Diagnosis and Management of Neuropathic Pain in Spine Diseases
Abstract
:1. Introduction
2. Pathophysiology of Neuropathic Pain
2.1. Peripheral Mechanisms
2.2. Central Mechanisms
3. Animal Models of Neuropathic Pain
3.1. Chronic Constriction Injury
3.2. Segmental Spinal Nerve Ligation
3.3. Partial Sciatic Nerve Ligation
3.4. Spared Nerve Injury
3.5. Diabetic Neuropathy
3.6. Spinal Cord Injury and Neuropathic Pain
3.7. Visceral Pain Models
4. Diagnosis and Frequency of Neuropathic Pain in Spine Diseases
5. Treatment Strategies for Neuropathic Pain
5.1. Pharmacotherapy
5.1.1. Gabapentinoids
5.1.2. Antidepressants
5.1.3. Topical Agents
5.1.4. Opioids
5.2. Neurostimulation Techniques
5.2.1. Spinal Cord Stimulation
5.2.2. Dorsal Root Ganglion Stimulation
5.2.3. Non-Invasive Brain Stimulation
5.2.4. Optogenetic Stimulation
5.3. Emerging Therapeutic Approaches
5.3.1. Cannabis-Based Medicines
5.3.2. Stem Cell Therapy
5.3.3. Targeted Anti-Inflammatory Agents
5.3.4. Other Emerging Pharmacological Agents
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; et al. Neuropathic pain. Nat. Rev. Dis. Prim. 2017, 3, 17002. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Kuner, R.; Jensen, T.S. Neuropathic Pain: From Mechanisms to Treatment. Physiol. Rev. 2021, 101, 259–301. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Haroutounian, S.; Kamerman, P.; Baron, R.; Bennett, D.L.H.; Bouhassira, D.; Cruccu, G.; Freeman, R.; Hansson, P.; Nurmikko, T.; et al. Neuropathic pain: An updated grading system for research and clinical practice. Pain 2016, 157, 1599. [Google Scholar] [CrossRef]
- Murnion, B.P. Neuropathic pain: Current definition and review of drug treatment. Aust. Prescr. 2018, 41, 60. [Google Scholar] [CrossRef]
- Jensen, T.S.; Finnerup, N.B. Allodynia and hyperalgesia in neuropathic pain: Clinical manifestations and mechanisms. Lancet. Neurol. 2014, 13, 924–935. [Google Scholar] [CrossRef]
- Meacham, K.; Shepherd, A.; Mohapatra, D.P.; Haroutounian, S. Neuropathic Pain: Central vs. Peripheral Mechanisms. Curr. Pain Headache Rep. 2017, 21, 28. [Google Scholar] [CrossRef]
- Burke, D.; Fullen, B.M.; Stokes, D.; Lennon, O. Neuropathic pain prevalence following spinal cord injury: A systematic review and meta-analysis. Eur. J. Pain 2017, 21, 29–44. [Google Scholar] [CrossRef]
- Miclescu, A.; Straatmann, A.; Gkatziani, P.; Butler, S.; Karlsten, R.; Gordh, T. Chronic neuropathic pain after traumatic peripheral nerve injuries in the upper extremity: Prevalence, demographic and surgical determinants, impact on health and on pain medication. Scand. J. Pain 2019, 20, 95–108. [Google Scholar] [CrossRef]
- Pasero, C. Pathophysiology of neuropathic pain. Pain Manag. Nurs. 2004, 5, 3–8. [Google Scholar] [CrossRef]
- Litak, J.; Szymoniuk, M.; Czyżewski, W.; Hoffman, Z.; Litak, J.; Sakwa, L.; Kamieniak, P. Metallic Implants Used in Lumbar Interbody Fusion. Materials 2022, 15, 3650. [Google Scholar] [CrossRef]
- Litak, J.; Czyżewski, W.; Szymoniuk, M.; Sakwa, L.; Pasierb, B.; Litak, J.; Hoffman, Z.; Kamieniak, P.; Roliński, J. Biological and Clinical Aspects of Metastatic Spinal Tumors. Cancers 2022, 14, 4599. [Google Scholar] [CrossRef] [PubMed]
- Litak, J.; Czyzewski, W.; Szymoniuk, M.; Pastuszak, B.; Litak, J.; Litak, G.; Grochowski, C.; Rahnama-Hezavah, M.; Kamieniak, P. Hydroxyapatite Use in Spine Surgery—Molecular and Clinical Aspect. Materials 2022, 15, 2906. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Takahashi, K.; Yonenobu, K.; Kikuchi, S.I. Prevalence of neuropathic pain in cases with chronic pain related to spinal disorders. J. Orthop. Sci. 2014, 19, 15–21. [Google Scholar] [CrossRef] [PubMed]
- El Sissi, W.; Arnaout, A.; Chaarani, M.W.; Fouad, M.; El Assuity, W.; Zalzala, M.; Dershaby, Y.; Youseif, E. Prevalence of neuropathic pain among patients with chronic low-back pain in the Arabian Gulf Region assessed using the leeds assessment of neuropathic symptoms and signs pain scale. J. Int. Med. Res. 2010, 38, 2135–2145. [Google Scholar] [CrossRef]
- Attal, N.; Bouhassira, D. Translational neuropathic pain research. Pain 2019, 160, S23–S28. [Google Scholar] [CrossRef]
- Magrinelli, F.; Zanette, G.; Tamburin, S. Neuropathic pain: Diagnosis and treatment. Pract. Neurol. 2013, 13, 292–307. [Google Scholar] [CrossRef]
- Campbell, J.N.; Meyer, R.A. Mechanisms of Neuropathic Pain. Neuron 2006, 52, 77. [Google Scholar] [CrossRef]
- Chul Han, H.; Hyun Lee, D.; Mo Chung, J. Characteristics of ectopic discharges in a rat neuropathic pain model. Pain 2000, 84, 253–261. [Google Scholar] [CrossRef]
- Yam, M.F.; Loh, Y.C.; Tan, C.S.; Adam, S.K.; Manan, N.A.; Basir, R. General Pathways of Pain Sensation and the Major Neurotransmitters Involved in Pain Regulation. Int. J. Mol. Sci. 2018, 19, 2164. [Google Scholar] [CrossRef]
- Devor, M. Ectopic discharge in Abeta afferents as a source of neuropathic pain. Exp. Brain Res. 2009, 196, 115–128. [Google Scholar] [CrossRef]
- Nassar, M.A.; Baker, M.D.; Levato, A.; Ingram, R.; Mallucci, G.; McMahon, S.B.; Wood, J.N. Nerve injury induces robust allodynia and ectopic discharges in Nav1.3 null mutant mice. Mol. Pain 2006, 2, 33. [Google Scholar] [CrossRef]
- Costigan, M.; Scholz, J.; Woolf, C.J. Neuropathic Pain: A Maladaptive Response of the Nervous System to Damage. Annu. Rev. Neurosci. 2009, 32, 1. [Google Scholar] [CrossRef] [PubMed]
- Latremoliere, A.; Woolf, C.J. Central Sensitization: A Generator of Pain Hypersensitivity by Central Neural Plasticity. J. Pain 2009, 10, 895. [Google Scholar] [CrossRef] [PubMed]
- Bhangoo, S.; Ren, D.; Miller, R.J.; Henry, K.J.; Lineswala, J.; Hamdouchi, C.; Li, B.; Monahan, P.E.; Chan, D.M.; Ripsch, M.S.; et al. Delayed functional expression of neuronal chemokine receptors following focal nerve demyelination in the rat: A mechanism for the development of chronic sensitization of peripheral nociceptors. Mol. Pain 2007, 3, 38. [Google Scholar] [CrossRef] [PubMed]
- Kemp, A.; Manahan-Vaughan, D. Hippocampal long-term depression and long-term potentiation encode different aspects of novelty accquisition. Proc. Natl. Acad. Sci. USA 2004, 101, 8192–8197. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Wu, C.; Lian, Y.N.; Liu, L.; Li, X.Y. Targeting long-term depression of excitatory synaptic transmission for the treatment of neuropathic pain. FEBS J. 2021, 289, 7334–7342. [Google Scholar] [CrossRef]
- Bazzari, A.H.; Bazzari, F.H. Advances in targeting central sensitization and brain plasticity in chronic pain. Egypt. J. Neurol. Psychiatry Neurosurg. 2022, 58, 1–13. [Google Scholar] [CrossRef]
- Kopach, O.; Voitenko, N. Spinal AMPA receptors: Amenable players in central sensitization for chronic pain therapy? Channels 2021, 15, 284. [Google Scholar] [CrossRef]
- Li, C.; Lei, Y.; Tian, Y.; Xu, S.; Shen, X.; Wu, H.; Bao, S.; Wang, F. The etiological contribution of GABAergic plasticity to the pathogenesis of neuropathic pain. Mol. Pain 2019, 15, 1744806919847366. [Google Scholar] [CrossRef]
- Martini, F.J.; Guillamón-Vivancos, T.; Moreno-Juan, V.; Valdeolmillos, M.; López-Bendito, G. Spontaneous Activity in Developing Thalamic and Cortical Sensory Networks. Neuron 2021, 109, 2519. [Google Scholar] [CrossRef]
- Cain, S.M.; Garcia, E.; Waheed, Z.; Jones, K.L.; Bushell, T.J.; Snutch, T.P. GABAB receptors suppress burst-firing in reticular thalamic neurons. Channels 2017, 11, 574–586. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Ansah, O.B.; Meyerson, B.A.; Pertovaara, A.; Linderoth, B. The rostroventromedial medulla is engaged in the effects of spinal cord stimulation in a rodent model of neuropathic pain. Neuroscience 2013, 247, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Staud, R. The important role of CNS facilitation and inhibition for chronic pain. Int. J. Clin. Rheumtol. 2013, 8, 639. [Google Scholar] [CrossRef] [PubMed]
- Ossipov, M.H.; Dussor, G.O.; Porreca, F. Central modulation of pain. J. Clin. Investig. 2010, 120, 3779. [Google Scholar] [CrossRef]
- Suzuki, R.; Kontinen, V.K.; Matthews, E.; Williams, E.; Dickenson, A.H. Enlargement of the receptive field size to low intensity mechanical stimulation in the rat spinal nerve ligation model of neuropathy. Exp. Neurol. 2000, 163, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Bouhassira, D. Neuropathic pain: Definition, assessment and epidemiology. Rev. Neurol. 2019, 175, 16–25. [Google Scholar] [CrossRef]
- Li, X.; Guo, Q.; Ye, Z.; Wang, E.; Zou, W.; Sun, Z.; He, Z.; Zhong, T.; Weng, Y.; Pan, Y. PPAR γ Prevents Neuropathic Pain by Down-Regulating CX3CR1 and Attenuating M1 Activation of Microglia in the Spinal Cord of Rats Using a Sciatic Chronic Constriction Injury Model. Front. Neurosci. 2021, 15, 620525. [Google Scholar] [CrossRef]
- Maves, T.J.; Pechman, P.S.; Gebhart, G.F.; Meller, S.T. Possible chemical contribution from chromic gut sutures produces disorders of pain sensation like those seen in man. Pain 1993, 54, 57–69. [Google Scholar] [CrossRef]
- Sandkühler, J. Models and mechanisms of hyperalgesia and allodynia. Physiol. Rev. 2009, 89, 707–758. [Google Scholar] [CrossRef]
- Garcia, X.; Del Valle, J.; Escribano, E.; Domenech, J.; Queralt, J. Analgesic and antiallodynic effects of antidepressants after infiltration into the rat. Pharmacology 2010, 86, 216–223. [Google Scholar] [CrossRef]
- Marchand, F.; Ardid, D.; Chapuy, E.; Alloui, A.; Jourdan, D.; Eschalier, A. Evidence for an involvement of supraspinal delta- and spinal mu-opioid receptors in the antihyperalgesic effect of chronically administered clomipramine in mononeuropathic rats. J. Pharmacol. Exp. Ther. 2003, 307, 268–274. [Google Scholar] [CrossRef]
- Moore, R.A.; Derry, S.; Aldington, D.; Cole, P.; Wiffen, P.J. Amitriptyline for neuropathic pain and fibromyalgia in adults. Cochrane Database Syst. Rev. 2012, 12, CD008242. [Google Scholar] [CrossRef] [PubMed]
- Wiffen, P.J.; Derry, S.; Bell, R.F.; Rice, A.S.C.; Tölle, T.R.; Phillips, T.; Moore, R.A. Gabapentin for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2017, 6, CD007938. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.; Lin, C.; Zhang, Y.; Ma, Z.; Chen, Y.; Kong, L.; Yuan, L.; Ma, T. Quercetin Alleviates Neuropathic Pain in the Rat CCI Model by Mediating AMPK/MAPK Pathway. J. Pain Res. 2021, 14, 1289–1301. [Google Scholar] [CrossRef] [PubMed]
- Challa, S.R.; Reddy Challa, S. Surgical animal models of neuropathic pain: Pros and Cons. Int. J. Neurosci. 2014, 125, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Schäfers, M.; Cain, D. Segmental spinal nerve ligation model of neuropathic pain. Methods Mol. Med. 2004, 99, 155–166. [Google Scholar] [CrossRef]
- Hunter, J.C.; Gogas, K.R.; Hedley, L.R.; Jacobson, L.O.; Kassotakis, L.; Thompson, J.; Fontana, D.J. The effect of novel anti-epileptic drugs in rat experimental models of acute and chronic pain. Eur. J. Pharmacol. 1997, 324, 153–160. [Google Scholar] [CrossRef]
- Jwa, H.S.; Kim, Y.H.; Lee, J.; Back, S.K.; Park, C.K. Adipose Tissue-Derived Stem Cells Alleviate Cold Allodynia in a Rat Spinal Nerve Ligation Model of Neuropathic Pain. Stem Cells Int. 2020, 2020, 1–7. [Google Scholar] [CrossRef]
- Gold, M.S.; Weinreich, D.; Kim, C.S.; Wang, R.; Treanor, J.; Porreca, F.; Lai, J. Redistribution of NaV1.8 in Uninjured Axons Enables Neuropathic Pain. J. Neurosci. 2003, 23, 158. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Song, Z.W.; Guo, S.W.; He, J.S.; Wang, S.Y.; Zhu, J.G.; Yang, H.L.; Liu, J.B. CXCL12/CXCR4 signaling contributes to neuropathic pain via central sensitization mechanisms in a rat spinal nerve ligation model. CNS Neurosci. Ther. 2019, 25, 922. [Google Scholar] [CrossRef] [Green Version]
- Korah, H.E.; Cheng, K.; Washington, S.M.; Flowers, M.E.; Stratton, H.J.; Patwardhan, A.; Ibrahim, M.M.; Martin, L.F. Partial Sciatic Nerve Ligation: A Mouse Model of Chronic Neuropathic Pain to Study the Antinociceptive Effect of Novel Therapies. J. Vis. Exp. 2022. [Google Scholar] [CrossRef]
- Buffon, A.C.; Javornik, M.A.; Heymanns, A.C.; Salm, D.C.; Horewicz, V.V.; Martins, D.F.; Piovezan, A.P. Role of the endocannabinoid system on the antihyperalgesic action of gabapentin in animal model of neuropathic pain induced by partial sciatic nerve ligation. An. Acad. Bras. Cienc. 2020, 92, e20191155. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Takemura, Y.; Aoki, Y.; Hattori, M.; Horikawa, H.; Yamazaki, M. Analysis of the effects of a tricyclic antidepressant on secondary sleep disturbance induced by chronic pain in a preclinical model. PLoS ONE 2020, 15, e0243325. [Google Scholar] [CrossRef] [PubMed]
- Pokkula, S.; Thakur, S.R. Icariin ameliorates partial sciatic nerve ligation induced neuropathic pain in rats: An evidence of in silico and in vivo studies. J. Pharm. Pharmacol. 2021, 73, 874–880. [Google Scholar] [CrossRef]
- Richner, M.; Bjerrum, O.J.; Nykjaer, A.; Vaegter, C.B. The spared nerve injury (SNI) model of induced mechanical allodynia in mice. J. Vis. Exp. 2011, 54, e3092. [Google Scholar] [CrossRef]
- Guida, F.; De Gregorio, D.; Palazzo, E.; Ricciardi, F.; Boccella, S.; Belardo, C.; Iannotta, M.; Infantino, R.; Formato, F.; Marabese, I.; et al. Behavioral, Biochemical and Electrophysiological Changes in Spared Nerve Injury Model of Neuropathic Pain. Int. J. Mol. Sci. 2020, 21, 3396. [Google Scholar] [CrossRef]
- Allchorne, A.J.; Broom, D.C.; Woolf, C.J. Detection of cold pain, cold allodynia and cold hyperalgesia in freely behaving rats. Mol. Pain 2005, 1, 36–39. [Google Scholar] [CrossRef]
- Godai, K.; Moriyama, T. Heme oxygenase-1 in the spinal cord plays crucial roles in the analgesic effects of pregabalin and gabapentin in a spared nerve-injury mouse model. Neurosci. Lett. 2022, 767, 136310. [Google Scholar] [CrossRef]
- Arsenault, A.; Sawynok, J. Perisurgical amitriptyline produces a preventive effect on afferent hypersensitivity following spared nerve injury. Pain 2009, 146, 308–314. [Google Scholar] [CrossRef]
- Zhao, C.; Tall, J.M.; Meyer, R.A.; Raja, S.N. Antiallodynic effects of systemic and intrathecal morphine in the spared nerve injury model of neuropathic pain in rats. Anesthesiology 2004, 100, 905–911. [Google Scholar] [CrossRef]
- Decosterd, I.; Woolf, C.J. Spared nerve injury: An animal model of persistent peripheral neuropathic pain. Pain 2000, 87, 149–158. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhao, W.; Zhang, L.; Ilango, M.; Zhao, N.; Yang, L.; Guan, Z. Modified Spared Nerve Injury Surgery Model of Neuropathic Pain in Mice. J. Vis. Exp. 2022, 2022, e63362. [Google Scholar] [CrossRef]
- Pandey, S.; Dvorakova, M.C. Future Perspective of Diabetic Animal Models. Endocr. Metab. Immune Disord. Drug Targets 2020, 20, 25. [Google Scholar] [CrossRef] [PubMed]
- Furman, B.L. Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr. Protoc. Pharmacol. 2015, 70, 5.47.1–5.47.20. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Adeosun, A.M.; Akinloye, O.A. Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina 2017, 53, 365–374. [Google Scholar] [CrossRef]
- Kowluru, R.A. Retinopathy in a Diet-Induced Type 2 Diabetic Rat Model and Role of Epigenetic Modifications. Diabetes 2020, 69, 689–698. [Google Scholar] [CrossRef]
- Bram, Y.; Peled, S.; Brahmachari, S.; Harlev, M.; Gazit, E. Active Immunization Against hIAPP Oligomers Ameliorates the Diabetes- Associated Phenotype in a Transgenic Mice Model. Sci. Rep. 2017, 7, 14031. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Lu, X.; Zhang, C.; Shi, Q.; Feng, L. Pregabalin treatment of peripheral nerve damage in a murine diabetic peripheral neuropathy model. Acta Endocrinol. 2018, 14, 294–299. [Google Scholar] [CrossRef]
- Kim, Y.C.; Oh, E.Y.; Kim, S.H.; Lee, M.G. Pharmacokinetics of diclofenac in rat model of diabetes mellitus induced by alloxan or steptozotocin. Biopharm. Drug Dispos. 2006, 27, 85–92. [Google Scholar] [CrossRef]
- Qin, Z.; Wang, L.; Li, G.; Qian, X.; Zhang, J.; Guo, Y.; Liu, G. Analysis of the analgesic effects of tricyclic antidepressants on neuropathic pain, diabetic neuropathic pain, and fibromyalgia in rat models. Saudi J. Biol. Sci. 2020, 27, 2485–2490. [Google Scholar] [CrossRef]
- Lotfipour, S.; Smith, M.T. Morphine hyposensitivity in streptozotocin-diabetic rats: Reversal by dietary l-arginine treatment. Clin. Exp. Pharmacol. Physiol. 2018, 45, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Crul, T.C.; Stolwijk-Swüste, J.M.; Kopsky, D.J.; Visser-Meily, J.M.A.; Post, M.W.M. Neuropathic pain in spinal cord injury: Topical analgesics as a possible treatment. Spinal Cord Ser. Cases 2020, 6, 1–6. [Google Scholar] [CrossRef]
- Wilson, S.; Fredericks, D.C.; Safayi, S.; DeVries-Watson, N.A.; Holland, M.T.; Nagel, S.J.; Gillies, G.T.; Howard, M.A. Ovine Hemisection Model of Spinal Cord Injury. J. Investig. Surg. 2021, 34, 380–392. [Google Scholar] [CrossRef]
- Jing, N.; Fang, B.; Li, Z.; Tian, A. Exogenous activation of cannabinoid-2 receptor modulates TLR4/MMP9 expression in a spinal cord ischemia reperfusion rat model. J. Neuroinflammation 2020, 17, 1–14. [Google Scholar] [CrossRef]
- Chiu, C.-W.; Cheng, H.; Hsieh, S.-L. Contusion Spinal Cord Injury Rat Model. Bio-Protocol 2017, 7, e2337. [Google Scholar] [CrossRef]
- Jiang, L.; Hu, J.; He, S.; Zhang, L.; Zhang, Y. Spinal Neuronal NOS Signaling Contributes to Morphine Cardioprotection in Ischemia Reperfusion Injury in Rats. J. Pharmacol. Exp. Ther. 2016, 358, 450–456. [Google Scholar] [CrossRef]
- Hao, J.X.; Xu, X.J.; Yu, Y.X.; Seiger, A.; Wiesenfeld-Hallin, Z. Baclofen reverses the hypersensitivity of dorsal horn wide dynamic range neurons to mechanical stimulation after transient spinal cord ischemia; implications for a tonic GABAergic inhibitory control of myelinated fiber input. J. Neurophysiol. 1992, 68, 392–396. [Google Scholar] [CrossRef]
- Hao, J.X.; Yu, Y.X.; Seiger, Å.; Wiesenfeld-Hallin, Z. Systemic tocainide relieves mechanical hypersensitivity and normalizes the responses of hyperexcitable dorsal horn wide-dynamic-range neurons after transient spinal cord ischemia in rats. Exp. Brain Res. 1992, 91, 229–235. [Google Scholar] [CrossRef]
- Tetik, Ö.; Islamoǧlu, F.; Göncü, T.; Çekirdekçi, A.; Büket, S. Reduction of spinal cord injury with pentobarbital and hypothermia in a rabbit model. Eur. J. Vasc. Endovasc. Surg. 2002, 24, 540–544. [Google Scholar] [CrossRef]
- Sirlak, M.; Eryilmaz, S.; Bahadir Inan, M.; Sirin, Y.S.; Besalti, O.; Yazicioglu, L.; Ozcinar, E.; Erdemli, E.; Tasoz, R.; Elhan, A.H.; et al. Effects of carbamazepine on spinal cord ischemia. J. Thorac. Cardiovasc. Surg. 2008, 136, 1038–1043.e4. [Google Scholar] [CrossRef] [Green Version]
- Hulsebosch, C.E.; Xu, G.Y.; Perez-Polo, J.R.; Westlund, K.N.; Taylor, C.P.; McAdoo, D.J. Rodent model of chronic central pain after spinal cord contusion injury and effects of gabapentin. J. Neurotrauma 2000, 17, 1205–1217. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Liao, C.H.; Chen, K.C.; Wang, K.L.; Tseng, X.W.; Tsai, W.K.; Chiang, H.S.; Wu, Y.N. B6 Mouse Strain: The Best Fit for LPS-Induced Interstitial Cystitis Model. Int. J. Mol. Sci. 2021, 22, 12053. [Google Scholar] [CrossRef] [PubMed]
- Fattori, V.; Franklin, N.S.; Gonzalez-Cano, R.; Peterse, D.; Ghalali, A.; Madrian, E.; Verri, W.A.; Andrews, N.; Woolf, C.J.; Rogers, M.S. Nonsurgical mouse model of endometriosis-associated pain that responds to clinically active drugs. Pain 2020, 161, 1321–1331. [Google Scholar] [CrossRef]
- Song, Z.; Jin, C.; Bian, Z.; Liang, C. Extracorporeal shock wave therapy decreases the number of total and degranulated mast cells and alleviates pelvic pain in a rat model of prostatitis. Mol. Cell. Biochem. 2021, 476, 1905–1913. [Google Scholar] [CrossRef]
- Luo, J.; Yang, C.; Luo, X.; Yang, Y.; Li, J.; Song, B.; Zhao, J.; Li, L. Chlorogenic acid attenuates cyclophosphamide-induced rat interstitial cystitis. Life Sci. 2020, 254, 117590. [Google Scholar] [CrossRef]
- Rudick, C.N.; Chen, M.C.; Mongiu, A.K.; Klumpp, D.J. Organ cross talk modulates pelvic pain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R1191–R1198. [Google Scholar] [CrossRef]
- Spahr, N.; Hodkinson, D.; Jolly, K.; Williams, S.; Howard, M.; Thacker, M. Distinguishing between nociceptive and neuropathic components in chronic low back pain using behavioural evaluation and sensory examination. Musculoskelet. Sci. Pract. 2017, 27, 40. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.; Binder, A.; Attal, N.; Casale, R.; Dickenson, A.H.; Treede, R.D. Neuropathic low back pain in clinical practice. Eur. J. Pain 2016, 20, 861–873. [Google Scholar] [CrossRef]
- Marchettini, P.; Lacerenza, M.; Mauri, E.; Marangoni, C. Painful Peripheral Neuropathies. Curr. Neuropharmacol. 2006, 4, 175. [Google Scholar] [CrossRef]
- Harden, R.N. Chronic neuropathic pain: Mechanisms, diagnosis, and treatment. Neurologist 2005, 11, 111–122. [Google Scholar] [CrossRef]
- Attal, N.; Bouhassira, D.; Baron, R. Diagnosis and assessment of neuropathic pain through questionnaires. Lancet Neurol. 2018, 17, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, A.K.; Jamroz-Wiśniewska, A.; Rejdak, K. Possible Neuropathic Pain in Clinical Practice—Review on Selected Diagnostic Tools and Its Further Challenges. Diagnostics 2023, 13, 108. [Google Scholar] [CrossRef]
- Bouhassira, D.; Lantéri-Minet, M.; Attal, N.; Laurent, B.; Touboul, C. Prevalence of chronic pain with neuropathic characteristics in the general population. Pain 2008, 136, 380–387. [Google Scholar] [CrossRef]
- Kim, K.H.; Moon, S.-H.; Hwang, C.-J.; Cho, Y.E. Prevalence of Neuropathic Pain in Patients Scheduled for Lumbar Spine Surgery: Nationwide, Multicenter, Prospective Study. Pain Physician 2015, 18, E889–E897. [Google Scholar]
- Park, S.Y.; An, H.S.; Moon, S.H.; Lee, H.M.; Suh, S.W.; Chen, D.; Jeon, J.H. Neuropathic Pain Components in Patients with Lumbar Spinal Stenosis. Yonsei Med. J. 2015, 56, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.E.; Saleh, H.A.; Baroudy, Y.M.; Abdul-Rahman, K.I.; Najjar, M.W.; Kazi, M.S.; El-Gazar, M.A.; Hafez, M.A.; Abdullah, M.A.; Abdul-Rahman, Y.A.; et al. Prevalence of neuropathic pain among patients suffering from chronic low back pain in Saudi Arabia. Saudi Med. J. 2004, 25, 1986–1990. [Google Scholar] [PubMed]
- Attal, N.; Perrot, S.; Fermanian, J.; Bouhassira, D. The neuropathic components of chronic low back pain: A prospective multicenter study using the DN4 Questionnaire. J. Pain 2011, 12, 1080–1087. [Google Scholar] [CrossRef]
- Bennett, M.I.; Attal, N.; Backonja, M.M.; Baron, R.; Bouhassira, D.; Freynhagen, R.; Scholz, J.; Tölle, T.R.; Wittchen, H.U.; Jensen, T.S. Using screening tools to identify neuropathic pain. Pain 2007, 127, 199–203. [Google Scholar] [CrossRef]
- Moulin, D.E.; Clark, A.J.; Gilron, I.; Ware, M.A.; Watson, C.P.N.; Sessle, B.J.; Coderre, T.; Morley-Forster, P.K.; Stinson, J.; Boulanger, A.; et al. Pharmacological management of chronic neuropathic pain—Consensus statement and guidelines from the Canadian Pain Society. Pain Res. Manag. 2007, 12, 13–21. [Google Scholar] [CrossRef]
- Gronseth, G.; Cruccu, G.; Alksne, J.; Argoff, C.; Brainin, M.; Burchiel, K.; Nurmikko, T.; Zakrzewska, J.M. Practice parameter: The diagnostic evaluation and treatment of trigeminal neuralgia (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology and the European Federation of Neurological Societies. Neurology 2008, 71, 1183–1190. [Google Scholar] [CrossRef]
- Jensen, T.S.; Madsen, C.S.; Finnerup, N.B. Pharmacology and treatment of neuropathic pains. Curr. Opin. Neurol. 2009, 22, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.; Freynhagen, R.; Tölle, T.R.; Cloutier, C.; Leon, T.; Murphy, T.K.; Phillips, K. The efficacy and safety of pregabalin in the treatment of neuropathic pain associated with chronic lumbosacral radiculopathy. Pain 2010, 150, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.; Binder, A.; Wasner, G. Neuropathic pain: Diagnosis, pathophysiological mechanisms, and treatment. Lancet. Neurol. 2010, 9, 807–819. [Google Scholar] [CrossRef] [PubMed]
- Moisset, X.; Bouhassira, D.; Attal, N. French guidelines for neuropathic pain: An update and commentary. Rev. Neurol. 2021, 177, 834–837. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet. Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef]
- Varshney, V.; Osborn, J.; Chaturvedi, R.; Shah, V.; Chakravarthy, K. Advances in the interventional management of neuropathic pain. Ann. Transl. Med. 2021, 9, 187. [Google Scholar] [CrossRef]
- Ghayur, M.N. Potential Adverse Consequences of Combination Therapy with Gabapentin and Pregabalin. Case Rep. Med. 2021, 2021, 1–4. [Google Scholar] [CrossRef]
- Cavalli, E.; Mammana, S.; Nicoletti, F.; Bramanti, P.; Mazzon, E. The neuropathic pain: An overview of the current treatment and future therapeutic approaches. Int. J. Immunopathol. Pharmacol. 2019, 33, 2058738419838383. [Google Scholar] [CrossRef]
- Kato, J.; Baba, M.; Kuroha, M.; Kakehi, Y.; Murayama, E.; Wasaki, Y.; Ohwada, S. Safety and Efficacy of Mirogabalin for Peripheral Neuropathic Pain: Pooled Analysis of Two Pivotal Phase III Studies. Clin. Ther. 2021, 43, 822–835.e16. [Google Scholar] [CrossRef]
- Akazawa, T.; Inoue, G.; Tanaka, M.; Umehara, T.; Nagai, T.; Oshita, Y.; Imura, T.; Miyagi, M.; Saito, W.; Sako, K.; et al. Somnolence and Dizziness During Mirogabalin Treatment in Patients With Neuropathic Pain Related to Lumbar Disease Who Switched From Pregabalin: A Retrospective Study. Glob. Spine J. 2021. [Google Scholar] [CrossRef]
- Obata, H. Analgesic Mechanisms of Antidepressants for Neuropathic Pain. Int. J. Mol. Sci. 2017, 18, 2483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinu, P.; Morsy, M.A.; Nair, A.B.; Al Mouslem, A.K.; Venugopala, K.N.; Goyal, M.; Bansal, M.; Jacob, S.; Deb, P.K. Novel Therapies for the Treatment of Neuropathic Pain: Potential and Pitfalls. J. Clin. Med. 2022, 11, 3002. [Google Scholar] [CrossRef] [PubMed]
- Szok, D.; Tajti, J.; Nyári, A.; Vécsei, L. Therapeutic Approaches for Peripheral and Central Neuropathic Pain. Behav. Neurol. 2019, 2019, 8685954. [Google Scholar] [CrossRef] [PubMed]
- Tzadok, R.; Ablin, J.N. Current and Emerging Pharmacotherapy for Fibromyalgia. Pain Res. Manag. 2020, 2020, 6541798–6541799. [Google Scholar] [CrossRef]
- Qureshi, Z.; Ali, M.N.; Khalid, M. An Insight into Potential Pharmacotherapeutic Agents for Painful Diabetic Neuropathy. J. Diabetes Res. 2022, 2022, 1–19. [Google Scholar] [CrossRef]
- Pergolizzi, J.V.; Raffa, R.B.; Taylor, R.; Rodriguez, G.; Nalamachu, S.; Langley, P. A review of duloxetine 60 mg once-daily dosing for the management of diabetic peripheral neuropathic pain, fibromyalgia, and chronic musculoskeletal pain due to chronic osteoarthritis pain and low back pain. Pain Pract. 2013, 13, 239–252. [Google Scholar] [CrossRef]
- Nudell, Y.; Dym, H.; Sun, F.; Benichou, M.; Malakan, J.; Halpern, L.R. Pharmacologic Management of Neuropathic Pain. Oral Maxillofac. Surg. Clin. North Am. 2022, 34, 61–81. [Google Scholar] [CrossRef]
- Voute, M.; Morel, V.; Pickering, G. Topical Lidocaine for Chronic Pain Treatment. Drug Des. Devel. Ther. 2021, 15, 4091. [Google Scholar] [CrossRef]
- Attal, N. Pharmacological treatments of neuropathic pain: The latest recommendations. Rev. Neurol. 2019, 175, 46–50. [Google Scholar] [CrossRef]
- Hermanns, H.; Hollmann, M.W.; Stevens, M.F.; Lirk, P.; Brandenburger, T.; Piegeler, T.; Werdehausen, R. Molecular mechanisms of action of systemic lidocaine in acute and chronic pain: A narrative review. Br. J. Anaesth. 2019, 123, 335–349. [Google Scholar] [CrossRef]
- Derry, S.; Rice, A.S.C.; Cole, P.; Tan, T.; Moore, R.A. Topical capsaicin (high concentration) for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2017, 1, CD007393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrams, R.M.C.; Pedowitz, E.J.; Simpson, D.M. A critical review of the capsaicin 8% patch for the treatment of neuropathic pain associated with diabetic peripheral neuropathy of the feet in adults. Expert Rev. Neurother. 2021, 21, 259–266. [Google Scholar] [CrossRef]
- Zhang, H.; Lian, Y.; Xie, N.; Chen, C.; Zheng, Y. Single-dose botulinum toxin type a compared with repeated-dose for treatment of trigeminal neuralgia: A pilot study. J. Headache Pain 2017, 18, 1–5. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Chen, Y.; Wang, T.; Sun, K.; Tang, H.; Shen, W.; Ji, F. Efficacy and Safety of Botulinum Toxin A and Pulsed Radiofrequency on Postherpetic Neuralgia: A Randomized Clinical Trial. Contrast Media Mol. Imaging 2022, 2022, 1–9. [Google Scholar] [CrossRef]
- Taheri, M.; Sedaghat, M.; Solhpour, A.; Rostami, P.; Safarpour Lima, B. The Effect of Intradermal Botulinum Toxin a injections on painful diabetic polyneuropathy. Diabetes Metab. Syndr. 2020, 14, 1823–1828. [Google Scholar] [CrossRef] [PubMed]
- Chun, A.; Levy, I.; Yang, A.; Delgado, A.; Tsai, C.Y.; Leung, E.; Taylor, K.; Kolakowsky-Hayner, S.; Huang, V.; Escalon, M.; et al. Treatment of at-level spinal cord injury pain with botulinum toxin A. Spinal Cord Ser. Cases 2019, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kocot-Kępska, M.; Zajaczkowska, R.; Mika, J.; Kopsky, D.J.; Wordliczek, J.; Dobrogowski, J.; Przeklasa-Muszyńska, A. Topical Treatments and Their Molecular/Cellular Mechanisms in Patients with Peripheral Neuropathic Pain-Narrative Review. Pharmaceutics 2021, 13, 450. [Google Scholar] [CrossRef]
- Sahoo, J.; Jena, D.; Viswanath, A.; Barman, A. Injection Botulinum Toxin A in Treatment of Resistant Chronic Low Back Pain: A Prospective Open-Label Study. Cureus 2021, 13, e17811. [Google Scholar] [CrossRef]
- Attal, N.; Bouhassira, D. Advances in the treatment of neuropathic pain. Curr. Opin. Neurol. 2021, 34, 631–637. [Google Scholar] [CrossRef]
- Rafiullah, M.; Siddiqui, K. Pharmacological Treatment of Diabetic Peripheral Neuropathy: An Update. CNS Neurol. Disord. Drug Targets 2022, 21, 884–900. [Google Scholar] [CrossRef]
- Hodder, S.L.; Feinberg, J.; Strathdee, S.A.; Shoptaw, S.; Altice, F.L.; Ortenzio, L.; Beyrer, C. The opioid crisis and HIV in the USA: Deadly synergies. Lancet 2021, 397, 1139–1150. [Google Scholar] [CrossRef] [PubMed]
- Bennici, A.; Mannucci, C.; Calapai, F.; Cardia, L.; Ammendolia, I.; Gangemi, S.; Calapai, G.; Soler, D.G. Safety of Medical Cannabis in Neuropathic Chronic Pain Management. Molecules 2021, 26, 6257. [Google Scholar] [CrossRef] [PubMed]
- Mücke, M.; Phillips, T.; Radbruch, L.; Petzke, F.; Häuser, W. Cannabis-based medicines for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2018, 3, CD012182. [Google Scholar] [CrossRef] [PubMed]
- Pierre, J.M. Psychosis associated with medical marijuana: Risk vs. benefits of medicinal cannabis use. Am. J. Psychiatry 2010, 167, 598–599. [Google Scholar] [CrossRef]
- Campos, R.M.P.; Aguiar, A.F.L.; Paes-Colli, Y.; Trindade, P.M.P.; Ferreira, B.K.; de Melo Reis, R.A.; Sampaio, L.S. Cannabinoid Therapeutics in Chronic Neuropathic Pain: From Animal Research to Human Treatment. Front. Physiol. 2021, 12, 2180. [Google Scholar] [CrossRef]
- Rice, A.S.C.; Dworkin, R.H.; Finnerup, N.B.; Attal, N.; Anand, P.; Freeman, R.; Piaia, A.; Callegari, F.; Doerr, C.; Mondal, S.; et al. Efficacy and safety of EMA401 in peripheral neuropathic pain: Results of 2 randomised, double-blind, phase 2 studies in patients with postherpetic neuralgia and painful diabetic neuropathy. Pain 2021, 162, 2578–2589. [Google Scholar] [CrossRef]
- Zakrzewska, J.M.; Palmer, J.; Morisset, V.; Giblin, G.M.; Obermann, M.; Ettlin, D.A.; Cruccu, G.; Bendtsen, L.; Estacion, M.; Derjean, D.; et al. Safety and efficacy of a Nav1.7 selective sodium channel blocker in patients with trigeminal neuralgia: A double-blind, placebo-controlled, randomised withdrawal phase 2a trial. Lancet. Neurol. 2017, 16, 291–300. [Google Scholar] [CrossRef]
- Price, N.; Namdari, R.; Neville, J.; Proctor, K.J.W.; Kaber, S.; Vest, J.; Fetell, M.; Malamut, R.; Sherrington, R.P.; Pimstone, S.N.; et al. Safety and Efficacy of a Topical Sodium Channel Inhibitor (TV-45070) in Patients With Postherpetic Neuralgia (PHN): A Randomized, Controlled, Proof-of-Concept, Crossover Study, With a Subgroup Analysis of the Nav1.7 R1150W Genotype. Clin. J. Pain 2017, 33, 310–318. [Google Scholar] [CrossRef]
- Mathieson, S.; Lin, C.W.C.; Underwood, M.; Eldabe, S. Pregabalin and gabapentin for pain. BMJ 2020, 369, m1315. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence (NICE). Neuropathic Pain in Adults: Pharmacological Management in Non-Specialist Settings; National Institute for Health and Care Excellence (NICE): London, UK, 2020. [Google Scholar]
- Moisset, X.; Bouhassira, D.; Avez Couturier, J.; Alchaar, H.; Conradi, S.; Delmotte, M.H.; Lanteri-Minet, M.; Lefaucheur, J.P.; Mick, G.; Piano, V.; et al. Pharmacological and non-pharmacological treatments for neuropathic pain: Systematic review and French recommendations. Rev. Neurol. 2020, 176, 325–352. [Google Scholar] [CrossRef]
- Robertson, K.; Marshman, L.A.G.; Plummer, D.; Downs, E. Effect of Gabapentin vs Pregabalin on Pain Intensity in Adults With Chronic Sciatica: A Randomized Clinical Trial. JAMA Neurol. 2019, 76, 28–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaksi, A.; Özgönenel, L.; Özgönenel, B. The efficiency of gabapentin therapy in patients with lumbar spinal stenosis. Spine 2007, 32, 939–942. [Google Scholar] [CrossRef] [PubMed]
- Kasimcan, O.; Kaptan, H. Efficacy of gabapentin for radiculopathy caused by lumbar spinal stenosis and lumbar disk hernia. Neurol. Med. Chir. 2010, 50, 1070–1073. [Google Scholar] [CrossRef]
- Bussières, A.; Cancelliere, C.; Ammendolia, C.; Comer, C.M.; Al Zoubi, F.; Châtillon, C.E.; Chernish, G.; Cox, J.M.; Gliedt, J.A.; Haskett, D.; et al. Non-Surgical Interventions for Lumbar Spinal Stenosis Leading To Neurogenic Claudication: A Clinical Practice Guideline. J. Pain 2021, 22, 1015–1039. [Google Scholar] [CrossRef]
- Mathieson, S.; Maher, C.G.; McLachlan, A.J.; Latimer, J.; Koes, B.W.; Hancock, M.J.; Harris, I.; Day, R.O.; Billot, L.; Pik, J.; et al. Trial of Pregabalin for Acute and Chronic Sciatica. N. Engl. J. Med. 2017, 376, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Ebell, M.H. Pregabalin Does Not Decrease the Pain of Sciatica. Am. Fam. Physician 2017, 96, 260. [Google Scholar]
- Robertson, K.; Marshman, L.A.G.; Plummer, D. Pregabalin and gabapentin for the treatment of sciatica. J. Clin. Neurosci. 2016, 26, 1–7. [Google Scholar] [CrossRef]
- Giménez-Campos, M.S.; Pimenta-Fermisson-Ramos, P.; Díaz-Cambronero, J.I.; Carbonell-Sanchís, R.; López-Briz, E.; Ruíz-García, V. A systematic review and meta-analysis of the effectiveness and adverse events of gabapentin and pregabalin for sciatica pain. Aten. Primaria 2022, 54, 102144. [Google Scholar] [CrossRef]
- Attal, N.; Barrot, M. Is Pregabalin Ineffective in Acute or Chronic Sciatica? N. Engl. J. Med. 2017, 376, 1169–1170. [Google Scholar] [CrossRef]
- Deeks, E.D. Mirogabalin: First Global Approval. Drugs 2019, 79, 463–468. [Google Scholar] [CrossRef]
- Kim, K.; Isu, T.; Kokubo, R.; Iwamoto, N.; Morimoto, D.; Kawauchi, M.; Morita, A. Therapeutic Effect of Mirogabalin on Peripheral Neuropathic Pain due to Lumbar Spine Disease. Asian Spine J. 2021, 15, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, T.; Takatsuna, H.; Tabata, S.; Shiosakai, K.; Nakatani, T.; Konno, S. ichi Efficacy and Safety of Add-on Mirogabalin to NSAIDs in Lumbar Spinal Stenosis with Peripheral Neuropathic Pain: A Randomized, Open-Label Study. Pain Ther. 2022, 11, 1195–1214. [Google Scholar] [CrossRef] [PubMed]
- Dharmshaktu, P.; Tayal, V.; Kalra, B.S. Efficacy of antidepressants as analgesics: A review. J. Clin. Pharmacol. 2012, 52, 6–17. [Google Scholar] [CrossRef]
- Asensi-Cantó, A.; López-Abellán, M.D.; Castillo-Guardiola, V.; Hurtado, A.M.; Martínez-Penella, M.; Luengo-Gil, G.; Conesa-Zamora, P. Antitumoral Effects of Tricyclic Antidepressants: Beyond Neuropathic Pain Treatment. Cancers 2022, 14, 3248. [Google Scholar] [CrossRef] [PubMed]
- Marsden, J.; White, M.; Annand, F.; Burkinshaw, P.; Carville, S.; Eastwood, B.; Kelleher, M.; Knight, J.; O’Connor, R.; Tran, A.; et al. Medicines associated with dependence or withdrawal: A mixed-methods public health review and national database study in England. Lancet Psychiatry 2019, 6, 935–950. [Google Scholar] [CrossRef]
- Ilmanita, D.; Hidayati, H.B. Tricyclic Antidepressants in Chronic Low Back Pain: A Review. J. Islam. Pharm. 2019, 4, 21–26. [Google Scholar] [CrossRef]
- Orbai, A.-M.; Meyerhoff, J.O. The effectiveness of tricyclic antidepressants on lumbar spinal stenosis. Bull. NYU Hosp. Jt. Dis. 2010, 68, 22–24. [Google Scholar]
- Ferreira, G.E.; McLachlan, A.J.; Lin, C.W.C.; Zadro, J.R.; Abdel-Shaheed, C.; O’Keeffe, M.; Maher, C.G. Efficacy and safety of antidepressants for the treatment of back pain and osteoarthritis: Systematic review and meta-analysis. BMJ 2021, 372, m4825. [Google Scholar] [CrossRef]
- Park, K.; Kim, S.; Ko, Y.J.; Park, B.J. Duloxetine and cardiovascular adverse events: A systematic review and meta-analysis. J. Psychiatr. Res. 2020, 124, 109–114. [Google Scholar] [CrossRef]
- Gong, H.; Du, X.; Wu, L.; Wei, J.; Tan, Q.; Zhao, R.; Lei, M.; Zhao, L. Discontinuation Syndrome of Extended-Release Venlafaxine during the COVID-19 Epidemic. Psychiatr Danub 2021, 33, 121–122. [Google Scholar]
- Konno, S.; Oda, N.; Ochiai, T.; Alev, L. Randomized, Double-blind, Placebo-controlled Phase III Trial of Duloxetine Monotherapy in Japanese Patients With Chronic Low Back Pain. Spine 2016, 41, 1709–1717. [Google Scholar] [CrossRef] [PubMed]
- Cawston, H.; Davie, A.; Paget, M.A.; Skljarevski, V.; Happich, M. Efficacy of duloxetine versus alternative oral therapies: An indirect comparison of randomised clinical trials in chronic low back pain. Eur. Spine J. 2013, 22, 1996–2009. [Google Scholar] [CrossRef] [PubMed]
- Schukro, R.P.; Oehmke, M.J.; Geroldinger, A.; Heinze, G.; Kress, H.G.; Pramhas, S. Efficacy of Duloxetine in Chronic Low Back Pain with a Neuropathic Component: A Randomized, Double-blind, Placebo-controlled Crossover Trial. Anesthesiology 2016, 124, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Hirase, T.; Hirase, J.; Ling, J.; Kuo, P.H.; Hernandez, G.A.; Giwa, K.; Marco, R. Duloxetine for the Treatment of Chronic Low Back Pain: A Systematic Review of Randomized Placebo-Controlled Trials. Cureus 2021, 13, e15169. [Google Scholar] [CrossRef]
- Tsuji, O.; Kosugi, S.; Suzuki, S.; Nori, S.; Nagoshi, N.; Okada, E.; Fujita, N.; Yagi, M.; Nakamura, M.; Matsumoto, M.; et al. Effectiveness of Duloxetine for Postsurgical Chronic Neuropathic Disorders after Spine and Spinal Cord Surgery. Asian Spine J. 2021, 15, 650–658. [Google Scholar] [CrossRef]
- Santana, J.A.; Klass, S.; Felix, E.R. The Efficacy, Effectiveness and Safety of 5% Transdermal Lidocaine Patch for Chronic Low Back Pain: A Narrative Review. PMR 2020, 12, 1260–1267. [Google Scholar] [CrossRef]
- Hashmi, J.A.; Baliki, M.N.; Huang, L.; Parks, E.L.; Chanda, M.L.; Schnitzer, T.; Apkarian, A.V. Lidocaine patch (5%) is no more potent than placebo in treating chronic back pain when tested in a randomised double blind placebo controlled brain imaging study. Mol. Pain 2012, 8, 29. [Google Scholar] [CrossRef]
- Imamura, M.; Imamura, S.T.; Targino, R.A.; Morales-Quezada, L.; Onoda Tomikawa, L.C.; Onoda Tomikawa, L.G.; Alfieri, F.M.; Filippo, T.R.; Da Rocha, I.D.; Neto, R.B.; et al. Paraspinous Lidocaine Injection for Chronic Nonspecific Low Back Pain: A Randomized Controlled Clinical Trial. J. Pain 2016, 17, 569. [Google Scholar] [CrossRef]
- Frias, B.; Merighi, A. Capsaicin, Nociception and Pain. Molecules 2016, 21, 797. [Google Scholar] [CrossRef]
- Zis, P.; Bernali, N.; Argira, E.; Siafaka, I.; Vadalouca, A. Effectiveness and Impact of Capsaicin 8% Patch on Quality of Life in Patients with Lumbosacral Pain: An Open-label Study. Pain Physician 2016, 19, E1049–E1053. [Google Scholar] [CrossRef]
- Baron, R.; Treede, R.D.; Birklein, F.; Cegla, T.; Freynhagen, R.; Heskamp, M.L.; Kern, K.U.; Maier, C.; Rolke, R.; Seddigh, S.; et al. Treatment of painful radiculopathies with capsaicin 8% cutaneous patch. Curr. Med. Res. Opin. 2017, 33, 1401–1411. [Google Scholar] [CrossRef] [PubMed]
- Waseem, Z.; Boulias, C.; Gordon, A.; Ismail, F.; Sheean, G.; Furlan, A.D. Botulinum toxin injections for low-back pain and sciatica. Cochrane Database Syst. Rev. 2011, 1, CD008257. [Google Scholar] [CrossRef] [PubMed]
- Sloan, G.; Alam, U.; Selvarajah, D.; Tesfaye, S. The Treatment of Painful Diabetic Neuropathy. Curr. Diabetes Rev. 2022, 18, 42–96. [Google Scholar] [CrossRef] [PubMed]
- Pergolizzi, J.V.; Taylor, R.; LeQuang, J.A.; Raffa, R.B.; Bisney, J. Tapentadol Extended Release in the Treatment of Severe Chronic Low Back Pain and Osteoarthritis Pain. Pain Ther. 2018, 7, 37–57. [Google Scholar] [CrossRef]
- Freo, U.; Furnari, M.; Ambrosio, F.; Navalesi, P. Efficacy and tolerability of tapentadol for the treatment of chronic low back pain in elderly patients. Aging Clin. Exp. Res. 2021, 33, 973–982. [Google Scholar] [CrossRef]
- Van de Donk, T.; Van Cosburgh, J.; Van Dasselaar, T.; Van Velzen, M.; Drewes, A.M.; Dahan, A.; Niesters, M. Tapentadol treatment results in long-term pain relief in patients with chronic low back pain and associates with reduced segmental sensitization. Pain Rep. 2020, 5, E877. [Google Scholar] [CrossRef]
- Migliorini, F.; Maffulli, N.; Baroncini, A.; Eschweiler, J.; Tingart, M.; Quack, V. Opioids for chronic low back pain management: A Bayesian network meta-analysis. Expert Rev. Clin. Pharmacol. 2021, 14, 635–641. [Google Scholar] [CrossRef]
- Henson, J.V.; Varhabhatla, N.C.; Bebic, Z.; Kaye, A.D.; Yong, R.J.; Urman, R.D.; Merkow, J.S. Spinal Cord Stimulation for Painful Diabetic Peripheral Neuropathy: A Systematic Review. Pain Ther. 2021, 10, 895–908. [Google Scholar] [CrossRef]
- Moufarrij, N. Epidural hematomas after the implantation of thoracic paddle spinal cord stimulators. J. Neurosurg. 2016, 125, 982–985. [Google Scholar] [CrossRef]
- Eldabe, S.; Buchser, E.; Duarte, R.V. Complications of Spinal Cord Stimulation and Peripheral Nerve Stimulation Techniques: A Review of the Literature. Pain Med. 2016, 17, 325–336. [Google Scholar] [CrossRef]
- Peeters, J.B.; Raftopoulos, C. Tonic, Burst, High-Density, and 10-kHz High-Frequency Spinal Cord Stimulation: Efficiency and Patients’ Preferences in a Failed Back Surgery Syndrome Predominant Population. Review of Literature. World Neurosurg. 2020, 144, e331–e340. [Google Scholar] [CrossRef] [PubMed]
- Lind, G.; Winter, J.; Linderoth, B.; Hellström, P.M. Therapeutic value of spinal cord stimulation in irritable bowel syndrome: A randomized crossover pilot study. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, R887–R894. [Google Scholar] [CrossRef]
- Mehta, V.; Poply, K.; Ahmad, A.; Lascelles, J.; Elyas, A.; Sharma, S.; Ganeshan, B.; Ellamushi, H.; Nikolic, S. Effectiveness of high dose spinal cord stimulation for non-surgical intractable lumbar radiculopathy—HIDENS Study. Pain Pract. 2022, 22, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Hoikkanen, T.; Nissen, M.; Ikäheimo, T.M.; Jyrkkänen, H.K.; Huttunen, J.; Von Und Zu Fraunberg, M. Long-Term Outcome of Spinal Cord Stimulation in Complex Regional Pain Syndrome. Neurosurgery 2021, 89, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Mehta, V.; Poply, K.; Ahmad, A.; Lascelles, J.; Elyas, A.; Sharma, S.; Ganeshan, B.; Ellamushi, H.; Nikolic, S. The effect of short-term spinal cord electrical stimulation on patients with postherpetic neuralgia and its effect on sleep quality. Neuro Endocrinol. Lett. 2021, 42, 81–86. [Google Scholar]
- Galan, V.; Scowcroft, J.; Chang, P.; Li, S.; Staats, P.; Subbaroyan, J.; Caraway, D. Ten kHz spinal cord stimulation for the treatment of chronic peripheral polyneuropathy: 12-Month results from prospective open-label pilot study. Pain Pract. 2021, 21, 898–906. [Google Scholar] [CrossRef]
- Heijmans, L.; Joosten, E.A. Mechanisms and mode of action of spinal cord stimulation in chronic neuropathic pain. Postgrad. Med. 2020, 132, 17–21. [Google Scholar] [CrossRef]
- Towers, W.S.; Ding, Y.R.; Kurtom, K.H. Delayed upper extremity paresthesia post permanent implantation of five lead spinal cord stimulator for low back and lower extremity pain: A case report. Clin. Neurol. Neurosurg. 2015, 134, 72–74. [Google Scholar] [CrossRef]
- Kallewaard, J.W.; Edelbroek, C.; Terheggen, M.; Raza, A.; Geurts, J.W. A Prospective Study of Dorsal Root Ganglion Stimulation for Non-Operated Discogenic Low Back Pain. Neuromodulation 2020, 23, 196–202. [Google Scholar] [CrossRef]
- Chapman, K.B.; Nagrani, S.; Patel, K.V.; Yousef, T.; van Helmond, N. Lumbar Dorsal Root Ganglion Stimulation Lead Placement Using an Outside-In Technique in 4 Patients With Failed Back Surgery Syndrome: A Case Series. AA Pract. 2020, 14, e01300. [Google Scholar] [CrossRef]
- Yatziv, S.L.; Devor, M. Suppression of neuropathic pain by selective silencing of dorsal root ganglion ectopia using nonblocking concentrations of lidocaine. Pain 2019, 160, 2105–2114. [Google Scholar] [CrossRef] [PubMed]
- Stelter, B.; Karri, J.; Marathe, A.; Abd-Elsayed, A. Dorsal Root Ganglion Stimulation for the Treatment of Non-Complex Regional Pain Syndrome Related Chronic Pain Syndromes: A Systematic Review. Neuromodulation 2021, 24, 622–633. [Google Scholar] [CrossRef] [PubMed]
- Schu, S.; Gulve, A.; Eldabe, S.; Baranidharan, G.; Wolf, K.; Demmel, W.; Rasche, D.; Sharma, M.; Klase, D.; Jahnichen, G.; et al. Spinal cord stimulation of the dorsal root ganglion for groin pain-a retrospective review. Pain Pract. 2015, 15, 293–299. [Google Scholar] [CrossRef]
- Horan, M.; Jacobsen, A.H.; Scherer, C.; Rosenlund, C.; Gulisano, H.A.; Søe, M.; Sørensen, J.C.H.; Meier, K.; Blichfeldt-Eckhardt, M.R. Complications and Effects of Dorsal Root Ganglion Stimulation in the Treatment of Chronic Neuropathic Pain: A Nationwide Cohort Study in Denmark. Neuromodulation 2021, 24, 729–737. [Google Scholar] [CrossRef]
- Aceves-Serrano, L.; Neva, J.L.; Munro, J.; Parent, M.; Boyd, L.A.; Doudet, D.J. Continuous but not intermittent theta burst stimulation decreases striatal dopamine release and cortical excitability. Exp. Neurol. 2022, 354, 389–394. [Google Scholar] [CrossRef]
- Zhang, K.L.; Yuan, H.; Wu, F.F.; Pu, X.Y.; Liu, B.Z.; Li, Z.; Li, K.F.; Liu, H.; Yang, Y.; Wang, Y.Y. Analgesic Effect of Noninvasive Brain Stimulation for Neuropathic Pain Patients: A Systematic Review. Pain Ther. 2021, 10, 315. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Chang, M.C. Transcranial Direct Current Stimulation for the Management of Neuropathic Pain: A Narrative Review. Pain Physician 2021, 24, E771–E781. [Google Scholar] [CrossRef] [PubMed]
- Vaquero, J.; Zurita, M.; Rico, M.A.; Aguayo, C.; Fernández, C.; Gutiérrez, R.; Rodríguez-Boto, G.; Saab, A.; Hassan, R.; Ortega, C. Intrathecal administration of autologous bone marrow stromal cells improves neuropathic pain in patients with spinal cord injury. Neurosci. Lett. 2018, 670, 14–18. [Google Scholar] [CrossRef]
- Joshi, H.P.; Jo, H.J.; Kim, Y.H.; An, S.B.; Park, C.K.; Han, I. Stem Cell Therapy for Modulating Neuroinflammation in Neuropathic Pain. Int. J. Mol. Sci. 2021, 22, 4853. [Google Scholar] [CrossRef]
- Odonkor, C.A.; Orman, S.; Orhurhu, V.; Stone, M.E.; Ahmed, S. Spinal Cord Stimulation vs Conventional Therapies for the Treatment of Chronic Low Back and Leg Pain: A Systematic Review of Health Care Resource Utilization and Outcomes in the Last Decade. Pain Med. 2019, 20, 2479–2494. [Google Scholar] [CrossRef]
- Eckermann, J.M.; Pilitsis, J.G.; Vannaboutathong, C.; Wagner, B.J.; Province-Azalde, R.; Bendel, M.A. Systematic Literature Review of Spinal Cord Stimulation in Patients with Chronic Back Pain Without Prior Spine Surgery. Neuromodulation 2021, 25, 648–656. [Google Scholar] [CrossRef]
- Dones, I.; Levi, V. Spinal Cord Stimulation for Neuropathic Pain: Current Trends and Future Applications. Brain Sci. 2018, 8, 138. [Google Scholar] [CrossRef] [PubMed]
- De Vos, C.C.; Bom, M.J.; Vanneste, S.; Lenders, M.W.P.M.; De Ridder, D. Burst spinal cord stimulation evaluated in patients with failed back surgery syndrome and painful diabetic neuropathy. Neuromodulation 2014, 17, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Grider, J.; Manchikanti, L.; Carayannopoulos, A.; Sharma, M.L.; Balog, C.C.; Harned, M.E.; Grami, V.; Justiz, R.; Nouri, K.; Hayek, S.M.; et al. Effectiveness of Spinal Cord Stimulation in Chronic Spinal Pain: A Systematic Review. Pain Physician 2016, 19, E33–E54. [Google Scholar] [CrossRef]
- Campwala, Z.; Datta, P.; DiMarzio, M.; Sukul, V.; Feustel, P.J.; Pilitsis, J.G. Spinal Cord Stimulation to Treat Low Back Pain in Patients With and Without Previous Spine Surgery. Neuromodulation 2021, 24, 1363–1369. [Google Scholar] [CrossRef]
- Harrison, C.; Epton, S.; Bojanic, S.; Green, A.L.; FitzGerald, J.J. The Efficacy and Safety of Dorsal Root Ganglion Stimulation as a Treatment for Neuropathic Pain: A Literature Review. Neuromodulation Technol. Neural Interface 2018, 21, 225–233. [Google Scholar] [CrossRef]
- Chapman, K.B.; Groenen, P.S.; Vissers, K.C.; van Helmond, N.; Stanton-Hicks, M.D. The Pathways and Processes Underlying Spinal Transmission of Low Back Pain: Observations From Dorsal Root Ganglion Stimulation Treatment. Neuromodulation 2021, 24, 610–621. [Google Scholar] [CrossRef]
- Deer, T.R.; Levy, R.M.; Kramer, J.; Poree, L.; Amirdelfan, K.; Grigsby, E.; Staats, P.; Burton, A.W.; Burgher, A.H.; Obray, J.; et al. Dorsal root ganglion stimulation yielded higher treatment success rate for complex regional pain syndrome and causalgia at 3 and 12 months: A randomized comparative trial. Pain 2017, 158, 669–681. [Google Scholar] [CrossRef]
- Zang, Y.; Zhang, Y.; Lai, X.; Yang, Y.; Guo, J.; Gu, S.; Zhu, Y. Repetitive Transcranial Magnetic Stimulation for Neuropathic Pain on the Non-Motor Cortex: An Evidence Mapping of Systematic Reviews. Evid. Based. Complement. Alternat. Med. 2021, 2021, 1–16. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Mrudula, K.; Sreepada, S.S.; Sathyaprabha, T.N.; Pal, P.K.; Chen, R.; Udupa, K. An Overview of Noninvasive Brain Stimulation: Basic Principles and Clinical Applications. Can. J. Neurol. Sci. 2022, 49, 479–492. [Google Scholar] [CrossRef]
- Lefaucheur, J.P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef] [PubMed]
- McClintock, S.M.; Reti, I.M.; Carpenter, L.L.; McDonald, W.M.; Dubin, M.; Taylor, S.F.; Cook, I.A.; O’Reardon, J.; Husain, M.M.; Wall, C.; et al. Consensus Recommendations for the Clinical Application of Repetitive Transcranial Magnetic Stimulation (rTMS) in the Treatment of Depression. J. Clin. Psychiatry 2018, 79, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Gatzinsky, K.; Bergh, C.; Liljegren, A.; Silander, H.; Samuelsson, J.; Svanberg, T.; Samuelsson, O. Repetitive transcranial magnetic stimulation of the primary motor cortex in management of chronic neuropathic pain: A systematic review. Scand. J. Pain 2020, 21, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Attal, N.; Poindessous-Jazat, F.; De Chauvigny, E.; Quesada, C.; Mhalla, A.; Ayache, S.S.; Fermanian, C.; Nizard, J.; Peyron, R.; Lefaucheur, J.P.; et al. Repetitive transcranial magnetic stimulation for neuropathic pain: A randomized multicentre sham-controlled trial. Brain 2021, 144, 3328–3339. [Google Scholar] [CrossRef]
- Attia, M.; McCarthy, D.; Abdelghani, M. Repetitive Transcranial Magnetic Stimulation for Treating Chronic Neuropathic Pain: A Systematic Review. Curr. Pain Headache Rep. 2021, 25, 1–6. [Google Scholar] [CrossRef]
- Jiang, X.; Yan, W.; Wan, R.; Lin, Y.; Zhu, X.; Song, G.; Zheng, K.; Wang, Y.; Wang, X. Effects of repetitive transcranial magnetic stimulation on neuropathic pain: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2022, 132, 130–141. [Google Scholar] [CrossRef]
- Ambriz-Tututi, M.; Alvarado-Reynoso, B.; Drucker-Colín, R. Analgesic effect of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic low back pain. Bioelectromagnetics 2016, 37, 527–535. [Google Scholar] [CrossRef]
- Straudi, S.; Buja, S.; Baroni, A.; Pavarelli, C.; Pranovi, G.; Fregni, F.; Basaglia, N. The effects of transcranial direct current stimulation (tDCS) combined with group exercise treatment in subjects with chronic low back pain: A pilot randomized control trial. Clin. Rehabil. 2018, 32, 1348–1356. [Google Scholar] [CrossRef]
- Alwardat, M.; Pisani, A.; Etoom, M.; Carpenedo, R.; Chinè, E.; Dauri, M.; Leonardis, F.; Natoli, S. Is transcranial direct current stimulation (tDCS) effective for chronic low back pain? A systematic review and meta-analysis. J. Neural Transm. 2020, 127, 1257–1270. [Google Scholar] [CrossRef]
- Wilsey, B.; Marcotte, T.; Deutsch, R.; Gouaux, B.; Sakai, S.; Donaghe, H. Low Dose Vaporized Cannabis Significantly Improves Neuropathic Pain. J. Pain 2013, 14, 136. [Google Scholar] [CrossRef]
- Wilsey, B.; Marcotte, T.D.; Deutsch, R.; Zhao, H.; Prasad, H.; Phan, A. An Exploratory Human Laboratory Experiment Evaluating Vaporized Cannabis in the Treatment of Neuropathic Pain from Spinal Cord Injury and Disease. J. Pain 2016, 17, 982. [Google Scholar] [CrossRef] [PubMed]
- Szymoniuk, M.; Litak, J.; Sakwa, L.; Dryla, A.; Zezuliński, W.; Czyżewski, W.; Kamieniak, P.; Blicharski, T. Molecular Mechanisms and Clinical Application of Multipotent Stem Cells for Spinal Cord Injury. Cells 2022, 12, 120. [Google Scholar] [CrossRef] [PubMed]
- Puranik, N.; Arukha, A.P.; Yadav, S.K.; Yadav, D.; Jin, J.O. Exploring the Role of Stem Cell Therapy in Treating Neurodegenerative Diseases: Challenges and Current Perspectives. Curr. Stem Cell Res. Ther. 2022, 17, 113–125. [Google Scholar] [CrossRef]
- Ejma, M.; Madetko, N.; Brzecka, A.; Alster, P.; Budrewicz, S.; Koszewicz, M.; Misiuk-Hojło, M.; Tomilova, I.K.; Somasundaram, S.G.; Kirkland, C.E. The Role of Stem Cells in the Therapy of Stroke. Curr. Neuropharmacol. 2022, 20, 630–647. [Google Scholar] [CrossRef] [PubMed]
- Peterson, S.; Jalil, A.; Beard, K.; Kakara, M.; Sriwastava, S. Updates on efficacy and safety outcomes of new and emerging disease modifying therapies and stem cell therapy for Multiple Sclerosis: A review. Mult. Scler. Relat. Disord. 2022, 68, 104125. [Google Scholar] [CrossRef] [PubMed]
- Yousof, S.M.; Elsayed, D.A.; El-Baz, A.A.; Sallam, H.S.; Abbas, F. Combined Treatment of Adipose Derived-Mesenchymal Stem Cells and Pregabalin Is Superior to Monotherapy for the Treatment of Neuropathic Pain in Rats. Stem Cells Int. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Kotb, H.I.; Abedalmohsen, A.M.; Elgamal, A.F.; Mokhtar, D.M.; Abd-Ellatief, R.B. Preemptive Stem Cells Ameliorate Neuropathic Pain in Rats: A Central Component of Preemptive Analgesia. Microsc. Microanal. 2021, 27, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Song, T.; Wang, H.; Wang, W.; Zhang, Z.; Yan, R.; Ma, X.; Hu, Y. Intrathecal Injection of SIRT1-modified Human Mesenchymal Stem Cells Alleviates Neuropathic Pain in Rat. J. Mol. Neurosci. 2021, 71, 972–980. [Google Scholar] [CrossRef]
- Urits, I.; Capuco, A.; Sharma, M.; Kaye, A.D.; Viswanath, O.; Cornett, E.M.; Orhurhu, V. Stem Cell Therapies for Treatment of Discogenic Low Back Pain: A Comprehensive Review. Curr. Pain Headache Rep. 2019, 23, 65. [Google Scholar] [CrossRef]
- Atluri, S.; Murphy, M.B.; Dragella, R.; Herrera, J.; Boachie-Adjei, K.; Bhati, S.; Manocha, V.; Boddu, N.; Yerramsetty, P.; Syed, Z.; et al. Evaluation of the Effectiveness of Autologous Bone Marrow Mesenchymal Stem Cells in the Treatment of Chronic Low Back Pain Due to Severe Lumbar Spinal Degeneration: A 12-Month, Open-Label, Prospective Controlled Trial. Pain Physician 2022, 25, 193–207. [Google Scholar]
- Amirdelfan, K.; Bae, H.; McJunkin, T.; DePalma, M.; Kim, K.; Beckworth, W.J.; Ghiselli, G.; Bainbridge, J.S.; Dryer, R.; Deer, T.R.; et al. Allogeneic mesenchymal precursor cells treatment for chronic low back pain associated with degenerative disc disease: A prospective randomized, placebo-controlled 36-month study of safety and efficacy. Spine J. 2021, 21, 212–230. [Google Scholar] [CrossRef] [PubMed]
- Sommer, C.; Leinders, M.; Üçeyler, N. Inflammation in the pathophysiology of neuropathic pain. Pain 2018, 159, 595–602. [Google Scholar] [CrossRef]
- Lees, J.G.; Duffy, S.S.; Moalem-Taylor, G. Immunotherapy targeting cytokines in neuropathic pain. Front. Pharmacol. 2013, 4, 142. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Ma, X.; Sun, C.; Han, J.; Zhou, C.; Chan, M.T.V.; Wu, W.K.K. Emerging roles of circular RNAs in neuropathic pain. Cell Prolif. 2021, 54, e13139. [Google Scholar] [CrossRef]
- Balogh, M.; Aguilar, C.; Nguyen, N.T.; Shepherd, A.J. Angiotensin receptors and neuropathic pain. Pain Rep. 2021, 6, e869. [Google Scholar] [CrossRef]
- Smith, M.T.; Anand, P.; Rice, A.S.C. Selective small molecule angiotensin II type 2 receptor antagonists for neuropathic pain: Preclinical and clinical studies. Pain 2016, 157, S33–S41. [Google Scholar] [CrossRef] [PubMed]
- Rice, A.S.C.; Dworkin, R.H.; McCarthy, T.D.; Anand, P.; Bountra, C.; McCloud, P.I.; Hill, J.; Cutter, G.; Kitson, G.; Desem, N.; et al. EMA401, an orally administered highly selective angiotensin II type 2 receptor antagonist, as a novel treatment for postherpetic neuralgia: A randomised, double-blind, placebo-controlled phase 2 clinical trial. Lancet 2014, 383, 1637–1647. [Google Scholar] [CrossRef]
- Wang, H.; Romano, G.; Fedgchin, M.; Russell, L.; Sanga, P.; Kelly, K.M.; Frustaci, M.E.; Thipphawong, J. Fulranumab in Patients With Pain Associated with Postherpetic Neuralgia and Postraumatic Neuropathy: Efficacy, Safety, and Tolerability Results From a Randomized, Double-blind, Placebo-controlled, Phase-2 Study. Clin. J. Pain 2017, 33, 99–108. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, N.; He, L.; Yang, M.; Zhu, C.; Wu, F. Oxcarbazepine for neuropathic pain. Cochrane Database Syst. Rev. 2017, 12, CD007963. [Google Scholar] [CrossRef]
- Rao, P.N.; Mainkar, O.; Bansal, N.; Rakesh, N.; Haffey, P.; Urits, I.; Orhurhu, V.; Kaye, A.D.; Urman, R.D.; Gulati, A.; et al. Flavonoids in the Treatment of Neuropathic Pain. Curr. Pain Headache Rep. 2021, 25, 1–10. [Google Scholar] [CrossRef]
- Saito, H.; Wakai, J.; Sekiguchi, M.; Kikuchi, S.; Konno, S. The effect of selective serotonin reuptake inhibitor (SSRI) on pain-related behavior in a rat model of neuropathic pain. Eur. Spine J. 2014, 23, 2401–2409. [Google Scholar] [CrossRef] [PubMed]
- Foley, P.; Parker, R.A.; de Angelis, F.; Connick, P.; Chandran, S.; Young, C.; Weir, C.J.; Chataway, J. Efficacy of Fluoxetine, Riluzole and Amiloride in treating neuropathic pain associated with secondary progressive multiple sclerosis. Pre-specified analysis of the MS-SMART double-blind randomised placebo-controlled trial. Mult. Scler. Relat. Disord. 2022, 63, 103925. [Google Scholar] [CrossRef] [PubMed]
- Aiyer, R.; Mehta, N.; Gungor, S.; Gulati, A. A Systematic Review of NMDA Receptor Antagonists for Treatment of Neuropathic Pain in Clinical Practice. Clin. J. Pain 2018, 34, 450–467. [Google Scholar] [CrossRef] [PubMed]
Study | Spine Disease | Frequency of Neuropathic Pain (Number of Patients) |
---|---|---|
Kim et al. [94] | Overall | 36.4% (404) |
Stenosis with instability | 31.7% (64) | |
Stenosis without instability | 39.5% (219) | |
Herniated lumbar disc | 34.7% (119) | |
Degenerative lumbar scoliosis | 22.2% (2) | |
Park et al. [95] | Overall | 36.0% (31) |
Radicular pain | 63.4% (24) | |
Neurogenic claudication | 15.6% (7) | |
Yamashita et al. [13] | Overall | 53.5% (993) |
Spondylotic myelopathy | 77.3% | |
Ligament ossification | 75.7% | |
Low back pain | 29.4% | |
Spondylolysis | 40.4% | |
Radiculopathy | 56.9% | |
El Sissi et al. [14] | Overall | 55% (628) |
Pharmacological Agent | Mechanism of Action | Clinical Effectiveness | Adverse Effects | Recommendation by FG [104] | References |
---|---|---|---|---|---|
Pregabalin | binding to the α2-δ subunit of presynaptic voltage-gated Ca2+ channels in the dorsal horn of the spinal cord | postherpetic neuralgia, spinal cord injury, phantom limb syndrome and diabetes-induced neuropathy | peripheral edema, somnolence, dizziness, xerostomia and obesity | Second-line treatment | [106,107,108] |
Gabapentin | First-line treatment | ||||
Mirogabalin | postherpetic neuralgia and diabetic neuropathic pain | somnolence, dizziness | Not recommended | [109,110] | |
Tricyclic Antidepressants | increasing the level of noradrenaline in the dorsal horn of the spinal cord and locus coeruleus | postherpetic neuralgia, central postpartum pain, pain after spinal cord injury, and nerve injury | cognitive impairment, walking disturbances, urinary retention, constipation, dry mouth, and orthostatic hypotension | First-line treatment | [105,108,111,112,113] |
serotonin and norepinephrine reuptake inhibitors | increasing the level of noradrenaline in the dorsal horn of the spinal cord and locus coeruelus | fibromyalgia, diabetic neuropathy, and low back pain | lack of appetite, constipation, dry mouth, anxiety, hyperhidrosis and nausea | First-line treatment | [111,114,115,116,117] |
Topical lidocaine | blocking voltage-gated Na+ channels | postherpetic neuralgia, postsurgical chronic neuropathic pain and diabetic peripheral neuropathy | skin irritation | First-line treatment | [118,119,120] |
Capsaicin patches | modulation of transient receptor potential cation channel vanilloid subfamily member 1 (TRPV1) | diabetic peripheral neuropathy, postherpetic neuralgia and HIV neuropathies | skin irritation | Second-line treatment | [105,121,122] |
Botulinum toxin A | modulation of both peripheral and central sensitizations | trigeminal neuralgia, postherpetic neuralgia, diabetic peripheral neuropathy and pain after spinal cord injury | transient injection site pain | Second-line treatment | [123,124,125,126,127,128] |
Tramadol | µ-opioid agonist and 5-HT reuptake inhibitor | peripheral neuropathic pain | Somnolence, confusion, and the risk of misuse and addiction | Second-line treatment | [112,129,130,131] |
Cannabis-based medicines | binding to the CB1 and CB2 receptors, COX-2 inhibition | low-quality evidence for chronic neuropathic pain | somnolence, confusion, dizziness, headaches, dry mouth, diarrhea, constipation, impaired neurocognitive performance and psychosis | Not recommended | [132,133,134,135] |
EMA401 | Angiotensin II type 2 receptor (ATR2) inhibition | postherpetic neuralgia and painful diabetic neuropathy | risk of long-term hepatotoxicity | Not recommended | [136] |
TV-45070 and BIIB074 | NaV1.7 inhibition | postherpetic neuralgia | local skin reactions where application site pain and pruritus (TV-45070); headache, pyrexia, nasopharyngitis, sleep disorder and tremor (BIIB074) | Not recommended | [137,138] |
Therapeutic Approach | Mechanism of Action | Clinical Effectiveness | Adverse Effects | Recommendation by French Guidelines [104] | References |
---|---|---|---|---|---|
Spinal Cord Stimulation | inhibition of the C and Aδ-fibers, and an increase in GABA and serotonin levels in the spinal cord | peripheral diabetic neuropathy, failed back surgery syndrome, irritable bowel syndrome, painful radiculopathy, complex regional pain syndrome, postherpetic neuralgia and chronic low back pain | pain at the generator site, infection, nerve injury, epidural hematoma, hardware failures | Third-line treatment | [112,179,180,181,182,183,184,185,186,187,188,189] |
Dorsal Root Ganglion Stimulation | inhibition of the C and Aδ-fibers, and an increase in GABA and serotonin levels in the dorsal horn of the spinal cord | discogenic low back pain, failed back surgery syndrome, phantom limb pain, complex regional pain syndrome and postherniorrhaphy groin pain | lead fractures, nerve injury | Not recommended | [190,191,192,193,194,195] |
Repetitive Transcranial Magnetic Stimulation | inducing the release of striatal dopamine in the brain cortex through magnetic stimulus | pain after spinal cord injury, phantom limb pain, pain secondary to malignancy, postherpetic neuralgia, diabetic neuropathy, chronic low back pain | headache, tinnitus, burning and seizures | Third-line treatment | [141,196,197] |
Transcranial Direct Current Stimulation | inducing the release of striatal dopamine in the brain cortex through electric stimulus | traumatic spinal cord injury, stroke, multiple sclerosis, fibromyalgia, trigeminal neuralgia and diabetes | headache, tinnitus, burning and seizures | Not recommended | [196,197,198] |
Stem Cell Therapy | anti-inflammatory effect, suppression of central sensitization and inhibition of glial cell activation | uncertain evidence for neuropathic pain after spinal cord injury | fever, headache, infections, potential cancerogenicity | Not recommended | [199,200] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielewicz, J.; Kamieniak, M.; Szymoniuk, M.; Litak, J.; Czyżewski, W.; Kamieniak, P. Diagnosis and Management of Neuropathic Pain in Spine Diseases. J. Clin. Med. 2023, 12, 1380. https://doi.org/10.3390/jcm12041380
Bielewicz J, Kamieniak M, Szymoniuk M, Litak J, Czyżewski W, Kamieniak P. Diagnosis and Management of Neuropathic Pain in Spine Diseases. Journal of Clinical Medicine. 2023; 12(4):1380. https://doi.org/10.3390/jcm12041380
Chicago/Turabian StyleBielewicz, Joanna, Maciej Kamieniak, Michał Szymoniuk, Jakub Litak, Wojciech Czyżewski, and Piotr Kamieniak. 2023. "Diagnosis and Management of Neuropathic Pain in Spine Diseases" Journal of Clinical Medicine 12, no. 4: 1380. https://doi.org/10.3390/jcm12041380
APA StyleBielewicz, J., Kamieniak, M., Szymoniuk, M., Litak, J., Czyżewski, W., & Kamieniak, P. (2023). Diagnosis and Management of Neuropathic Pain in Spine Diseases. Journal of Clinical Medicine, 12(4), 1380. https://doi.org/10.3390/jcm12041380