Neuroworsening in the Emergency Department Is a Predictor of Traumatic Brain Injury Intervention and Outcome: A TRACK-TBI Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Overview
2.2. Demographic and Clinical Variables
2.3. Neuroimaging Variables and Coding
2.4. Neurosurgical Intervention and In-Hospital Mortality
2.5. 3- and 6-Month Outcomes
2.6. Statistical Analysis
3. Results
3.1. Demographic and Presentation Characteristics
3.2. Radiographic Intracranial Injury Characteristics
3.3. Neurosurgical Intervention and In-Hospital Mortality
3.4. 3- and 6-Month Outcomes
4. Discussion
4.1. Neuroworsening Is an Early Indicator of Brain Injury Severity
4.2. Neuroworsening Is a Predictor of Neurosurgical Interventions, Mortality, and Outcome
4.3. Implications for ED and Acute Care Clinicians
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inpatient Stays and Emergency Department Visits Involving Traumatic Brain Injury, 2017 #255. Available online: https://www.hcup-us.ahrq.gov/reports/statbriefs/sb255-Traumatic-Brain-Injury-Hospitalizations-ED-Visits-2017.jsp (accessed on 11 October 2022).
- Taylor, C.A.; Bell, J.M.; Breiding, M.J.; Xu, L. Traumatic Brain Injury-Related Emergency Department Visits, Hospitalizations, and Deaths—United States, 2007 and 2013. MMWR Surveill. Summ. 2017, 66, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Moppett, I.K. Traumatic Brain Injury: Assessment, Resuscitation and Early Management. Br. J. Anaesth. 2007, 99, 18–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.J.; Gean, A.D. Imaging for the Diagnosis and Management of Traumatic Brain Injury. Neurotherapeutics 2011, 8, 39–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carney, N.; Totten, A.M.; O’Reilly, C.; Ullman, J.S.; Hawryluk, G.W.J.; Bell, M.J.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery 2017, 80, 6–15. [Google Scholar] [CrossRef]
- McCrea, M.A.; Giacino, J.T.; Barber, J.; Temkin, N.R.; Nelson, L.D.; Levin, H.S.; Dikmen, S.; Stein, M.; Bodien, Y.G.; Boase, K.; et al. Functional Outcomes Over the First Year After Moderate to Severe Traumatic Brain Injury in the Prospective, Longitudinal TRACK-TBI Study. JAMA Neurol. 2021, 78, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Madhok, D.Y.; Rodriguez, R.M.; Barber, J.; Temkin, N.R.; Markowitz, A.J.; Kreitzer, N.; Manley, G.T. TRACK-TBI Investigators Outcomes in Patients with Mild Traumatic Brain Injury Without Acute Intracranial Traumatic Injury. JAMA Netw. Open 2022, 5, e2223245. [Google Scholar] [CrossRef]
- Tardif, P.-A.; Moore, L.; Boutin, A.; Dufresne, P.; Omar, M.; Bourgeois, G.; Bonaventure, P.L.; Kuimi, B.L.B.; Turgeon, A.F. Hospital Length of Stay Following Admission for Traumatic Brain Injury in a Canadian Integrated Trauma System: A Retrospective Multicenter Cohort Study. Injury 2017, 48, 94–100. [Google Scholar] [CrossRef]
- Gaudette, É.; Seabury, S.A.; Temkin, N.; Barber, J.; DiGiorgio, A.M.; Markowitz, A.J.; Manley, G.T. TRACK-TBI Investigators Employment and Economic Outcomes of Participants with Mild Traumatic Brain Injury in the TRACK-TBI Study. JAMA Netw. Open 2022, 5, e2219444. [Google Scholar] [CrossRef]
- Miller, G.F.; DePadilla, L.; Xu, L. Costs of Nonfatal Traumatic Brain Injury in the United States, 2016. Med. Care 2021, 59, 451–455. [Google Scholar] [CrossRef]
- Morris, G.F.; Juul, N.; Marshall, S.B.; Benedict, B.; Marshall, L.F. The Executive Committee of the International Selfotel Trial Neurological Deterioration as a Potential Alternative Endpoint in Human Clinical Trials of Experimental Pharmacological Agents for Treatment of Severe Traumatic Brain Injuries. Neurosurgery 1998, 43, 1369. [Google Scholar]
- El-Swaify, S.T.; Kamel, M.; Ali, S.H.; Bahaa, B.; Refaat, M.A.; Amir, A.; Abdelrazek, A.; Beshay, P.W.; Basha, A.K.M.M. Initial Neurocritical Care of Severe Traumatic Brain Injury: New Paradigms and Old Challenges. Surg. Neurol. Int. 2022, 13, 431. [Google Scholar] [CrossRef]
- Compagnone, C.; d’Avella, D.; Servadei, F.; Angileri, F.F.; Brambilla, G.; Conti, C.; Cristofori, L.; Delfini, R.; Denaro, L.; Ducati, A.; et al. Patients with Moderate Head Injury: A Prospective Multicenter Study of 315 Patients. Neurosurgery 2009, 64, 690–696; discussion 696–697. [Google Scholar] [CrossRef]
- Dalle Ore, C.L.; Rennert, R.C.; Schupper, A.J.; Gabel, B.C.; Gonda, D.; Peterson, B.; Marshall, L.F.; Levy, M.; Meltzer, H.S. The Identification of a Subgroup of Children with Traumatic Subarachnoid Hemorrhage at Low Risk of Neuroworsening. J. Neurosurg. Pediatr. 2018, 22, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Tollefsen, M.H.; Vik, A.; Skandsen, T.; Sandrød, O.; Deane, S.F.; Rao, V.; Moen, K.G. Patients with Moderate and Severe Traumatic Brain Injury: Impact of Preinjury Platelet Inhibitor or Warfarin Treatment. World Neurosurg. 2018, 114, e209–e217. [Google Scholar] [CrossRef] [PubMed]
- Murray, G.D.; Butcher, I.; McHugh, G.S.; Lu, J.; Mushkudiani, N.A.; Maas, A.I.R.; Marmarou, A.; Steyerberg, E.W. Multivariable Prognostic Analysis in Traumatic Brain Injury: Results from the IMPACT Study. J. Neurotrauma 2007, 24, 329–337. [Google Scholar] [CrossRef]
- Kesmarky, K.; Delhumeau, C.; Zenobi, M.; Walder, B. Comparison of Two Predictive Models for Short-Term Mortality in Patients after Severe Traumatic Brain Injury. J. Neurotrauma 2017, 34, 2235–2242. [Google Scholar] [CrossRef]
- Hawryluk, G.W.J.; Aguilera, S.; Buki, A.; Bulger, E.; Citerio, G.; Cooper, D.J.; Arrastia, R.D.; Diringer, M.; Figaji, A.; Gao, G.; et al. A Management Algorithm for Patients with Intracranial Pressure Monitoring: The Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med. 2019, 45, 1783–1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, J.K.; Vassar, M.J.; Lingsma, H.F.; Cooper, S.R.; Okonkwo, D.O.; Valadka, A.B.; Gordon, W.A.; Maas, A.I.R.; Mukherjee, P.; Yuh, E.L.; et al. Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot: Multicenter Implementation of the Common Data Elements for Traumatic Brain Injury. J. Neurotrauma 2013, 30, 1831–1844. [Google Scholar] [CrossRef] [Green Version]
- WMA Declaration of Helsinki—Ethical Principles for Medical Research Involving Human Subjects. Available online: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/ (accessed on 19 January 2023).
- Maas, A.I.; Harrison-Felix, C.L.; Menon, D.; Adelson, P.D.; Balkin, T.; Bullock, R.; Engel, D.C.; Gordon, W.; Orman, J.L.; Lew, H.L.; et al. Common Data Elements for Traumatic Brain Injury: Recommendations from the Interagency Working Group on Demographics and Clinical Assessment. Arch. Phys. Med. Rehabil. 2010, 91, 1641–1649. [Google Scholar] [CrossRef]
- Teasdale, G.; Jennett, B. Assessment of Coma and Impaired Consciousness. A Practical Scale. Lancet 1974, 2, 81–84. [Google Scholar] [CrossRef]
- Teasdale, G.; Jennett, B. Assessment and Prognosis of Coma after Head Injury. Acta Neurochir. 1976, 34, 45–55. [Google Scholar] [CrossRef]
- Rowley, G.; Fielding, K. Reliability and Accuracy of the Glasgow Coma Scale with Experienced and Inexperienced Users. Lancet 1991, 337, 535–538. [Google Scholar] [CrossRef] [PubMed]
- Duhaime, A.-C.; Gean, A.D.; Haacke, E.M.; Hicks, R.; Wintermark, M.; Mukherjee, P.; Brody, D.; Latour, L.; Riedy, G. Common Data Elements Neuroimaging Working Group Members, Pediatric Working Group Members Common Data Elements in Radiologic Imaging of Traumatic Brain Injury. Arch. Phys. Med. Rehabil. 2010, 91, 1661–1666. [Google Scholar] [CrossRef] [PubMed]
- Maas, A.I.R.; Hukkelhoven, C.W.P.M.; Marshall, L.F.; Steyerberg, E.W. Prediction of Outcome in Traumatic Brain Injury with Computed Tomographic Characteristics: A Comparison between the Computed Tomographic Classification and Combinations of Computed Tomographic Predictors. Neurosurgery 2005, 57, 1173–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, J.T.; Pettigrew, L.E.; Teasdale, G.M. Structured Interviews for the Glasgow Outcome Scale and the Extended Glasgow Outcome Scale: Guidelines for Their Use. J. Neurotrauma 1998, 15, 573–585. [Google Scholar] [CrossRef]
- Zafonte, R.; Friedewald, W.T.; Lee, S.M.; Levin, B.; Diaz-Arrastia, R.; Ansel, B.; Eisenberg, H.; Timmons, S.D.; Temkin, N.; Novack, T.; et al. The Citicoline Brain Injury Treatment (COBRIT) Trial: Design and Methods. J. Neurotrauma 2009, 26, 2207–2216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, D.W.; Yeatts, S.D.; Silbergleit, R.; Palesch, Y.Y.; Hertzberg, V.S.; Frankel, M.; Goldstein, F.C.; Caveney, A.F.; Howlett-Smith, H.; Bengelink, E.M.; et al. Very Early Administration of Progesterone for Acute Traumatic Brain Injury. N. Engl. J. Med. 2014, 371, 2457–2466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkins, T.E.; Beers, S.R.; Borrasso, A.J.; Brooks, J.; Mesley, M.; Puffer, R.; Chang, Y.-F.; Okonkwo, D.O.; Puccio, A.M. Favorable Functional Recovery in Severe Traumatic Brain Injury Survivors beyond Six Months. J. Neurotrauma 2019, 36, 3158–3163. [Google Scholar] [CrossRef] [PubMed]
- Vahedi, K.; Hofmeijer, J.; Juettler, E.; Vicaut, E.; George, B.; Algra, A.; Amelink, G.J.; Schmiedeck, P.; Schwab, S.; Rothwell, P.M.; et al. Early Decompressive Surgery in Malignant Infarction of the Middle Cerebral Artery: A Pooled Analysis of Three Randomised Controlled Trials. Lancet Neurol. 2007, 6, 215–222. [Google Scholar] [CrossRef]
- Jüttler, E.; Unterberg, A.; Woitzik, J.; Bösel, J.; Amiri, H.; Sakowitz, O.W.; Gondan, M.; Schiller, P.; Limprecht, R.; Luntz, S.; et al. Hemicraniectomy in Older Patients with Extensive Middle-Cerebral-Artery Stroke. N. Engl. J. Med. 2014, 370, 1091–1100. [Google Scholar] [CrossRef]
- Hutchinson, P.J.; Kolias, A.G.; Timofeev, I.S.; Corteen, E.A.; Czosnyka, M.; Timothy, J.; Anderson, I.; Bulters, D.O.; Belli, A.; Eynon, C.A.; et al. Trial of Decompressive Craniectomy for Traumatic Intracranial Hypertension. N. Engl. J. Med. 2016, 375, 1119–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A Simulation Study of the Number of Events per Variable in Logistic Regression Analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Harrell, F.E., Jr.; Lee, K.L.; Califf, R.M.; Pryor, D.B.; Rosati, R.A. Regression Modelling Strategies for Improved Prognostic Prediction. Stat. Med. 1984, 3, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Deng, Y.-H.; Lee, T.-C.; Chen, W.-F. Rotterdam Computed Tomography Score as a Prognosticator in Head-Injured Patients Undergoing Decompressive Craniectomy. Neurosurgery 2012, 71, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Charry, J.D.; Falla, J.D.; Ochoa, J.D.; Pinzón, M.A.; Tejada, J.H.; Henriquez, M.J.; Solano, J.P.; Calvache, C. External Validation of the Rotterdam Computed Tomography Score in the Prediction of Mortality in Severe Traumatic Brain Injury. J. Neurosci. Rural Pract. 2017, 8, S23–S26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Choi, H.J.; Kim, B.C.; Ha, M.; Kim, K.; Lee, J.H. KNTDB Investigators Prognosis Prediction in Severe Traumatic Brain Injury According to Initial Time of Brain Computed Tomography Scan Using the Rotterdam Scoring System. Korean J. Neurotrauma 2022, 18, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.K.; Satris, G.G.; Dalle Ore, C.L.; Huie, J.R.; Deng, H.; Winkler, E.A.; Lee, Y.M.; Vassar, M.J.; Taylor, S.R.; Schnyer, D.M.; et al. Polytrauma Is Associated with Increased Three- and Six-Month Disability after Traumatic Brain Injury: A TRACK-TBI Pilot Study. Neurotrauma Rep. 2020, 1, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Dams-O’Connor, K.; Gibbons, L.E.; Landau, A.; Larson, E.B.; Crane, P.K. Health Problems Precede Traumatic Brain Injury in Older Adults. J. Am. Geriatr. Soc. 2016, 64, 844–848. [Google Scholar] [CrossRef] [Green Version]
- Pearson, W.S.; Sugerman, D.E.; McGuire, L.C.; Coronado, V.G. Emergency Department Visits for Traumatic Brain Injury in Older Adults in the United States: 2006-08. West. J. Emerg. Med. 2012, 13, 289–293. [Google Scholar] [CrossRef]
- Cifu, D.X.; Kreutzer, J.S.; Marwitz, J.H.; Rosenthal, M.; Englander, J.; High, W. Functional Outcomes of Older Adults with Traumatic Brain Injury: A Prospective, Multicenter Analysis. Arch. Phys. Med. Rehabil. 1996, 77, 883–888. [Google Scholar] [CrossRef]
- Stiell, I.G.; Wells, G.A.; Vandemheen, K.; Clement, C.; Lesiuk, H.; Laupacis, A.; McKnight, R.D.; Verbeek, R.; Brison, R.; Cass, D.; et al. The Canadian CT Head Rule for Patients with Minor Head Injury. Lancet 2001, 357, 1391–1396. [Google Scholar] [CrossRef]
- Staples, J.A.; Wang, J.; Mills, B.; Temkin, N.; Zaros, M.C.; Jurkovich, G.J.; Rivara, F.P. The Application of the CRASH-CT Prognostic Model for Older Adults with Traumatic Brain Injury: A Population-Based Observational Cohort Study. J. Head Trauma Rehabil. 2016, 31, E8–E14. [Google Scholar] [CrossRef] [PubMed]
- van der Vlegel, M.; Mikolić, A.; Lee Hee, Q.; Kaplan, Z.L.R.; Retel Helmrich, I.R.A.; van Veen, E.; Andelic, N.; Steinbuechel, N.V.; Plass, A.M.; Zeldovich, M.; et al. Health Care Utilization and Outcomes in Older Adults after Traumatic Brain Injury: A CENTER-TBI Study. Injury 2022, 53, 2774–2782. [Google Scholar] [CrossRef] [PubMed]
- Mata-Mbemba, D.; Mugikura, S.; Nakagawa, A.; Murata, T.; Ishii, K.; Li, L.; Takase, K.; Kushimoto, S.; Takahashi, S. Early CT Findings to Predict Early Death in Patients with Traumatic Brain Injury: Marshall and Rotterdam CT Scoring Systems Compared in the Major Academic Tertiary Care Hospital in Northeastern Japan. Acad. Radiol. 2014, 21, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Yuh, E.L.; Jain, S.; Sun, X.; Pisica, D.; Harris, M.H.; Taylor, S.R.; Markowitz, A.J.; Mukherjee, P.; Verheyden, J.; Giacino, J.T.; et al. Pathological Computed Tomography Features Associated with Adverse Outcomes After Mild Traumatic Brain Injury: A TRACK-TBI Study With External Validation in CENTER-TBI. JAMA Neurol. 2021, 78, 1137–1148. [Google Scholar] [CrossRef] [PubMed]
- Elkbuli, A.; Shaikh, S.; McKenney, K.; Shanahan, H.; McKenney, M.; McKenney, K. Utility of the Marshall & Rotterdam Classification Scores in Predicting Outcomes in Trauma Patients. J. Surg. Res. 2021, 264, 194–198. [Google Scholar]
- Asim, M.; El-Menyar, A.; Parchani, A.; Nabir, S.; Ahmed, M.N.; Ahmed, Z.; Ramzee, A.F.; Al-Thani, A.; Al-Abdulmalek, A.; Al-Thani, H. Rotterdam and Marshall Scores for Prediction of in-Hospital Mortality in Patients with Traumatic Brain Injury: An Observational Study. Brain Inj. 2021, 35, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Bullock, M.R.; Chesnut, R.; Ghajar, J.; Gordon, D.; Hartl, R.; Newell, D.W.; Servadei, F.; Walters, B.C.; Wilberger, J.E. Surgical Management of Traumatic Brain Injury Author Group Surgical Management of Acute Epidural Hematomas. Neurosurgery 2006, 58, S7–S15; discussion Si–iv. [Google Scholar]
- Gardner, R.C.; Dams-O’Connor, K.; Morrissey, M.R.; Manley, G.T. Geriatric Traumatic Brain Injury: Epidemiology, Outcomes, Knowledge Gaps, and Future Directions. J. Neurotrauma 2018, 35, 889–906. [Google Scholar] [CrossRef]
- Styrke, J.; Stålnacke, B.-M.; Sojka, P.; Björnstig, U. Traumatic Brain Injuries in a Well-Defined Population: Epidemiological Aspects and Severity. J. Neurotrauma 2007, 24, 1425–1436. [Google Scholar] [CrossRef]
- Erten-Lyons, D.; Dodge, H.H.; Woltjer, R.; Silbert, L.C.; Howieson, D.B.; Kramer, P.; Kaye, J.A. Neuropathologic Basis of Age-Associated Brain Atrophy. JAMA Neurol. 2013, 70, 616–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baggiani, M.; Guglielmi, A.; Citerio, G. Acute Traumatic Brain Injury in Frail Patients: The next Pandemic. Curr. Opin. Crit. Care 2022, 28, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Newcombe, V.F.J.; Chow, A. The Features of the Typical Traumatic Brain Injury Patient in the ICU Are Changing: What Will This Mean for the Intensivist? Curr. Opin. Crit. Care 2021, 27, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Scotti, P.; Séguin, C.; Lo, B.W.Y.; de Guise, E.; Troquet, J.-M.; Marcoux, J. Antithrombotic Agents and Traumatic Brain Injury in the Elderly Population: Hemorrhage Patterns and Outcomes. J. Neurosurg. 2019, 133, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, F.; Güting, H.; Gravesteijn, B.; Monteiro, M.; Glocker, B.; Kornaropoulos, E.N.; Kamnistas, K.; Robertson, C.S.; Levin, H.; Whitehouse, D.P.; et al. Impact of Antithrombotic Agents on Radiological Lesion Progression in Acute Traumatic Brain Injury: A CENTER-TBI Propensity-Matched Cohort Analysis. J. Neurotrauma 2020, 37, 2069–2080. [Google Scholar] [CrossRef] [PubMed]
- Savioli, G.; Ceresa, I.F.; Ciceri, L.; Sciutti, F.; Belliato, M.; Iotti, G.A.; Luzzi, S.; Del Maestro, M.; Mezzini, G.; Lafe, E.; et al. Mild Head Trauma in Elderly Patients: Experience of an Emergency Department. Heliyon 2020, 6, e04226. [Google Scholar] [CrossRef] [PubMed]
- Chesnut, R.M.; Temkin, N.; Videtta, W.; Petroni, G.; Lujan, S.; Pridgeon, J.; Dikmen, S.; Chaddock, K.; Barber, J.; Machamer, J.; et al. Consensus-Based Management Protocol (CREVICE Protocol) for the Treatment of Severe Traumatic Brain Injury Based on Imaging and Clinical Examination for Use When Intracranial Pressure Monitoring Is Not Employed. J. Neurotrauma 2020, 37, 1291–1299. [Google Scholar] [CrossRef]
- Marincowitz, C.; Lecky, F.E.; Townend, W.; Borakati, A.; Fabbri, A.; Sheldon, T.A. The Risk of Deterioration in GCS13-15 Patients with Traumatic Brain Injury Identified by Computed Tomography Imaging: A Systematic Review and Meta-Analysis. J. Neurotrauma 2018, 35, 703–718. [Google Scholar] [CrossRef]
- Iaccarino, C.; Schiavi, P.; Picetti, E.; Goldoni, M.; Cerasti, D.; Caspani, M.; Servadei, F. Patients with Brain Contusions: Predictors of Outcome and Relationship between Radiological and Clinical Evolution. J. Neurosurg. 2014, 120, 908–918. [Google Scholar] [CrossRef] [Green Version]
- Guatta, R.; Delaidelli, A.; May, A.T.; Jannelli, G.; Moiraghi, A.; Schaller, K.; Bartoli, A. Isolated Subarachnoid Hemorrhage in Mild Traumatic Brain Injury: Is a Repeat CT Scan Necessary? A Single-Institution Retrospective Study. Acta Neurochir. 2021, 163, 3209–3216. [Google Scholar] [CrossRef]
- Trent, T.; Vashisht, A.; Novakovic, S.; Kanter, G.; Nairon, E.; Lark, A.; Tucker, A.; Reddy, V.; McCreary, M.; Stutzman, S.E.; et al. Pupillary Light Reflex Measured with Quantitative Pupillometry Has Low Sensitivity and High Specificity for Predicting Neuroworsening after Traumatic Brain Injury. J. Am. Assoc. Nurse Pract. 2023, 35, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Chojak, R.; Koźba-Gosztyła, M.; Pawłowski, M.; Czapiga, B. Deterioration After Mild Traumatic Brain Injury: A Single-Center Experience with Cost Analysis. Front. Neurol. 2021, 12, 588429. [Google Scholar] [CrossRef] [PubMed]
- Posti, J.P.; Raj, R.; Luoto, T.M. How Do We Identify the Crashing Traumatic Brain Injury Patient—the Neurosurgeon’s View. Curr. Opin. Crit. Care 2021, 27, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Orlando, A.; Levy, A.S.; Rubin, B.A.; Tanner, A.; Carrick, M.M.; Lieser, M.; Hamilton, D.; Mains, C.W.; Bar-Or, D. Isolated Subdural Hematomas in Mild Traumatic Brain Injury. Part 1: The Association between Radiographic Characteristics and Neurosurgical Intervention. J. Neurosurg. 2018, 130, 1616–1625. [Google Scholar] [CrossRef] [Green Version]
- Orlando, A.; Levy, A.S.; Rubin, B.A.; Tanner, A.; Carrick, M.M.; Lieser, M.; Hamilton, D.; Mains, C.W.; Bar-Or, D. Isolated Subdural Hematomas in Mild Traumatic Brain Injury. Part 2: A Preliminary Clinical Decision Support Tool for Neurosurgical Intervention. J. Neurosurg. 2018, 130, 1626–1633. [Google Scholar] [CrossRef] [Green Version]
- Healey, C.; Osler, T.M.; Rogers, F.B.; Healey, M.A.; Glance, L.G.; Kilgo, P.D.; Shackford, S.R.; Meredith, J.W. Improving the Glasgow Coma Scale Score: Motor Score Alone Is a Better Predictor. J. Trauma 2003, 54, 671–678; discussion 678–680. [Google Scholar] [CrossRef]
- Marmarou, A.; Lu, J.; Butcher, I.; McHugh, G.S.; Murray, G.D.; Steyerberg, E.W.; Mushkudiani, N.A.; Choi, S.; Maas, A.I.R. Prognostic Value of the Glasgow Coma Scale and Pupil Reactivity in Traumatic Brain Injury Assessed Pre-Hospital and on Enrollment: An IMPACT Analysis. J. Neurotrauma 2007, 24, 270–280. [Google Scholar] [CrossRef]
- Steyerberg, E.W.; Mushkudiani, N.; Perel, P.; Butcher, I.; Lu, J.; McHugh, G.S.; Murray, G.D.; Marmarou, A.; Roberts, I.; Habbema, J.D.F.; et al. Predicting Outcome after Traumatic Brain Injury: Development and International Validation of Prognostic Scores Based on Admission Characteristics. PLoS Med. 2008, 5, e165. [Google Scholar] [CrossRef] [Green Version]
- Maserati, M.; Fetzick, A.; Puccio, A. The Glasgow Coma Scale (GCS): Deciphering the Motor Component of the GCS. J. Neurosci. Nurs. 2016, 48, 311–314. [Google Scholar] [CrossRef]
- Altman, D.G.; Royston, P. The Cost of Dichotomising Continuous Variables. BMJ 2006, 332, 1080. [Google Scholar] [CrossRef] [Green Version]
- Talari, K.; Goyal, M. Retrospective Studies—Utility and Caveats. J. R. Coll. Physicians Edinb. 2020, 50, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Hunt, I.E.; Wittenberg, B.E.; Kennamer, B.; Crutcher, C.L.; Tender, G.C.; Hunt, J.P.; DiGiorgio, A.M. A Retrospective Review of the Timing of Glasgow Coma Scale Documentation in a Trauma Database: Implications for Patient Care, Research, and Performance Metrics. World Neurosurg. 2022, 163, e559–e564. [Google Scholar] [CrossRef] [PubMed]
Variable | Overall (N = 481) | Early Neuroworsening: Yes (N = 16) | Early Neuroworsening: No (N = 465) | Sig. (p) |
---|---|---|---|---|
Age (Years) | ||||
Mean (SD) | 44.5 (18.0) | 53.4 (20.5) | 44.2 (17.9) | 0.044 |
≥65 Years | 68 (14.1%) | 5 (31.3%) | 63 (13.5%) | 0.046 |
Male | 344 (71.5%) | 12 (75.0%) | 332 (71.4%) | 0.754 |
Race | 0.305 | |||
Caucasian/White | 384 (79.8%) | 15 (93.8%) | 369 (79.4%) | |
African-American/African | 44 (9.1%) | 1 (6.3%) | 43 (9.2%) | |
Other Races | 53 (11.0%) | 0 (0.0%) | 53 (11.0%) | |
Education (Years) | 0.313 | |||
Mean (SD) | 13.8 (3.0) | 14.7 (3.8) | 13.8 (2.9) | |
Current Antiplatelet and/or Anticoagulant Medication | 69 (14.3%) | 4 (25.0%) | 65 (14.0%) | 0.216 |
ED Admission GCS Score | ||||
Mean (SD) | 14.0 (2.6) | 9.9 (3.3) | 14.1 (2.5) | <0.001 |
3–8 | 26 (5.4%) | 6 (37.5%) | 20 (4.3%) | <0.001 |
9–12 | 17 (3.5%) | 5 (31.3%) | 12 (2.6%) | |
13–15 | 438 (91.1%) | 5 (31.3%) | 433 (93.1%) | |
ED Disposition GCS Score | ||||
Mean (SD) | 14.0 (2.9) | 3.3 (1.0) | 14.4 (2.1) | <0.001 |
3–8 | 34 (7.1%) | 16 (100.0%) | 18 (3.9%) | |
9–12 | 7 (1.5%) | 0 (0.0%) | 7 (1.5%) | |
13–15 | 440 (91.5%) | 0 (0.0%) | 440 (94.6%) | |
Mechanism of Injury | 0.863 | |||
Motor Vehicle Accident | 78 (16.3%) | 2 (12.5%) | 76 (16.4%) | |
Motorcycle Crash | 26 (5.4%) | 1 (6.3%) | 25 (5.4%) | |
Pedestrian Struck by Vehicle | 56 (11.7%) | 2 (12.5%) | 54 (11.6%) | |
Fall From Moving Object | 60 (12.5%) | 2 (12.5%) | 58 (12.5%) | |
Fall From Standing/Stationary Object | 161 (33.5%) | 8 (50.0%) | 153 (33.0%) | |
Assault | 82 (17.1%) | 1 (6.3%) | 81 (17.5%) | |
Other Mechanism | 18 (3.5%) | 0 (0.0%) | 3 (0.6%) | |
Loss of Consciousness | 0.600 | |||
No | 116 (24.1%) | 2 (12.5%) | 114 (24.5%) | |
Yes | 331 (68.8%) | 12 (75.0%) | 319 (68.6%) | |
Unknown | 34 (7.1%) | 2 (12.5%) | 32 (6.9%) | |
Post-Traumatic Amnesia | <0.001 | |||
No | 155 (32.2%) | 0 (0.0%) | 155 (33.3%) | |
Yes | 259 (53.8%) | 4 (26.7%) | 255 (54.8%) | |
Unknown | 67 (14.0%) | 12 (75.0%) | 55 (11.8%) | |
ED Admission Pupillary Reactivity | 0.999 | |||
Both Reactive | 405 (84.2%) | 14 (87.5%) | 391 (84.0%) | |
One Non-Reactive | 6 (1.2%) | 0 (0.0%) | 6 (1.3%) | |
Both Non-Reactive | 7 (1.5%) | 0 (0.0%) | 7 (1.5%) | |
Unknown/Not Done | 63 (13.1%) | 2 (12.5%) | 61 (13.1%) | |
ED Disposition Pupillary Reactivity | 0.338 | |||
Both Reactive | 252 (52.3%) | 11 (68.8%) | 241 (51.8%) | |
One Non-Reactive | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | |
Both Non-Reactive | 6 (1.2%) | 0 (0.0%) | 5 (1.1%) | |
Unknown/Not Done | 224 (46.5%) | 5 (31.3%) | 219 (47.0%) | |
Polytrauma | 76 (15.8%) | 2 (12.5%) | 74 (15.9%) | 0.713 |
ED Urine Drug Screen Positive | 31 (6.4%) | 2 (12.5%) | 29 (6.2%) | 0.316 |
ED Blood Alcohol Screen Positive | N = 229 | N = 12 | N = 217 | 0.516 |
No | 132 (57.6%) | 8 (66.7%) | 124 (57.1%) | |
Yes | 97 (42.4%) | 4 (33.3%) | 93 (42.9%) | |
ED Hyperosmolar Therapy | 8 (1.7%) | 2 (12.5%) | 6 (1.3%) | <0.001 |
ED Disposition | <0.001 | |||
Home | 149 (31.0%) | 0 (0.0%) | 149 (32.0%) | |
Ward | 194 (40.3%) | 0 (0.0%) | 194 (41.7%) | |
Intensive Care Unit | 138 (28.7%) | 16 (100.0%) | 122 (26.2%) |
Variable | Overall (N = 481) | Early Neuroworsening: Yes (N = 16) | Early Neuroworsening: No (N = 465) | Sig. (p) |
---|---|---|---|---|
CT Intracranial Injury Present | 227 (47.2%) | 16 (100%) | 211 (45.4%) | <0.001 |
Epidural Hematoma | 19 (4.0%) | 0 (0.0%) | 19 (4.1%) | 0.409 |
Subdural Hematoma | 115 (23.9%) | 12 (75.0%) | 103 (22.2%) | <0.001 |
Subarachnoid Hemorrhage | 158 (32.8%) | 13 (81.3%) | 145 (31.2%) | <0.001 |
Contusion | 106 (22.0%) | 11 (68.8%) | 95 (20.4%) | <0.001 |
Intraventricular Hemorrhage | 13 (2.7%) | 3 (18.8%) | 10 (2.2%) | <0.001 |
Diffuse Axonal Injury | 34 (7.1%) | 2 (12.5%) | 32 (6.9%) | 0.389 |
Midline Shift | 20 (4.2%) | 8 (50.0%) | 12 (2.6%) | <0.001 |
Cisternal Compression | 35 (7.3%) | 9 (56.3%) | 26 (5.6%) | <0.001 |
Cerebral Edema | 68 (14.1%) | 11 (68.8%) | 57 (12.3%) | <0.001 |
Rotterdam CT Score | ||||
Mean (SD) | 2.4 (0.7) | 3.9 (1.3) | 2.3 (0.6) | <0.001 |
=1 | 5 (1.0%) | 0 (0.0%) | 5 (1.1%) | <0.001 |
=2 | 333 (69.2%) | 2 (12.5%) | 331 (71.2%) | |
=3 | 115 (23.9%) | 5 (31.3%) | 110 (23.7%) | |
=4 | 15 (3.1%) | 3 (18.8%) | 12 (2.6%) | |
=5 | 10 (2.1%) | 4 (25.0%) | 6 (1.3%) | |
=6 | 3 (0.6%) | 2 (12.5%) | 1 (0.2%) |
Cranial Surgery | ||
---|---|---|
Predictor | mOR [95% CI] | Sig. (p) |
Early Neuroworsening | 4.65 [1.02–21.19] | 0.047 |
Age ≥ 65 Years | 0.96 [0.17–5.40] | 0.965 |
ED Admission GCS | 0.76 [0.68–0.86] | <0.001 |
Rotterdam CT Score | 4.12 [2.13–7.97] | <0.001 |
ICP Monitoring | ||
Predictor | mOR [95% CI] | Sig. (p) |
Early Neuroworsening | 15.48 [2.92–81.85] | 0.001 |
Age ≥ 65 Years | 1.05 [0.17–6.37] | 0.959 |
ED Admission GCS | 0.65 [0.55–0.76] | <0.001 |
Rotterdam CT Score | 1.93 [1.07–3.48] | 0.03 |
3-Month Unfavorable Outcome | ||
Predictor | mOR [95% CI] | Sig. (p) |
Early Neuroworsening | 5.36 [1.13–25.36] | 0.034 |
Age ≥ 65 Years | 4.61 [1.56–13.58] | 0.006 |
ED Admission GCS | 0.80 [0.71–0.91] | <0.001 |
Rotterdam CT Score | 1.73 [0.95–3.16] | 0.073 |
Polytrauma | 1.81 [0.60–5.52] | 0.295 |
6-Month Unfavorable Outcome | ||
Predictor | mOR [95% CI] | Sig. (p) |
Early Neuroworsening | 5.68 [1.18–27.35] | 0.030 |
Age ≥ 65 Years | 7.22 [2.53–20.55] | <0.001 |
ED Admission GCS | 0.76 [0.67–0.86] | <0.001 |
Rotterdam CT Score | 0.97 [0.53–1.78] | 0.928 |
Polytrauma | 1.52 [0.52–4.51] | 0.446 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, J.K.; Krishnan, N.; Kanter, J.H.; Deng, H.; Okonkwo, D.O.; Puccio, A.M.; Madhok, D.Y.; Belton, P.J.; Lindquist, B.E.; Satris, G.G.; et al. Neuroworsening in the Emergency Department Is a Predictor of Traumatic Brain Injury Intervention and Outcome: A TRACK-TBI Pilot Study. J. Clin. Med. 2023, 12, 2024. https://doi.org/10.3390/jcm12052024
Yue JK, Krishnan N, Kanter JH, Deng H, Okonkwo DO, Puccio AM, Madhok DY, Belton PJ, Lindquist BE, Satris GG, et al. Neuroworsening in the Emergency Department Is a Predictor of Traumatic Brain Injury Intervention and Outcome: A TRACK-TBI Pilot Study. Journal of Clinical Medicine. 2023; 12(5):2024. https://doi.org/10.3390/jcm12052024
Chicago/Turabian StyleYue, John K., Nishanth Krishnan, John H. Kanter, Hansen Deng, David O. Okonkwo, Ava M. Puccio, Debbie Y. Madhok, Patrick J. Belton, Britta E. Lindquist, Gabriela G. Satris, and et al. 2023. "Neuroworsening in the Emergency Department Is a Predictor of Traumatic Brain Injury Intervention and Outcome: A TRACK-TBI Pilot Study" Journal of Clinical Medicine 12, no. 5: 2024. https://doi.org/10.3390/jcm12052024
APA StyleYue, J. K., Krishnan, N., Kanter, J. H., Deng, H., Okonkwo, D. O., Puccio, A. M., Madhok, D. Y., Belton, P. J., Lindquist, B. E., Satris, G. G., Lee, Y. M., Umbach, G., Duhaime, A. -C., Mukherjee, P., Yuh, E. L., Valadka, A. B., DiGiorgio, A. M., Tarapore, P. E., Huang, M. C., ... Investigators, T. T. -T. (2023). Neuroworsening in the Emergency Department Is a Predictor of Traumatic Brain Injury Intervention and Outcome: A TRACK-TBI Pilot Study. Journal of Clinical Medicine, 12(5), 2024. https://doi.org/10.3390/jcm12052024