Efficacy of Lidocaine Infusion in High-Risk Vascular Surgery—A Randomized, Double-Blind, Placebo-Controlled Single-Center Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Pharmacological Intervention Design
2.3. Randomization
2.4. Patient Monitoring and Data Collection
2.5. General Anesthesia
- SBP or MAP below the TAV limit: fluid challenge iv with balanced crystalloids was commenced. If the patient was not responding to the fluid challenge, ephedrine in titrated doses of 5–10 mg was given intravenously to the maximal dose of 25 mg. If still ineffective, continuous infusion of noradrenaline was commenced.
- SBP above the limit: if painful response present, an i.v. bolus of FNT in titrated doses was given to a maximal dose of 200 mcg to achieve an SBP decrease to the TAV. If ineffective, the re-assessment was performed: painful stimulation present—FNT i.v.; no painful stimulation—urapidil in titrated doses of 5 mg i.v. administered to the effect (to maintain SBP within TAV).
- If the SBP or MAP was above the limit associated with the clamping of the aorta, urapidil was given in titrated doses as above.
2.6. Postoperative Care
2.7. Sample Size Determination
2.8. Outcome Measures
2.9. Statistical Analysis
3. Results
4. Discussion
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Townsley, M.M.; Soh, I.Y.; Ramakrishna, H. Endovascular Versus Open Aortic Reconstruction: A Comparison of Outcomes. J. Cardiothorac. Vasc. Anesth. 2021, 35, 1875–1883. [Google Scholar] [CrossRef] [PubMed]
- Halvorsen, S.; Mehilli, J.; Cassese, S.; Hall, T.S.; Abdelhamid, M.; Barbato, E.; De Hert, S.; de Laval, I.; Geisler, T.; Hinterbuchner, L.; et al. 2022 ESC Guidelines on Cardiovascular Assessment and Management of Patients Undergoing Non-Cardiac Surgery. Eur. Heart J. 2022, 43, 3826–3924. [Google Scholar] [CrossRef]
- Authors/Task Force Members; Kristensen, S.D.; Knuuti, J.; Saraste, A.; Anker, S.; Bøtker, H.E.; De Hert, S.; Ford, I.; Gonzalez-Juanatey, J.R.; Gorenek, B.; et al. 2014 ESC/ESA Guidelines on Non-Cardiac Surgery: Cardiovascular Assessment and Management: The Joint Task Force on Non-Cardiac Surgery: Cardiovascular Assessment and Management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). Eur. Heart J. 2014, 35, 2383–2431. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, A.; Lirk, P. Multimodal Analgesia. Anesthesiol. Clin. 2022, 40, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Chou, R.; Gordon, D.B.; de Leon-Casasola, O.A.; Rosenberg, J.M.; Bickler, S.; Brennan, T.; Carter, T.; Cassidy, C.L.; Chittenden, E.H.; Degenhardt, E.; et al. Management of Postoperative Pain: A Clinical Practice Guideline from the American Pain Society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists’ Committee on Regional Anesthesia, Executive Committee, and Administrative Council. J. Pain 2016, 17, 131–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misiolek, H.; Zajaczkowska, R.; Daszkiewicz, A.; Woron, J.; Dobrogowski, J.; Wordliczek, J.; Owczuk, R. Postoperative Pain Management-2018 Consensus Statement of the Section of Regional Anaesthesia and Pain Therapy of the Polish Society of Anaesthesiology and Intensive Therapy, the Polish Society of Regional Anaesthesia and Pain Therapy, the Polish Association for the Study of Pain and the National Consultant in Anaesthesiology and Intensive Therapy. Anaesthesiol. Intensive 2018, 50, 173–199. [Google Scholar] [CrossRef]
- Sun, Y.; Li, T.; Wang, N.; Yun, Y.; Gan, T.J. Perioperative Systemic Lidocaine for Postoperative Analgesia and Recovery after Abdominal Surgery: A Meta-Analysis of Randomized Controlled Trials. Dis. Colon. Rectum. 2012, 55, 1183–1194. [Google Scholar] [CrossRef]
- Weibel, S.; Jokinen, J.; Pace, N.L.; Schnabel, A.; Hollmann, M.W.; Hahnenkamp, K.; Eberhart, L.H.J.; Poepping, D.M.; Afshari, A.; Kranke, P. Efficacy and Safety of Intravenous Lidocaine for Postoperative Analgesia and Recovery after Surgery: A Systematic Review with Trial Sequential Analysis. Br. J. Anaesth. 2016, 116, 770–783. [Google Scholar] [CrossRef] [Green Version]
- Lidocaine, Summary of Product Characteristics Lidocaine, Summary of Product Characteristics. Available online: https://www.medicines.org.uk/emc/product/4781/smpc#gref (accessed on 2 December 2022).
- Apfel, C.C.; Läärä, E.; Koivuranta, M.; Greim, C.-A.; Roewer, N. A Simplified Risk Score for Predicting Postoperative Nausea and Vomiting. Anesthesiology 1999, 91, 693. [Google Scholar] [CrossRef] [Green Version]
- Armitage, P.; Berry, G.; Matthews, J.N.S. Statistical Methods in Medical Research, 4th ed.; Blackwell Science: Malden, MA, USA, 2001; ISBN 978-0-632-05257-8. [Google Scholar]
- Koppert, W.; Weigand, M.; Neumann, F.; Sittl, R.; Schuettler, J.; Schmelz, M.; Hering, W. Perioperative Intravenous Lidocaine Has Preventive Effects on Postoperative Pain and Morphine Consumption After Major Abdominal Surgery. Anesth. Analg. 2004, 1050–1055. [Google Scholar] [CrossRef]
- Shaheen, P.E.; Walsh, D.; Lasheen, W.; Davis, M.P.; Lagman, R.L. Opioid Equianalgesic Tables: Are They All Equally Dangerous? J. Pain Symptom. Manag. 2009, 38, 409–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Small, C.; Laycock, H. Acute Postoperative Pain Management. Br. J. Surg. 2020, 107, e70–e80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauwick, S.; Kim, D.J.; Michelagnoli, G.; Mistraletti, G.; Feldman, L.; Fried, G.; Carli, F. Intraoperative Infusion of Lidocaine Reduces Postoperative Fentanyl Requirements in Patients Undergoing Laparoscopic Cholecystectomy. Can. J. Anesth. Can. Anesth. 2008, 55, 754–760. [Google Scholar] [CrossRef] [Green Version]
- Saadawy, I.M.; Kaki, A.M.; Abd El Latif, A.A.; Abd-Elmaksoud, A.M.; Tolba, O.M. Lidocaine vs. Magnesium: Effect on Analgesia after a Laparoscopic Cholecystectomy. Acta Anaesthesiol. Scand. 2010, 54, 549–556. [Google Scholar] [CrossRef]
- Marret, E.; Rolin, M.; Beaussier, M.; Bonnet, F. Meta-Analysis of Intravenous Lidocaine and Postoperative Recovery after Abdominal Surgery. Br. J. Surg. 2008, 95, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Kirksey, M.A.; Duong, S.; Wu, C.L. A Review of Opioid-Sparing Modalities in Perioperative Pain Management: Methods to Decrease Opioid Use Postoperatively. Anesth. Analg. 2017, 125, 1749–1760. [Google Scholar] [CrossRef]
- McGinigle, K.L.; Eldrup-Jorgensen, J.; McCall, R.; Freeman, N.L.; Pascarella, L.; Farber, M.A.; Marston, W.A.; Crowner, J.R. A Systematic Review of Enhanced Recovery after Surgery for Vascular Operations. J. Vasc. Surg. 2019, 70, 629–640.e1. [Google Scholar] [CrossRef]
- Veering, B.T. Are Epidurals Worthwhile in Vascular Surgery? Curr. Opin. Anaesthesiol. 2008, 21, 616–618. [Google Scholar] [CrossRef]
- Brinck, E.; Tiippana, E.; Heesen, M.; Bell, R.F.; Straube, S.; Moore, R.A.; Kontinen, V. Perioperative Intravenous Ketamine for Acute Postoperative Pain in Adults. Cochrane Database Syst. Rev. 2018, 12. [Google Scholar] [CrossRef]
- Murphy, J.D.; Paskaradevan, J.; Eisler, L.L.; Ouanes, J.-P.P.; Tomas, V.A.G.; Freck, E.A.; Wu, C.L. Analgesic Efficacy of Continuous Intravenous Magnesium Infusion as an Adjuvant to Morphine for Postoperative Analgesia: A Systematic Review and Meta-Analysis. Middle East J. Anaesthesiol. 2013, 22, 11–20. [Google Scholar]
- Bazin, P.; Padley, J.; Ho, M.; Stevens, J.; Ben-Menachem, E. The Effect of Intravenous Lidocaine Infusion on Bispectral Index during Major Abdominal Surgery. J. Clin. Monit. Comput. 2018, 32, 533–539. [Google Scholar] [CrossRef]
- Weinberg, L.; Jang, J.; Rachbuch, C.; Tan, C.; Hu, R.; McNicol, L. The Effects of Intravenous Lignocaine on Depth of Anaesthesia and Intraoperative Haemodynamics during Open Radical Prostatectomy. BMC Res. Notes 2017, 10, 248. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.P.; Jao, S.W.; Chen, K.M.; Wong, C.S.; Yeh, C.C.; Sheen, M.J.; Wu, C.T. Comparison of the Effects of Thoracic Epidural Analgesia and i.v. Infusion with Lidocaine on Cytokine Response, Postoperative Pain and Bowel Function in Patients Undergoing Colonic Surgery. Br. J. Anaesth. 2006, 97, 640–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Wei, X.; Mu, Y.; Li, Q.; Liu, J. A Review of the Mechanism of the Central Analgesic Effect of Lidocaine. Medicine 2020, 99, e19898. [Google Scholar] [CrossRef]
- Beaussier, M.; Delbos, A.; Maurice-Szamburski, A.; Ecoffey, C.; Mercadal, L. Perioperative Use of Intravenous Lidocaine. Drugs 2018, 78, 1229–1246. [Google Scholar] [CrossRef]
- Grover, S. Assessment Scales for Delirium: A Review. World J. Psychiatry 2012, 2, 58. [Google Scholar] [CrossRef]
- Foo, I.; Macfarlane, A.J.R.; Srivastava, D.; Bhaskar, A.; Barker, H.; Knaggs, R.; Eipe, N.; Smith, A.F. The Use of Intravenous Lidocaine for Postoperative Pain and Recovery: International Consensus Statement on Efficacy and Safety. Anaesthesia 2021, 76, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Afacan, M.A.; Colak, S.; Erdogan, M.O.; Kosargelir, M.; Ibrahim, A.; Tekesin, K.; Kandis, H. Lidocaine-Induced Delirium: A Case Report. Am. J. Emerg. Med. 2015, 33, e1–e603. [Google Scholar] [CrossRef] [PubMed]
Lidocaine (n = 32) | Placebo (n = 35) | p-Value | |
---|---|---|---|
Age (years) | 64.4 (95%CI 62.4–66.4) | 64.5 (95%CI 62.4–67) | 0.91 |
Male n (%) | 28/32 (88%) | 28/35 (80%) | 0.4 |
Body weight (kg) | 78.6 (95%CI 73.5–83.7) | 79.8 (95%CI 74.7–84.9) | 0.74 |
IBW (kg) | 69 (IQR 63.5–70.5) | 68 (IQR 61–72) | 0.56 |
ASA-PS CLASS N (%) | |||
II | 9 (28%) | 5 (14%) | 0.23 |
III | 23 (72%) | 29 (83%) | 0.28 |
IV | 0 | 1 (3%) | 0.99 |
VQI CRI (%) | 3.25 (IQR 2.1–4.15) | 3.6 (IQR 2.5–4.8) | 0.29 |
VQI RESP (%) | 8.25 (IQR 6.2–9.9) | 6.2 (IQR 6.2–10.8) | 0.96 |
Nicotinism n (%) | 20/32 (62%) | 20/35 (57%) | 0.8 |
Hypertension n (%) | 29/32 (91%) | 28/35 (80%) | 0.22 |
CAD n (%) | 10/32 (31%) | 18/35 (51%) | 0.09 |
Previous MI n (%) | 4/32 (12.5%) | 4/35 (11%) | 0.829 |
T2DM n (%) | 2/32 (6%) | 9/35 (26%) | 0.03 |
Previous IC n (%) | 1/32 (3%) | 6/35 (17%) | 0.1 |
COPD n (%) | 12/32 (38%) | 12/35 (34%) | 0.78 |
CKD 1–2 n (%) | 1/32 (3%) | 4/35 (11%) | 0.2 |
Lidocaine (n = 32) | Placebo (n = 35) | p-Value | |
---|---|---|---|
Midazolam premedication | 3.75 (IQR 3.75–5.625) | 3.75 (IQR 3.75–3.75) | 0.68 |
Intraoperative vital signs | |||
Heart rate (/min) | 65.5 (IQR 61.25–70.50) | 66.0 (IQR 61.0–77.0) | 0.64 |
Systolic blood pressure (mmHg) | 121.5 (IQR 115.25–128.25) | 121.5 (IQR 114.0–128.0) | 0.95 |
Mean artery pressure (mmHg) | 86.5 (IQR 81.75–90.25) | 86.0 (IQR 79.0–90.0) | 0.88 |
Response entropy (RE index) | 36.0 (IQR 33.0–41.0) | 38 (IQR 35.0–42.0) | 0.23 |
State entropy (SE index) | 35.5 (IQR 32.0–40.50) | 37.0 (IQR 34.0–41.0) | 0.29 |
Types of surgical procedures | |||
Abdominal aortic aneurysm resection n (%) | 14/32 (44%) | 22/35 (62.9%) | 0.12 |
Aorto-femoral bypass n (%) | 1/32 (3.1%) | 1/35 (2.9%) | 0.99 |
Aorto-biiliac bypass n (%) | 6/32 (18.8%) | 3/35 (8.6) | 0.29 |
Aorto-bifemoral bypass n (%) | 10/32 (31.3%) | 7/35 (20%) | 0.29 |
Ilio-femoral bypass n (%) | 1/32 (3.1%) | 2/35 (5.7%) | 0.99 |
Operating room times | |||
Procedure time (min) | 175 (IQR 150–202.5) | 175 (IQR 155–215) | 0.55 |
Aortic cross-clamping time (min) | 59.5 (IQR 44–90) | 56 (IQR 49–80) | 0.91 |
General anesthesia time (min) | 195.5 (IQR 174–231) | 207 (IQR 176–254) | 0.25 |
Lidocaine (n = 32) | Placebo (n = 35) | p-Value | |
---|---|---|---|
Somnolence n (%) | 12/32 (37%) | 16/35 (46%) | 0.62 |
Nausea and vomiting n (%) | 5/32 (16%) | 4/35 (11%) | 0.72 |
Hypotension n (%) | 2/32 (6%) | 7/35 (20%) | 0.15 |
Slurred speech n (%) | 2/32 (6%) | 4/35 (11%) | 0.67 |
Dizziness n (%) | 1/32 (3%) | 0/35 (0%) | 0.96 |
Lidocaine (n = 32) | Placebo (n = 35) | p-Value | |
---|---|---|---|
Myocardial infarction n (%) | 0/32 (0%) | 2/35 (5.7%) | 0.49 |
Cardiac arrest n (%) | 0/32 (0%) | 0/35(0%) | - |
All-cause mortality n (%) | 0/32 (0%) | 0/35 (0%) | - |
Mechanical ventilation n (%) | 1/32 (3.1%) | 1/35 (2.9%) | 0.99 |
Pneumonia n (%) | 1/32 (3.1%) | 2/35 (5.7%) | 0.99 |
Transfer to ICU n (%) | 1/32 (3.1%) | 1/35 (2.9%) | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajniak, D.; Mendrala, K.; Cyzowski, T.; Polak, M.; Gierek, D.; Krzych, Ł.J. Efficacy of Lidocaine Infusion in High-Risk Vascular Surgery—A Randomized, Double-Blind, Placebo-Controlled Single-Center Clinical Trial. J. Clin. Med. 2023, 12, 2312. https://doi.org/10.3390/jcm12062312
Gajniak D, Mendrala K, Cyzowski T, Polak M, Gierek D, Krzych ŁJ. Efficacy of Lidocaine Infusion in High-Risk Vascular Surgery—A Randomized, Double-Blind, Placebo-Controlled Single-Center Clinical Trial. Journal of Clinical Medicine. 2023; 12(6):2312. https://doi.org/10.3390/jcm12062312
Chicago/Turabian StyleGajniak, Dariusz, Konrad Mendrala, Tomasz Cyzowski, Michał Polak, Danuta Gierek, and Łukasz J. Krzych. 2023. "Efficacy of Lidocaine Infusion in High-Risk Vascular Surgery—A Randomized, Double-Blind, Placebo-Controlled Single-Center Clinical Trial" Journal of Clinical Medicine 12, no. 6: 2312. https://doi.org/10.3390/jcm12062312
APA StyleGajniak, D., Mendrala, K., Cyzowski, T., Polak, M., Gierek, D., & Krzych, Ł. J. (2023). Efficacy of Lidocaine Infusion in High-Risk Vascular Surgery—A Randomized, Double-Blind, Placebo-Controlled Single-Center Clinical Trial. Journal of Clinical Medicine, 12(6), 2312. https://doi.org/10.3390/jcm12062312