosse-Wortmann, L.; He, T.; Kellman, P.; Mascherbauer, J.; Nezafat, R.; Salerno, M.; Schelbert, E.B.; et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J. Cardiovasc. Magn. Reson. 2017, 19, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Radunski, U.K.; Kluwe, J.; Klein, M.; Galante, A.; Lund, G.K.; Sinning, C.; Bohnen, S.; Tahir, E.; Starekova, J.; Bannas, P.; et al. Cardiovascular magnetic resonance demonstrates structural cardiac changes following transjugular intrahepatic portosystemic shunt. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–271. [Google Scholar] [CrossRef] [PubMed]
- Teichholz, L.E.; Kreulen, T.; Herman, M.V.; Gorlin, R. Problems in echocardiographic volume determinations: Echocardiographic-angiographic correlations in the presence or absence of asynergy. Am. J. Cardiol. 1976, 37, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Otterstad, J.E.; Froeland, G.; Sutton, M.S.J.; Holme, I. Accuracy and reproducibility of biplane two-dimensional echocardiographic measurements of left ventricular dimensions and function. Eur. Hear. J. 1997, 18, 507–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron, T.; Berglund, L.; Hedin, E.-M.; Flachskampf, F.A. Test–retest reliability of new and conventional echocardiographic parameters of left ventricular systolic function. Clin. Res. Cardiol. 2018, 108, 355–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girdauskas, E.; Conradi, L.; Harmel, E.K.; Reichenspurner, H. Minimally Invasive Mitral Valve Annuloplasty with Realignment of Both Papillary Muscles for Correction of Type IIIb Functional Mitral Regurgitation. Innov. Technol. Tech. Cardiothorac. Vasc. Surg. 2017, 12, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.J.; Salerno, M.; Dharmakumar, R.; Jerosch-Herold, M. T1 Mapping: Basic Techniques and Clinical Applications. JACC Cardiovasc. Imaging 2016, 9, 67–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.-P.; Lee, W.; Lee, J.M.; Park, E.-A.; Kim, H.-K.; Kim, Y.-J.; Sohn, D.-W. Assessment of Diffuse Myocardial Fibrosis by Using MR Imaging in Asymptomatic Patients with Aortic Stenosis. Radiology 2015, 274, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Park, J.-B.; Yoon, Y.E.; Park, E.-A.; Kim, H.-K.; Lee, W.; Kim, Y.-J.; Cho, G.-Y.; Sohn, D.-W.; Greiser, A.; et al. Noncontrast Myocardial T1 Mapping by Cardiac Magnetic Resonance Predicts Outcome in Patients with Aortic Stenosis. JACC Cardiovasc. Imaging 2017, 11, 974–983. [Google Scholar] [CrossRef] [PubMed]
- Sparrow, P.; Messroghli, D.R.; Reid, S.; Ridgway, J.P.; Bainbridge, G.; Sivananthan, M.U. Myocardial T1 Mapping for Detection of Left Ventricular Myocardial Fibrosis in Chronic Aortic Regurgitation: Pilot Study. Am. J. Roentgenol. 2006, 187, W630–W635. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.J.; Gutman, S.J. Myocardial T1 Mapping in Heart Disease. JACC Cardiovasc. Imaging 2019, 13, 55–57. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics | All (n = 79) | AR Subgroup (n = 46) | FMR Subgroup (n = 33) | p Value AR vs. FMR |
---|---|---|---|---|
Male (%) | 58 (73) | 36 (78) | 22 (67) | 0.25 |
Age (years) | 55.7 ± 14.2 | 51.4 ± 14.2 | 61.6 ± 12.1 | 0.001 |
BSA (m2) | 2.0 ± 0.2 | 2.1 ± 0.2 | 1.9 ± 0.2 | 0.007 |
Comorbidities | ||||
Diabetes (%) | 6 (8) | 2 (4) | 4 (13) | 0.17 |
Hypertension (%) | 39 (51) | 26 (57) | 13 (42) | 0.20 |
CAD (%) | 23 (30) | 2 (4) | 21 (68) | <0.001 |
STS Score * | 1.0 ± 0.6 | 1.0 ± 0.6 | 1.0 ± 0.6 | 0.91 |
EuroSCORE II * | 1.2 ± 0.8 | 1.1 ± 0.8 | 1.5 ± 0.8 | 0.05 |
Creatinine (mg/dL) | 1.2 ± 0.5 | 1.0 ± 0.4 | 1.3 ± 0.6 | 0.02 |
NT-proBNP (pg/mL) * | 2015 ± 2927 | 801 ± 1633 | 3715 ± 3483 | <0.001 |
Baseline imaging values | ||||
Native T1 (ms) | 1047 ± 39 | 1032 ± 32 | 1066 ± 39 | <0.001 |
LVEF (%) * | 49 ± 13 | 57 ± 8 | 37 ± 11 | <0.001 |
LVEDD (mm) | 61 ± 9 | 60 ± 9 | 62 ± 8 | 0.27 |
LVESD (mm) | 46 ± 10 | 41 ± 9 | 50 ± 9 | <0.001 |
LVEDV (mL) | 170 ± 54 | 164 ± 55 | 177 ± 52 | 0.30 |
LVESV (mL) * | 90 ± 39 | 74 ± 31 | 110 ± 40 | <0.001 |
Change of LV geometry indexes after 6 months | ||||
∆LVEF (%) | 1 ± 8 | −1 ± 7 | 2 ± 10 | 0.22 |
∆LVEDD (mm) * | −6 ± 7 | −7 ± 7 | −3 ± 5 | 0.011 |
∆LVESD (mm) | −5 ± 7 | −5 ± 7 | −5 ± 8 | 0.99 |
∆LVEDV (mL) * | −33 ± 42 | −44 ± 45 | −19 ± 34 | 0.010 |
∆LVESV (mL) | −15 ± 27 | −17 ± 24 | −13 ± 30 | 0.54 |
LV reverse remodeling after 6 months | ||||
∆LVEDV < 0 (%) | 58 (73) | 37 (80) | 21 (64) | 0.09 |
∆LVESV < 0 (%) | 56 (71) | 32 (70) | 24 (73) | 0.37 |
Valve regurgitation after 6 months | ||||
None (%) | 33 (42) | 19 (41) | 14 (42) | NA |
Mild (%) | 43 (54) | 26 (57) | 17 (52) | NA |
Moderate (%) | 1 (1) | 1 (2) | 0 | NA |
Severe (%) | 2 (3) | 0 | 2 (6) | NA |
ß | p Value | Hazard Ratio | Confidence Interval | |
---|---|---|---|---|
Predictors of LV reverse remodeling measured by LVEDV (∆LVEDV < 0) | ||||
Age | 0.03 | 0.20 | 1.0 | 0.99–1.07 |
Gender | −0.88 | 0.06 | 0.41 | 0.17–1.04 |
Creatinine Level (mg/dL) | −0.21 | 0.53 | 0.81 | 0.43–1.55 |
Native T1 < 1073 ms | 1.10 | 0.03 | 3.00 | 1.10–8.00 |
Valve type (AR vs. MR) | 0.37 | 0.48 | 1.45 | 0.53–3.99 |
Predictors of LV reverse remodeling measured by LVEDV (∆LVEDV < 0) (unadjusted model) | ||||
Native T1 < 1073 ms | 0.99 | 0.02 | 2.69 | 1.13–6.39 |
Predictors of LV reverse remodeling measured by LVESV (∆LVESV < 0) | ||||
Age | 0.01 | 0.61 | 1.01 | 0.97–1.05 |
Gender | −0.91 | 0.05 | 0.40 | 0.16–1.01 |
Creatinine Level (mg/dL) | −0.61 | 0.17 | 0.54 | 0.22–1.29 |
Native T1 < 1073 ms | 1.05 | 0.03 | 2.90 | 1.10–7.42 |
Valve type (AR vs. MR) | 0.50 | 0.36 | 1.64 | 0.57–4.72 |
Predictors of LV reverse remodeling measured by LVESV (∆LVESV < 0) (unadjusted model) | ||||
Native T1 < 1073 ms | 0.89 | 0.03 | 2.43 | 1.05–5.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Stumm, M.; Petersen, J.; Sinn, M.; Holst, T.; Sequeira-Gross, T.M.; Müller, L.; Pausch, J.; Bannas, P.; Adam, G.; Reichenspurner, H.; et al. Correlation of Myocardial Native T1 and Left Ventricular Reverse Remodeling after Valvular Surgery. J. Clin. Med. 2023, 12, 2649. https://doi.org/10.3390/jcm12072649
von Stumm M, Petersen J, Sinn M, Holst T, Sequeira-Gross TM, Müller L, Pausch J, Bannas P, Adam G, Reichenspurner H, et al. Correlation of Myocardial Native T1 and Left Ventricular Reverse Remodeling after Valvular Surgery. Journal of Clinical Medicine. 2023; 12(7):2649. https://doi.org/10.3390/jcm12072649
Chicago/Turabian Stylevon Stumm, Maria, Johannes Petersen, Martin Sinn, Theresa Holst, Tatiana M. Sequeira-Gross, Lisa Müller, Jonas Pausch, Peter Bannas, Gerhard Adam, Hermann Reichenspurner, and et al. 2023. "Correlation of Myocardial Native T1 and Left Ventricular Reverse Remodeling after Valvular Surgery" Journal of Clinical Medicine 12, no. 7: 2649. https://doi.org/10.3390/jcm12072649
APA Stylevon Stumm, M., Petersen, J., Sinn, M., Holst, T., Sequeira-Gross, T. M., Müller, L., Pausch, J., Bannas, P., Adam, G., Reichenspurner, H., & Girdauskas, E. (2023). Correlation of Myocardial Native T1 and Left Ventricular Reverse Remodeling after Valvular Surgery. Journal of Clinical Medicine, 12(7), 2649. https://doi.org/10.3390/jcm12072649