NONHSAT021545/miR-330-3p/EREG: A Cooperative Axis in Breast Cancer Prognosis and Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Samples and Cell Culture
2.2. Bioinformatic Analysis
2.3. Transient Transfection
2.4. Cell Proliferation Assay
2.5. Cell Motility Assay
2.6. Cell Migration and Invasion Assay
2.7. Western Blotting (WB) Assay
2.8. Luciferase Activity Assay
2.9. Quantitative Reverse Transcription PCR (qRT-PCR) Assay
2.10. Immunohistochemistry (IHC) Assay
2.11. Fluorescence In Situ Hybridization (FISH)
2.12. Amplification-Refractory Mutation System PCR (ARMS-PCR) Assay
2.13. Statistical Analysis
3. Results
3.1. Evaluation of the Effect of miR-330-3p and EREG in BC
3.2. miR-330-3p Affects the Motility, Migration, and Invasion of BC Cells
3.3. Lnc021545 Knockdown Promotes the Motility, Migration, and Invasion of BC Cells
3.4. EREG Influences the Motility, Migration, and Invasion of BC Cells
3.5. Lnc021545 Acts as a Sponge for miR-330-3p in BC Cells
3.6. miR-330-3p Expression Is Negatively Correlated with EREG Expression in BC
3.7. Lnc021545/miR-330-3p Axis Affects BC Metastasis by Regulating EREG Expression
3.8. The Clinical Feature and Cooperative Effects of lnc021545, miR-330-3p, and EREG in BC Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, 2021. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Gonzalez-Angulo, A.M.; Morales-Vasquez, F.; Hortobagyi, G.N. Overview of resistance to systemic therapy in patients with breast cancer. Adv. Exp. Med. Biol. 2007, 608, 1–22. [Google Scholar] [PubMed]
- Park, M.; Kim, D.; Ko, S.; Kim, A.; Mo, K.; Yoon, H. Breast cancer metastasis: Mechanisms and therapeutic implications. Int. J. Mol. Sci. 2022, 23, 6806. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Weinberg, R.A. Epithelial-to-mesenchymal transition in cancer: Complexity and opportunities. Front. Med. 2018, 12, 361–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.; Li, G.D.; Sun, L.Y.; Li, X.Q. PTEN and SHIP: Impact on lymphatic metastasis in breast cancer. J. Cancer Res. Ther. 2018, 14, S937–S941. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, J.Y.; Cairns, M.J. Identifying miRNAs, targets and functions. Brief Bioinform. 2014, 15, 1–19. [Google Scholar] [CrossRef]
- Liu, J.; Liu, L.; Chao, S.; Liu, Y.; Liu, X.; Zheng, J.; Chen, J.; Gong, W.; Teng, H.; Li, Z.; et al. The role of miR-330-3p/PKC-α signaling pathway in low-dose endothelial-monocyte activating polypeptide-II increasing the permeability of blood-tumor barrier. Front. Cell Neurosci. 2017, 11, 358. [Google Scholar] [CrossRef] [Green Version]
- Jafarzadeh, A.; Paknahad, M.H.; Nemati, M.; Jafarzadeh, S.; Mahjoubin-Tehran, M.; Rajabi, A.; Shojaie, L.; Mirzaei, H. Dysregulated expression and functions of microRNA-330 in cancers: A potential therapeutic target. Biomed. Pharmacother. 2022, 146, 112600. [Google Scholar] [CrossRef]
- Schmitz, S.U.; Grote, P.; Herrmann, B.G. Mechanisms of long noncoding RNA function in development and disease. Cell. Mol. Life Sci. 2016, 73, 2491–2509. [Google Scholar] [CrossRef] [Green Version]
- Smillie, C.L.; Sirey, T.; Ponting, C.P. Complexities of post-transcriptional regulation and the modeling of ceRNA crosstalk. Crit Rev. Biochem. Mol. Biol. 2018, 53, 231–245. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Feng, P.; Lee, K.; Chen, K.; Sun, W.; Van Hiep, N.; Luo, C.; Wu, S. The role of EREG/EGFR pathway in tumor progression. Int. J. Mol. Sci. 2021, 22, 12828. [Google Scholar] [CrossRef]
- Roy, S.; Khanna, S.; Rink, C.; Biswas, S.; Sen, C.K. Characterization of the acute temporal changes in excisional murine cutaneous wound inflammation by screening of the wound-edge transcriptome. Physiol. Genom. 2008, 34, 162–184. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, S.; Nakabayashi, K.; Baba, I.; Sasazuki, T.; Shirasawa, S. Role of epiregulin in peptidoglycan-induced proinflammatory cytokine production by antigen presenting cells. Biochem. Biophys. Res. Commun. 2005, 337, 271–274. [Google Scholar] [CrossRef]
- He, M.; Jin, Q.; Chen, C.; Liu, Y.; Ye, X.; Jiang, Y.; Ji, F.; Qian, H.; Gan, D.; Yue, S.; et al. The miR-186-3p/EREG axis orchestrate tamoxifen resistance and aerobic glycolysis in breast cancer cells. Oncogene 2019, 38, 5551–5565. [Google Scholar] [CrossRef]
- Wang, Y.; Jing, Y.; Ding, L.; Zhang, X.; Song, Y.; Chen, S.; Zhao, X.; Huang, X.; Pu, Y.; Wang, Z.; et al. Epiregulin reprograms cancer-associated fibroblasts and facilitates oral squamous cell carcinoma invasion via JAK2-STAT3 pathway. J. Exp. Clin. Cancer Res. 2019, 38, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bild, A.; Yao, G.; Chang, J.; Wang, Q.; Potti, A.; Chasse, D.; Joshi, M.B.; Harpole, D.; Lancaster, J.; Berchuck, A.; et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 2006, 439, 353–357. [Google Scholar] [CrossRef]
- Ahmed, S.; Pati, S.; Le, D.; Haider, K.; Iqbal, N. The prognostic and predictive role of 21-gene recurrence scores in hormone receptor-positive early-stage breast cancer. J. Surg. Oncol. 2020, 122, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Albanell, J.; Gonzalez, A.; Ruiz-Borrego, M.; Alba, E.; Garcia-Saenz, J.A.; Corominas, J.M.; Burgues, O.; Furio, V.; Rojo, A.; Palacios, J.; et al. Prospective transGEICAM study of the impact of the 21-gene recurrence score assay and traditional clinicopathological factors on adjuvant clinical decision making in women with estrogen receptor-positive (ER1) node-negative breast cancer. Ann. Oncol. 2012, 23, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Goldring, J.P.D. Measuring protein concentration with absorbance, Lowry, Bradford Coomassie blue, or the Smith bicinchoninic acid assay before electrophoresis. In Electrophoretic Separation of Proteins; Methods in Molecular Biology Series; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1855, pp. 31–39. [Google Scholar]
- Lavorato-Rocha, A.M.; Anjos, L.G.; Cunha, I.W.; Vassallo, J.; Soares, F.A.; Rocha, R.M. Immunohistochemical assessment of PTEN in vulvar cancer: Best practices for tissue staining, evaluation, and clinical association. Methods 2015, 77–78, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Braden, A.M.; Stankowski, R.V.; Onitilo, A.A. Breast cancer biomarkers: Risk assessment, diagnosis, prognosis, prediction of treatment efficacy and toxicity, and recurrence. Curr. Pharm. Des. 2014, 20, 4879–4898. [Google Scholar] [CrossRef]
- Lee, Y.; Dutta, A. MicroRNAs in cancer. Annu. Rev. Pathol. 2009, 4, 199–227. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Zhang, R.; Cai, Q.; Gao, X.; Tong, F.; Dong, J.; Hu, Y. MicroRNA-330-3p promotes brain metastasis and epithelial-mesenchymal transition via GRIA3 in non-small cell lung cancer. Aging 2019, 11, 6734–6761. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Chen, Q.; Cao, M. Abnormal expression and mechanism of miR-330-3p/BTG1 axis in hepatocellular carcinoma. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 6888–6898. [Google Scholar]
- Mesci, A.; Huang, X.; Taeb, S.; Jahangiri, S.; Kim, Y.; Fokas, E.; Bruce, J.; Leong, H.; Liu, S. Targeting of CCBE1 by miR-330-3p in human breast cancer promotes metastasis. J. Br. J. Cancer 2017, 116, 1350–1357. [Google Scholar] [CrossRef]
- Liu, B.; Du, R.; Zhou, L.; Xu, J.; Chen, S.; Chen, J.; Yang, X.; Liu, D.; Shao, Z.; Zhang, L.; et al. MiR-200c/141 regulates breast cancer stem cell heterogeneity via targeting HIPK1/β-Catenin axis. Theranostics 2018, 8, 5801–5813. [Google Scholar] [CrossRef]
- Roy, S.; Gonugunta, V.; Bandyopadhyay, A.; Rao, M.; Goodall, G.; Sun, L.; Tekmal, R.; Vadlamudi, R. Significance of PELP1/ HDAC2/miR-200 regulatory network in EMT and metastasis of breast cancer. Oncogene 2014, 33, 3707–3716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Li, M.; Yu, H.; Piao, H. LncRNA CYTOR promotes tamoxifen resistance in breast cancer cells via sponging miR-125a-5p. Int. J. Mol. Med. 2020, 45, 497–509. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Zhong, J.; Wei, W.; Liu, L.; Liu, J.; Lin, X. Long non-coding RNAs lncANGPTL-3:3 and lnc-GJA10-12:1 present as regulators of sentinel lymph node metastasis in breast cancer. Oncol. Lett. 2020, 20, 188. [Google Scholar] [CrossRef]
- Komurasaki, T.; Toyoda, H.; Uchida, D.; Morimoto, S. Epiregulin binds to epidermal growth factor receptor and ErbB-4 and induces tyrosine phosphorylation of epidermal growth factor receptor, ErbB-2, ErbB-3 and ErbB-4. Oncogene 1997, 15, 2841–2848. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Hsieh, P.; Chou, C.; Yang, C.; Lee, S.; Tian, Y.; Shiue, Y.; Li, W. High EREG expression is predictive of better outcomes in rectal cancer patients receiving neoadjuvant concurrent chemoradiotherapy. Oncology 2020, 98, 549–557. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Lin, F.; Sun, H.; Lin, Y.; Wang, Z.; Wang, X. The lnc-CTSLP8 upregulates CTSL1 as a competitive endogenous RNA and promotes ovarian cancer metastasis. J. Exp. Clin. Cancer Res. 2021, 40, 151. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Sui, Z.; Zhang, H.; Wang, Y.; Yu, Z. Integrated analysis of lncRNA-mediated ceRNA network in lung adenocarcinoma. Front. Oncol. 2020, 10, 554759. [Google Scholar] [CrossRef] [PubMed]
- Pastushenko, I.; Blanpain, C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019, 29, 212–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, E.; Seo, J.; Yoon, H.; Cho, S. The post-translational regulation of epithelial-mesenchymal transition-Inducing transcription factors in cancer metastasis. Int. J. Mol. Sci. 2021, 22, 3591. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, Y.; You, B.; You, Y.; Yan, Y.; Zhang, J.; Pei, Y.; Zhang, W.; Chen, J. miR-30a-5p inhibits epithelial-to-mesenchymal transition by targeting CDK6 in nasal polyps. Am. J. Rhinol. Allergy 2021, 35, 152–163. [Google Scholar] [CrossRef]
- Guo, S.; Zeng, H.; Huang, P.; Wang, S.; Xie, C.; Li, S. MiR-508-3p inhibits cell invasion and epithelial-mesenchymal transition by targeting ZEB1 in triple-negative breast cancer. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 6379–6385. [Google Scholar]
- Noyan, S.; Ozketen, A.; Gurdal, H.; Dedeoglu, B. miR-770-5p regulates EMT and invasion in TNBC cells by targeting DNMT3A. Cell. Signal. 2021, 83, 109996. [Google Scholar] [CrossRef]
- Loibl, S.; Poortmans, P.; Morrow, M.; Denkert, C.; Curigliano, G. Breast cancer. Lancet 2021, 397, 1750–1769. [Google Scholar] [CrossRef]
- Zubair, M.; Wang, S.; Ali, N. Advanced approaches to breast cancer classification and diagnosis. Front. Pharmacol. 2021, 26, 11. [Google Scholar] [CrossRef]
Parameters | Group | lnc021545 | miR-330-3p | EREG | Cooperative Ratio | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Low | High | p | Low | High | p | Low | High | p | Low | High | p | ||
Age | >60 | 11 | 12 | 1 | 10 | 13 | 0.571 | 12 | 11 | 1 | 14 | 9 | 1 |
≤60 | 14 | 13 | 15 | 12 | 13 | 14 | 16 | 11 | |||||
Position | left | 13 | 11 | 0.778 | 11 | 13 | 0.778 | 13 | 11 | 0.778 | 15 | 11 | 0.779 |
right | 12 | 14 | 14 | 12 | 12 | 14 | 15 | 9 | |||||
Size | <5 cm | 14 | 22 | 0.025 | 25 | 10 | 0.000 | 12 | 24 | 0.000 | 19 | 18 | 0.05 |
≥5 cm | 11 | 3 | 1 | 14 | 13 | 1 | 11 | 2 | |||||
TNM stage | I–II | 10 | 21 | 0.003 | 25 | 6 | 0.000 | 10 | 21 | 0.003 | 14 | 17 | 0.008 |
III–IV | 15 | 4 | 0 | 19 | 15 | 4 | 16 | 3 | |||||
LN metastasis | absence | 6 | 16 | 0.01 | 17 | 5 | 0.001 | 7 | 15 | 0.045 | 9 | 13 | 0.021 |
presence | 19 | 9 | 8 | 20 | 18 | 10 | 21 | 7 | |||||
Pathological stage | II | 16 | 19 | 0.538 | 22 | 13 | 0.012 | 17 | 18 | 1 | 19 | 16 | 0.345 |
III | 9 | 6 | 3 | 12 | 8 | 7 | 11 | 4 | |||||
Vascular invasion | absence | 13 | 16 | 0.567 | 16 | 13 | 0.567 | 14 | 15 | 1 | 17 | 12 | 1 |
presence | 12 | 9 | 9 | 12 | 11 | 10 | 13 | 8 | |||||
Nerve invasion | absence | 20 | 21 | 1 | 19 | 22 | 0.463 | 20 | 21 | 1 | 26 | 16 | 0.697 |
presence | 5 | 4 | 6 | 3 | 5 | 4 | 4 | 4 | |||||
ER | high | 11 | 14 | 0.572 | 16 | 9 | 0.089 | 8 | 17 | 0.023 | 12 | 12 | 0.248 |
low | 14 | 11 | 9 | 16 | 17 | 8 | 18 | 8 | |||||
PR | high | 10 | 16 | 0.156 | 16 | 10 | 0.156 | 14 | 12 | 0.778 | 15 | 10 | 1 |
low | 15 | 9 | 9 | 15 | 11 | 13 | 15 | 10 | |||||
HER-2 amplification | positive | 12 | 3 | 0.012 | 2 | 13 | 0.001 | 13 | 2 | 0.001 | 14 | 1 | 0.002 |
negative | 13 | 22 | 23 | 12 | 12 | 23 | 16 | 19 | |||||
Ki-67 | high | 12 | 6 | 0.140 | 6 | 12 | 0.140 | 10 | 8 | 0.769 | 13 | 5 | 0.237 |
low | 13 | 19 | 19 | 13 | 15 | 17 | 17 | 15 | |||||
PIK3CA | mutant | 7 | 10 | 0.551 | 10 | 7 | 0.551 | 8 | 9 | 1 | 11 | 6 | 0.763 |
wild | 18 | 15 | 15 | 18 | 17 | 16 | 19 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Guo, C.; Yang, S.; Elkharti, M.; Liu, R.; Sun, M.-Z.; Liu, S. NONHSAT021545/miR-330-3p/EREG: A Cooperative Axis in Breast Cancer Prognosis and Treatment. J. Clin. Med. 2023, 12, 2478. https://doi.org/10.3390/jcm12072478
Zhang Y, Guo C, Yang S, Elkharti M, Liu R, Sun M-Z, Liu S. NONHSAT021545/miR-330-3p/EREG: A Cooperative Axis in Breast Cancer Prognosis and Treatment. Journal of Clinical Medicine. 2023; 12(7):2478. https://doi.org/10.3390/jcm12072478
Chicago/Turabian StyleZhang, Yunkun, Chunmei Guo, Siwen Yang, Maroua Elkharti, Rui Liu, Ming-Zhong Sun, and Shuqing Liu. 2023. "NONHSAT021545/miR-330-3p/EREG: A Cooperative Axis in Breast Cancer Prognosis and Treatment" Journal of Clinical Medicine 12, no. 7: 2478. https://doi.org/10.3390/jcm12072478
APA StyleZhang, Y., Guo, C., Yang, S., Elkharti, M., Liu, R., Sun, M.-Z., & Liu, S. (2023). NONHSAT021545/miR-330-3p/EREG: A Cooperative Axis in Breast Cancer Prognosis and Treatment. Journal of Clinical Medicine, 12(7), 2478. https://doi.org/10.3390/jcm12072478