Genetic Variations in Angiotensinogen Gene and Risk of Preeclampsia: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Clinical Characteristics of Cases and Controls
3.2. Effect of AGT Gene SNPs on PE
3.3. Stratification Analysis
3.4. The Relevance of rs7079 G>T to AGT Expression
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. Obstet Gynecol. 2019, 133, 1. [Google Scholar] [CrossRef]
- Garovic, V.D.; Dechend, R.; Easterling, T.; Karumanchi, S.A.; McMurtry Baird, S.; Magee, L.A.; Rana, S.; Vermunt, J.V.; August, P. Hypertension in Pregnancy: Diagnosis, Blood Pressure Goals, and Pharmacotherapy: A Scientific Statement from the American Heart Association. Hypertension 2022, 79, e21–e41. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 2018, 13, 291–310. [Google Scholar] [CrossRef] [PubMed]
- Nobles, C.J.; Mendola, P.; Mumford, S.L.; Silver, R.M.; Kim, K.; Andriessen, V.C.; Connell, M.; Sjaarda, L.; Perkins, N.J.; Schisterman, E.F. Preconception Blood Pressure and Its Change into Early Pregnancy: Early Risk Factors for Preeclampsia and Gestational Hypertension. Hypertension 2020, 76, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Chappell, L.C.; Cluver, C.A.; Kingdom, J.; Tong, S. Pre-eclampsia. Lancet 2021, 398, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Abalos, E.; Cuesta, C.; Grosso, A.L.; Chou, D.; Say, L. Global and regional estimates of preeclampsia and eclampsia: A systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 170, 1–7. [Google Scholar] [CrossRef]
- Ambrožič, J.; Lučovnik, M.; Cvijić, M. Evolution of cardiac geometry and function in women with severe preeclampsia from immediately post-delivery to 1 year postpartum. Int. J. Cardiovasc. Imaging 2021, 37, 2217–2225. [Google Scholar] [CrossRef]
- Khosla, K.; Heimberger, S.; Nieman, K.M.; Tung, A.; Shahul, S.; Staff, A.C.; Rana, S. Long-Term Cardiovascular Disease Risk in Women After Hypertensive Disorders of Pregnancy: Recent Advances in Hypertension. Hypertension 2021, 78, 927–935. [Google Scholar] [CrossRef]
- Brouwers, L.; van der Meiden-van Roest, A.J.; Savelkoul, C.; Vogelvang, T.E.; Lely, A.T.; Franx, A.; van Rijn, B.B. Recurrence of pre-eclampsia and the risk of future hypertension and cardiovascular disease: A systematic review and meta-analysis. Br. J. Obstet. Gynaecol. 2018, 125, 1642–1654. [Google Scholar] [CrossRef]
- Berends, A.L.; de Groot, C.J.; Sijbrands, E.J.; Sie, M.P.; Benneheij, S.H.; Pal, R.; Heydanus, R.; Oostra, B.A.; van Duijn, C.M.; Steegers, E.A. Shared constitutional risks for maternal vascular-related pregnancy complications and future cardiovascular disease. Hypertension 2008, 51, 1034–1041. [Google Scholar] [CrossRef]
- Craici, I.; Wagner, S.; Garovic, V.D. Preeclampsia and future cardiovascular risk: Formal risk factor or failed stress test? Ther. Adv. Cardiovasc. Dis. 2008, 2, 249–259. [Google Scholar] [CrossRef]
- Gray, K.J.; Saxena, R.; Karumanchi, S.A. Genetic predisposition to preeclampsia is conferred by fetal DNA variants near FLT1, a gene involved in the regulation of angiogenesis. Am. J. Obstet. Gynecol. 2018, 218, 211–218. [Google Scholar] [CrossRef]
- Ardissino, M.; Slob, E.A.W.; Millar, O.; Reddy, R.K.; Lazzari, L.; Patel, K.H.K.; Ryan, D.; Johnson, M.R.; Gill, D.; Ng, F.S. Maternal Hypertension Increases Risk of Preeclampsia and Low Fetal Birthweight: Genetic Evidence from a Mendelian Randomization Study. Hypertension 2022, 79, 588–598. [Google Scholar] [CrossRef]
- Bagci, B.; Karakus, S.; Bagci, G.; Sancakdar, E. Renalase gene polymorphism is associated with increased blood pressure in preeclampsia. Pregnancy Hypertens. 2016, 6, 115–120. [Google Scholar] [CrossRef]
- Fatima, S.S.; Jamil, Z.; Alam, F.; Malik, H.Z.; Madhani, S.I.; Ahmad, M.S.; Shabbir, T.; Rehmani, M.N.; Rabbani, A. Polymorphism of the renalase gene in gestational diabetes mellitus. Endocrine 2017, 55, 124–129. [Google Scholar] [CrossRef]
- Sivaraj, N.; Rachel, K.V.; Suvvari, T.K.; Prasad, S.; Boppana, S.H.; Vegi, P.K. Association of IL1R1 gene (SNP rs2071374) with the risk of preeclampsia. J. Reprod. Immunol. 2022, 149, 103463. [Google Scholar] [CrossRef]
- Kumar, K.S.P.; Arcot, M.; Munisamaiah, M.; Balakrishna, S. Novel association of SNP rs479200 in EGLN1 gene with predisposition to preeclampsia. Gene 2019, 705, 1–4. [Google Scholar] [CrossRef]
- Schmieder, R.E.; Hilgers, K.F.; Schlaich, M.P.; Schmidt, B.M. Renin-angiotensin system and cardiovascular risk. Lancet 2007, 369, 1208–1219. [Google Scholar] [CrossRef]
- Paz Ocaranza, M.; Riquelme, J.A.; García, L.; Jalil, J.E.; Chiong, M.; Santos, R.A.S.; Lavandero, S. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat. Rev. Cardiol. 2020, 17, 116–129. [Google Scholar] [CrossRef]
- Takimoto-Ohnishi, E.; Murakami, K. Renin-angiotensin system research: From molecules to the whole body. J. Physiol. Sci. 2019, 69, 581–587. [Google Scholar] [CrossRef]
- Wu, C.H.; Mohammadmoradi, S.; Chen, J.Z.; Sawada, H.; Daugherty, A.; Lu, H.S. Renin-Angiotensin System and Cardiovascular Functions. Arterioscler. Thromb. Vasc. Biol. 2018, 38, e108–e116. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Lu, H.; Cassis, L.A.; Daugherty, A. Molecular and Pathophysiological Features of Angiotensinogen: A Mini Review. N Am. J. Med. Sci. 2011, 4, 183–190. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet. Gynecol. 2013, 122, 1122–1131. [Google Scholar] [CrossRef]
- Xu, Y.; Rong, J.; Zhang, Z. The emerging role of angiotensinogen in cardiovascular diseases. J. Cell. Physiol. 2021, 236, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chen, Y.; Zhang, K.; Yang, W.; Li, X.; Zhao, J.; Liu, K.; Dong, Z.; Lu, J. AGT serves as a potential biomarker and drives tumor progression in colorectal carcinoma. Int. Immunopharmacol. 2021, 101, 108225. [Google Scholar] [CrossRef]
- Tao, X.R.; Rong, J.B.; Lu, H.S.; Daugherty, A.; Shi, P.; Ke, C.L.; Zhang, Z.C.; Xu, Y.C.; Wang, J.A. Angiotensinogen in hepatocytes contributes to Western diet-induced liver steatosis. J. Lipid. Res. 2019, 60, 1983–1995. [Google Scholar] [CrossRef]
- Yilmaz, Z.; Yildirim, T.; Yilmaz, R.; Aybal-Kutlugun, A.; Altun, B.; Kucukozkan, T.; Erdem, Y. Association between urinary angiotensinogen, hypertension and proteinuria in pregnant women with preeclampsia. J. Renin Angiotensin Aldosterone Syst. 2015, 16, 514–520. [Google Scholar] [CrossRef]
- Dahabiyeh, L.A.; Tooth, D.; Kurlak, L.O.; Mistry, H.D.; Pipkin, F.B.; Barrett, D.A. A pilot study of alterations in oxidized angiotensinogen and antioxidants in pre-eclamptic pregnancy. Sci. Rep. 2020, 10, 1956. [Google Scholar] [CrossRef]
- Watkins, W.S.; Hunt, S.C.; Williams, G.H.; Tolpinrud, W.; Jeunemaitre, X.; Lalouel, J.M.; Jorde, L.B. Genotype-phenotype analysis of angiotensinogen polymorphisms and essential hypertension: The importance of haplotypes. J. Hypertens. 2010, 28, 65–75. [Google Scholar] [CrossRef]
- Mabhida, S.E.; Mashatola, L.; Kaur, M.; Sharma, J.R.; Apalata, T.; Muhamed, B.; Benjeddou, M.; Johnson, R. Hypertension in African Populations: Review and Computational Insights. Genes 2021, 12, 532. [Google Scholar] [CrossRef]
- Junusbekov, Y.; Bayoglu, B.; Cengiz, M.; Dirican, A.; Arslan, C. AGT rs699 and AGTR1 rs5186 gene variants are associated with cardiovascular-related phenotypes in atherosclerotic peripheral arterial obstructive disease. Ir. J. Med. Sci. 2020, 189, 885–894. [Google Scholar] [CrossRef]
- Dong, M.Z.; Lin, Z.H.; Liu, S.S.; Xin, Y.N.; Xuan, S.Y. AGT rs5051 gene polymorphism increases the risk of coronary heart disease in patients with non-alcoholic fatty liver disease in the Han Chinese population. Zhonghua Gan Zang Bing Za Zhi 2021, 29, 1095–1100. [Google Scholar] [CrossRef]
- Lin, R.; Lei, Y.; Yuan, Z.; Ju, H.; Li, D. Angiotensinogen gene M235T and T174M polymorphisms and susceptibility of pre-eclampsia: A meta-analysis. Ann. Hum. Genet 2012, 76, 377–386. [Google Scholar] [CrossRef]
- Lee, S.R.; Moon, J.Y.; Lee, S.H.; Ihm, C.G.; Lee, T.W.; Kim, S.K.; Chung, J.H.; Kang, S.W.; Kim, T.H.; Park, S.J. Angiotensinogen Polymorphisms and Post-Transplantation Diabetes Mellitus in Korean Renal Transplant Subjects. Kidney Blood Press. Res. 2013, 37, 95–102. [Google Scholar] [CrossRef]
- El-Garawani, I.M.; Shaheen, E.M.; El-Seedi, H.R.; Khalifa, S.A.M.; Mersal, G.A.M.; Emara, M.M.; Kasemy, Z.A. Angiotensinogen Gene Missense Polymorphisms (rs699 and rs4762): The Association of End-Stage Renal Failure Risk with Type 2 Diabetes and Hypertension in Egyptians. Genes 2021, 12, 339. [Google Scholar] [CrossRef]
- Perdomo-Pantoja, A.; Mejía-Pérez, S.I.; Reynoso-Noverón, N.; Gómez-Flores-Ramos, L.; Soto-Reyes, E.; Sánchez-Correa, T.E.; Guerra-Calderas, L.; Castro-Hernandez, C.; Vidal-Millán, S.; Sánchez-Corona, J.; et al. Angiotensinogen rs5050 germline genetic variant as potential biomarker of poor prognosis in astrocytoma. PLoS ONE 2018, 13, e0206590. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, L.; Pi, L.; Che, D.; Xu, Y.; Zheng, H.; Long, H.; Zeng, L.; Huang, P.; Zhang, L.; et al. An Angiotensinogen Gene Polymorphism (rs5050) Is Associated with the Risk of Coronary Artery Aneurysm in Southern Chinese Children with Kawasaki Disease. Dis. Markers 2019, 2849695. [Google Scholar] [CrossRef]
- Mopidevi, B.; Ponnala, M.; Kumar, A. Human angiotensinogen +11525 C/A polymorphism modulates its gene expression through microRNA binding. Physiol. Genom. 2013, 45, 901–906. [Google Scholar] [CrossRef][Green Version]
- Wu, Y.; Wang, M.; Zhang, J.; Sun, N.; Li, C. A new model of the mechanism underlying lead poisoning: SNP in miRNA target region influence the AGT expression level. Hereditas 2019, 156, 6. [Google Scholar] [CrossRef]
- Yang, Y.; Le Ray, I.; Zhu, J.; Zhang, J.; Hua, J.; Reilly, M. Preeclampsia Prevalence, Risk Factors, and Pregnancy Outcomes in Sweden and China. JAMA Netw. Open 2021, 4, e218401. [Google Scholar] [CrossRef]
- Zhang, N.; Tan, J.; Yang, H.; Khalil, R.A. Comparative risks and predictors of preeclamptic pregnancy in the Eastern, Western and developing world. Biochem. Pharmacol. 2020, 182, 114247. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Control (n = 358) | Case (n = 228) | p |
---|---|---|---|
BMI (kg/m2) | 20.95 ± 3.07 | 23.68 ± 4.33 | 0.000 |
Maternal age (years) | 28.94 ± 4.58 | 32.89 ± 5.50 | 0.000 |
SBP (mm Hg) | 117.16 ± 6.44 | 142.07 ± 11.11 | 0.000 |
DBP (mm Hg) | 72.25 ± 4.75 | 89.93 ± 8.79 | 0.000 |
Gestational age (weeks) | 39.10 ± 1.14 | 34.36 ± 4.27 | 0.000 |
Fetal birth weight (g) | 3218.62 ± 404.27 | 2171.32 ± 980.26 | 0.000 |
ALB (g/L) | 35.46 ± 2.76 | 29.38 ± 4.64 | 0.000 |
AST (U/L) | 15.305 ± 4.31 | 29.22 ± 59.76 | 0.001 |
PLT (×109/L) | 232.39 ± 60.24 | 209.11 ± 73.00 | 0.000 |
ALT (U/L) | 9.45 ± 4.89 | 23.379 ± 60.85 | 0.000 |
CREA (mg/dl) | 51.30 ± 9.45 | 66.93 ± 23.81 | 0.000 |
UA (μmol/L) | 333.35 ± 83.94 | 450.81 ± 136.00 | 0.000 |
Genetype | Control (n = 358) | Case (n = 228) | Crude OR (95% CI) | p | Adjusted OR (95% CI) | pa |
---|---|---|---|---|---|---|
rs4762 G > A | ||||||
GG | 284 | 182 | 1.000 | 1.000 | ||
AG | 68 | 40 | 0.918 (0.596–1.415) | 0.698 | 0.917 (0.568–1.480) | 0.723 |
AA | 6 | 6 | 1.560 (0.496–4.912) | 0.447 | 1.318 (0.373–4.658) | 0.668 |
Dominant | 74 | 46 | 0.970 (0.642–1.465) | 0.885 | 0.953 (0.604–1.505) | 0.837 |
Recessive | 352 | 222 | 1.586 (0.505–4.978) | 0.430 | 1.340 (0.380–4.720) | 0.649 |
rs5050 T > G | ||||||
TT | 250 | 163 | 1.000 | 1.000 | ||
GT | 98 | 58 | 0.908 (0.621–1.327) | 0.617 | 0.829 (0.543–1.266) | 0.385 |
GG | 10 | 7 | 1.074 (0.401–2.877) | 0.888 | 1.009 (0.343–2.962) | 0.987 |
Dominant | 108 | 65 | 0.923 (0.640–1.330) | 0.668 | 0.846 (0.563–1.271) | 0.420 |
Recessive | 348 | 221 | 1.102 (0.413–2.938) | 0.846 | 1.062 (0.364–3.099) | 0.912 |
rs7079 G > T | ||||||
GG | 271 | 172 | 1.000 | 1.000 | ||
GT | 83 | 42 | 0.797 (0.525–1.210) | 0.287 | 0.753 (0.472–1.201) | 0.233 |
TT | 4 | 14 | 5.515 (1.786–17.029) | 0.003 | 3.804 (1.100–13.156) | 0.035 |
Dominant | 87 | 56 | 1.014 (0.689–1.492) | 0.943 | 1.095 (0.708–1.694) | 0.684 |
Recessive | 354 | 214 | 5.790 (1.881–17.817) | 0.002 | 4.054 (1.178–13.945) | 0.026 |
Expected | Observed | χ2 | p | |||||
---|---|---|---|---|---|---|---|---|
rs4762 G > A | GG | AG | AA | GG | AG | AA | 0.664 | 0.717 |
Control | 282.47 | 71.06 | 4.47 | 284 | 68 | 6 | ||
rs5050 T > G | TT | GT | GG | TT | GT | GG | 0.011 | 0.994 |
Control | 249.72 | 98.55 | 9.72 | 250 | 98 | 10 | ||
rs7079 G > T | GG | GT | TT | GG | GT | TT | 0.721 | 0.697 |
Control | 272.78 | 79.43 | 5.78 | 271 | 83 | 4 |
Variables | rs7079 | p | ||
---|---|---|---|---|
(Cases/Controls) | OR (95%CI) | |||
TT | GG/GT | |||
Age | ||||
<35 | 9/2 | 129/315 | 10.988(2.342–51.555) | 0.001 |
≥35 | 5/2 | 85/39 | 1.147(0.213–6.174) | 1.000 |
BMI | ||||
<25 | 7/3 | 144/318 | 5.153 (1.314–20.212) | 0.024 |
≥25 | 7/1 | 70/36 | 3.600 (0.426–30.400) | 0.391 |
ALB | ||||
<30 | 8/0 | 112/12 | / | 1.000 |
≥30 | 6/4 | 102/342 | 5.029 (1.392–18.167) | 0.019 |
AST | ||||
<30 | 10/4 | 171/348 | 5.088(1.573–16.456) | 0.007 |
≥30 | 4/0 | 43/6 | / | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, D.; Peng, X.; Xie, H.; Peng, R.; Li, Q.; Guo, Y.; Wang, W.; He, H.; Chen, Y. Genetic Variations in Angiotensinogen Gene and Risk of Preeclampsia: A Pilot Study. J. Clin. Med. 2023, 12, 1509. https://doi.org/10.3390/jcm12041509
He D, Peng X, Xie H, Peng R, Li Q, Guo Y, Wang W, He H, Chen Y. Genetic Variations in Angiotensinogen Gene and Risk of Preeclampsia: A Pilot Study. Journal of Clinical Medicine. 2023; 12(4):1509. https://doi.org/10.3390/jcm12041509
Chicago/Turabian StyleHe, Dong, Xianglan Peng, Hongkai Xie, Rui Peng, Qixuan Li, Yitong Guo, Wei Wang, Hong He, and Yang Chen. 2023. "Genetic Variations in Angiotensinogen Gene and Risk of Preeclampsia: A Pilot Study" Journal of Clinical Medicine 12, no. 4: 1509. https://doi.org/10.3390/jcm12041509
APA StyleHe, D., Peng, X., Xie, H., Peng, R., Li, Q., Guo, Y., Wang, W., He, H., & Chen, Y. (2023). Genetic Variations in Angiotensinogen Gene and Risk of Preeclampsia: A Pilot Study. Journal of Clinical Medicine, 12(4), 1509. https://doi.org/10.3390/jcm12041509