Temporomandibular Joint Osteoarthritis Diagnosis Employing Artificial Intelligence: Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Search Strategy
2.4. Selection Process and Data Collection Process
2.5. Study Risk of Bias Assessment
2.6. Effect Measures
2.7. Synthesis Methods
2.8. Reporting Bias Assessment
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Results of Syntheses
3.4. Risk of Bias Assessment in Studies
Criteria | Choi * [36] | Jung * [16] | Kim * [37] | Lee * [34] | Bianchi # [32] | De Dumast # [33] | Zhang # [35] |
---|---|---|---|---|---|---|---|
Patient selection | |||||||
Signaling questions | |||||||
Was a consecutive or random sample of patients enrolled? | unclear a | unclear | unclear | unclear | unclear | unclear | unclear |
Was a case-control design avoided? | yes | yes | yes | yes | no | unclear | no |
Did the study avoid inappropriate exclusions? | yes | yes | yes | yes | yes | unclear | yes |
Risk of bias assessment | unclear | high d | high d | unclear | high | unclear | high |
Applicability | low | low | high e | high f | high g | unclear | high h |
Index test | |||||||
Signaling questions | |||||||
Were the index test results interpreted without knowledge of the results of the reference standard? | yes | yes | yes | yes | yes | yes | yes |
If a threshold was used, was it pre-specified? | NA | NA | NA | NA | NA | NA | NA |
Risk of bias assessment | low | low | low | low | low | low | low |
Applicability | low | low | low | low | low | low | low |
Reference standard | |||||||
Signaling questions | |||||||
Is the reference standard likely to correctly classify the target condition? | unclear b | unclear b | no i | yes | unclear b | unclear b | unclear b |
Were the reference standard results interpreted without knowledge of the results of the index test? | yes | yes | yes | yes | yes | yes | yes |
Risk of bias assessment | unclear | unclear | high | low | unclear | unclear | unclear |
Applicability | low | low | low | low | low | low | low |
Flow and timing | |||||||
Signaling questions | |||||||
Was there an appropriate interval between index test(s) and reference standard? | yes | yes | yes | yes | yes | yes | yes |
Did all patients receive a reference standard? | yes | yes | yes | yes | yes | yes | yes |
Did patients receive the same reference standard? | unclear c | unclear c | unclear | yes | unclear | yes | unclear |
Were all patients included in the analysis? | yes | yes | yes | yes | yes | yes | yes |
Risk of bias assessment | unclear | unclear | unclear | low | unclear | low | unclear |
Study Design (Part 1) | Choi [36] | Jung [16] | Kim [37] | Lee [34] | Bianchi [32] | De Dumast [33] | Zhang [35] |
---|---|---|---|---|---|---|---|
The clinical problem in which the model will be employed is clearly detailed in the paper. | yes | yes | yes | yes | yes | yes | yes |
The research question is clearly stated. | yes | yes | yes | yes | yes | yes | yes |
The characteristics of the cohorts (training and test sets) are detailed in the text. | yes | yes | no | yes | yes | no | yes |
The cohorts (training and test sets) are shown to be representative of real-world clinical settings. | yes | no | no | no | no | no | no |
The state-of-the-art solution used as a baseline for comparison has been identified and detailed. | yes | unclear | unclear | yes | unclear | unclear | unclear |
Data and optimization (Parts 2, 3) | |||||||
The origin of the data is described, and the original format is detailed in the paper. | yes | yes | no | yes | yes | no | yes |
Transformations of the data before it is applied to the proposed model are described. | no | no | no | no | yes | yes | yes |
The independence between the training and test sets has been proven in the paper. | yes | yes | yes | yes | yes | yes | yes |
Details on the models that were evaluated, and the code developed to select the best model are provided. | yes * | yes * | yes * | yes * | yes * | yes * | yes * |
Is the input data type structured or unstructured? | uns | uns | uns | uns | both | both | both |
Model performance (Part 4) | |||||||
The primary metric selected to evaluate algorithm performance (e.g., AUC, F-score, etc.), including the justification for selection, has been clearly stated. | yes a | yes a | yes a | yes a | yes a | no | yes |
The primary metric selected to evaluate the clinical utility of the model (e.g., PPV, NNT, etc.), including the justification for selection, has been clearly stated. | yes a | yes a | yes a | yes a | yes a | no | yes |
The performance comparison between the baseline and the proposed model is presented with the appropriate statistical significance. | yes | yes b | yes b | yes b | yes b | yes b | yes |
Model examination (Part 5) | |||||||
Examination technique 1a | no | no | no | no | no | no | no |
Examination technique 2a | no | no | no | no | no | no | no |
A discussion of the relevance of the examination results with respect to model/algorithm performance is presented. | yes | yes | yes | yes | yes | no | yes |
A discussion of the feasibility and significance of model interpretability at the case level if examination methods are uninterpretable is presented. | NA | NA | NA | NA | NA | NA | NA |
A discussion of the reliability and robustness of the model as the underlying data distribution shifts is included. | no | no | no | no | no | no | no |
Reproducibility (Part 6): Choose the appropriate tier of transparency | |||||||
Tier 1: Complete sharing of the code. | no | no | no | no | yes | yes | no |
Tier 2: Allow a third party to evaluate the code for accuracy/fairness; share the results of this evaluation. | no | no | no | no | no | no | no |
Tier 3: Release of a virtual machine (binary) for running the code on new data without sharing its details. | no | no | no | no | no | no | no |
Tier 4: No sharing. | yes | yes | yes | yes | no | no | yes |
4. Discussion
4.1. Limitations
4.2. Study Strengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cohen, S. The Basics of Machine Learning: Strategies and Techniques. In Artificial Intelligence and Deep Learning in Pathology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 13–40. ISBN 978-0-323-67538-3. [Google Scholar]
- Bianchi, J.; Ruellas, A.; Prieto, J.C.; Li, T.; Soroushmehr, R.; Najarian, K.; Gryak, J.; Deleat-Besson, R.; Le, C.; Yatabe, M.; et al. Decision Support Systems in Temporomandibular Joint Osteoarthritis: A Review of Data Science and Artificial Intelligence Applications. Semin. Orthod. 2021, 27, 78–86. [Google Scholar] [CrossRef]
- Yu, K.-H.; Beam, A.L.; Kohane, I.S. Artificial Intelligence in Healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef]
- Obwegeser, D.; Timofte, R.; Mayer, C.; Eliades, T.; Bornstein, M.M.; Schätzle, M.A.; Patcas, R. Using Artificial Intelligence to Determine the Influence of Dental Aesthetics on Facial Attractiveness in Comparison to Other Facial Modifications. Eur. J. Orthod. 2022, 44, 445–451. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, K.B.; Choo, H. New Frontier in Advanced Dentistry: CBCT, Intraoral Scanner, Sensors, and Artificial Intelligence in Dentistry. Sensors 2022, 22, 2942. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Kobayashi, E.; Fan, B.; Hara, K.; Nakagawa, K.; Masamune, K.; Sakuma, I.; Suenaga, H. Machine-Learning-Based Approach for Predicting Postoperative Skeletal Changes for Orthognathic Surgical Planning. Robot. Comput. Surg. 2022, 18, e2379. [Google Scholar] [CrossRef]
- Morgan, N.; Van Gerven, A.; Smolders, A.; de Faria Vasconcelos, K.; Willems, H.; Jacobs, R. Convolutional Neural Network for Automatic Maxillary Sinus Segmentation on Cone-Beam Computed Tomographic Images. Sci. Rep. 2022, 12, 7523. [Google Scholar] [CrossRef]
- Jubair, F.; Al-Karadsheh, O.; Malamos, D.; Al Mahdi, S.; Saad, Y.; Hassona, Y. A Novel Lightweight Deep Convolutional Neural Network for Early Detection of Oral Cancer. Oral. Dis. 2022, 28, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Fang, Y.; Mei, L.; Zhang, B.; Yu, B.; Liu, J.; Jiang, C.; Sun, Y.; Ma, L.; Huang, J.; et al. A Fully Automatic AI System for Tooth and Alveolar Bone Segmentation from Cone-Beam CT Images. Nat. Commun. 2022, 13, 2096. [Google Scholar] [CrossRef] [PubMed]
- Mahto, R.K.; Kafle, D.; Giri, A.; Luintel, S.; Karki, A. Evaluation of Fully Automated Cephalometric Measurements Obtained from Web-Based Artificial Intelligence Driven Platform. BMC Oral Health 2022, 22, 132. [Google Scholar] [CrossRef]
- Lee, S.-C.; Hwang, H.-S.; Lee, K.C. Accuracy of Deep Learning-Based Integrated Tooth Models by Merging Intraoral Scans and CBCT Scans for 3D Evaluation of Root Position during Orthodontic Treatment. Prog. Orthod. 2022, 23, 15. [Google Scholar] [CrossRef]
- Hung, K.F.; Ai, Q.Y.H.; Leung, Y.Y.; Yeung, A.W.K. Potential and Impact of Artificial Intelligence Algorithms in Dento-Maxillofacial Radiology. Clin. Oral Investig. 2022, 26, 5535–5555. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Cheng, M.; Wang, S.; Li, F.; Zhou, Q. Automatic Detection of Anteriorly Displaced Temporomandibular Joint Discs on Magnetic Resonance Images Using a Deep Learning Algorithm. Dentomaxillofacal Radiol. 2022, 51, 20210341. [Google Scholar] [CrossRef] [PubMed]
- De Lima, E.D.; Paulino, J.A.S.; Freitas, A.P.L.D.F.; Ferreira, J.E.V.; Barbosa, J.D.S.; Silva, D.F.B.; Bento, P.M.; Amorim, A.M.A.M.; Melo, D.P. Artificial Intelligence and Infrared Thermography as Auxiliary Tools in the Diagnosis of Temporomandibular Disorder. Dentomaxillofacal Radiol. 2022, 51, 20210318. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.; Lee, K.-E.; Suh, B.-J.; Seok, H.; Lee, D.-W. Deep Learning for Osteoarthritis Classification in Temporomandibular Joint. Oral Dis. 2021, 1–10, online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Bianchi, J.; Turkestani, N.A.; Le, C.; Deleat-Besson, R.; Ruellas, A.; Cevidanes, L.; Yatabe, M.; Goncalves, J.; Benavides, E.; et al. Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markers. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2021, 2021, 1810–1813. [Google Scholar] [CrossRef]
- Deveza, L.A.; Loeser, R.F. Is Osteoarthritis One Disease or a Collection of Many? Rheumatology 2018, 57, iv34–iv42. [Google Scholar] [CrossRef] [Green Version]
- Alzahrani, A.; Yadav, S.; Gandhi, V.; Lurie, A.G.; Tadinada, A. Incidental Findings of Temporomandibular Joint Osteoarthritis and Its Variability Based on Age and Sex. Imaging Sci. Dent 2020, 50, 245–253. [Google Scholar] [CrossRef]
- Bernhardt, O.; Biffar, R.; Kocher, T.; Meyer, G. Prevalence and Clinical Signs of Degenerative Temporomandibular Joint Changes Validated by Magnetic Resonance Imaging in a Non-Patient Group. Ann. Anat. 2007, 189, 342–346. [Google Scholar] [CrossRef]
- Schmitter, M.; Essig, M.; Seneadza, V.; Balke, Z.; Schröder, J.; Rammelsberg, P. Prevalence of Clinical and Radiographic Signs of Osteoarthrosis of the Temporomandibular Joint in an Older Persons Community. Dentomaxillofacal Radiol. 2010, 39, 231–234. [Google Scholar] [CrossRef]
- Tanaka, E.; Detamore, M.S.; Mercuri, L.G. Degenerative Disorders of the Temporomandibular Joint: Etiology, Diagnosis, and Treatment. J. Dent. Res. 2008, 87, 296–307. [Google Scholar] [CrossRef]
- Kalladka, M.; Quek, S.; Heir, G.; Eliav, E.; Mupparapu, M.; Viswanath, A. Temporomandibular Joint Osteoarthritis: Diagnosis and Long-Term Conservative Management: A Topic Review. J. Indian Prosthodont. Soc. 2014, 14, 6–15. [Google Scholar] [CrossRef]
- Song, H.; Lee, J.Y.; Huh, K.-H.; Park, J.W. Long-Term Changes of Temporomandibular Joint Osteoarthritis on Computed Tomography. Sci. Rep. 2020, 10, 6731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larheim, T.A.; Abrahamsson, A.-K.; Kristensen, M.; Arvidsson, L.Z. Temporomandibular Joint Diagnostics Using CBCT. Dentomaxillofacal Radiol. 2015, 44, 20140235. [Google Scholar] [CrossRef] [Green Version]
- Boeddinghaus, R.; Whyte, A. Computed Tomography of the Temporomandibular Joint. J. Med. Imaging Radiat. Oncol. 2013, 57, 448–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delpachitra, S.N.; Dimitroulis, G. Osteoarthritis of the Temporomandibular Joint: A Review of Aetiology and Pathogenesis. Br J. Oral. Maxillofac. Surg. 2021, 60, 387–396. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- EndNote. Available online: https://access.clarivate.com/login?app=endnote (accessed on 12 July 2022).
- Microsoft Excel (version 365); Microsoft: Redmond, WA, USA, 2019. Available online: https://office.microsoft.com/excel (accessed on 15 July 2022).
- Zotero; Corporation for Digital Scholarship: Vienna, VA, USA. Available online: https://www.zotero.org/ (accessed on 15 July 2022).
- Whiting, P.F. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Internet Med. 2011, 155, 529. [Google Scholar] [CrossRef]
- Norgeot, B.; Quer, G.; Beaulieu-Jones, B.K.; Torkamani, A.; Dias, R.; Gianfrancesco, M.; Arnaout, R.; Kohane, I.S.; Saria, S.; Topol, E.; et al. Minimum Information about Clinical Artificial Intelligence Modeling: The MI-CLAIM Checklist. Nat. Med. 2020, 26, 1320–1324. [Google Scholar] [CrossRef]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.; Welch, V. Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley & Sons: Chichester, UK, 2019. [Google Scholar]
- Bianchi, J.; de Oliveira Ruellas, A.C.; Gonçalves, J.R.; Paniagua, B.; Prieto, J.C.; Styner, M.; Li, T.; Zhu, H.; Sugai, J.; Giannobile, W.; et al. Osteoarthritis of the Temporomandibular Joint Can Be Diagnosed Earlier Using Biomarkers and Machine Learning. Sci. Rep. 2020, 10, 8012. [Google Scholar] [CrossRef]
- De Dumast, P.; Mirabel, C.; Cevidanes, L.; Ruellas, A.; Yatabe, M.; Ioshida, M.; Ribera, N.T.; Michoud, L.; Gomes, L.; Huang, C.; et al. A Web-Based System for Neural Network Based Classification in Temporomandibular Joint Osteoarthritis. Comput. Med. Imaging Graph. 2018, 67, 45–54. [Google Scholar] [CrossRef]
- Lee, K.S.; Kwak, H.J.; Oh, J.M.; Jha, N.; Kim, Y.J.; Kim, W.; Baik, U.B.; Ryu, J.J. Automated Detection of TMJ Osteoarthritis Based on Artificial Intelligence. J. Dent. Res. 2020, 99, 1363–1367. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.; Kim, D.; Lee, J.-Y.; Park, H.-K. Artificial Intelligence in Detecting Temporomandibular Joint Osteoarthritis on Orthopantomogram. Sci. Rep. 2021, 11, 10246. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Choi, E.; Jeong, H.G.; Chang, J.; Youm, S. Expert System for Mandibular Condyle Detection and Osteoarthritis Classification in Panoramic Imaging Using R-CNN and CNN. Appl. Sci. 2020, 10, 7464. [Google Scholar] [CrossRef]
- Jeon, S.; Lee, K.C. Comparison of Cephalometric Measurements between Conventional and Automatic Cephalometric Analysis Using Convolutional Neural Network. Prog. Orthod. 2021, 22, 14. [Google Scholar] [CrossRef]
PubMed |
(“osteoarthritis” [MeSH Terms] OR osteoarthritis [All Fields] OR “Degenerative joint disease” OR (“degenerative” AND “joint” AND “disease”)) AND (“temporomandibular joint” [MeSH Terms] OR (“temporomandibular” [All Fields] AND “joint” [All Fields]) OR “temporomandibular joint” [All Fields] OR “TMJ” [Title/Abstract] OR “temporomandibular joint disorders” [MeSH Terms] OR (“temporomandibular” [All Fields] AND “joint” [All Fields] AND “disorders” [All Fields]) OR “temporomandibular joint disorders” [All Fields] OR (“temporomandibular” [All Fields] AND “disorders” [All Fields]) OR “temporomandibular disorders” [All Fields] OR “TMD” [Title/Abstract]) AND (“Artificial intelligence” [MeSH Terms] OR “Artificial intelligence” [All Fields] OR “machine intelligence” [All Fields] OR “Machine Learning” [MeSH Terms] OR “Machine Learning” [All Fields] OR “Deep Learning” [MeSH Terms] OR “Deep Learning” [All Fields] OR (“Learning” AND (“supervised” OR “unsupervised”)) OR “Support Vector Machines” [All Fields] OR “Random forest” [All Fields] OR “classifier” [All Fields] OR “classification algorithm” [All Fields] OR “cross validation” [All Fields] OR “data mining” [All Fields] OR “feature detection” [All Fields] OR “feature extraction” [All Fields] OR “feature learning” [All Fields] OR “feature selection” [All Fields] OR “k nearest neighbor” [All Fields] OR “pattern recognition” [All Fields] OR “KNN” [All Fields] OR “K-means” [All Fields] OR “Principal Component Analysis” OR “XGBoost” [All Fields] OR “LightGBM” [All Fields] OR “Neural Network” [All Fields] OR “Tensorflow” [All Fields] OR “PyTorch” [All Fields] OR “Keras” [All Fields] OR “ResNet” [All Fields]) |
EMBASE |
(‘osteoarthritis’/exp OR osteoarthritis OR ‘degenerative joint disease’/exp OR ‘degenerative joint disease’ OR (‘degenerative AND (‘joint’/exp OR ‘joint’) AND (‘disease’/exp OR ‘disease’))) AND (‘temporomandibular’ AND (‘joint’/exp OR ‘joint’) OR ‘temporomandibular joint’/exp OR ‘temporomandibular joint’ OR ‘tmj’ OR (‘temporomandibular’ AND (‘joint’/exp OR ‘joint’) AND (‘disorders’/exp OR ‘disorders’)) OR ‘temporomandibular joint disorders’/exp OR ‘temporomandibular joint disorders’ OR (‘temporomandibular’ AND (‘disorders’/exp OR ‘disorders’)) OR ‘temporomandibular disorders’ OR ‘tmd’) AND (‘artificial intelligence’/exp OR ‘artificial intelligence’ OR ‘machine learning’/exp OR ‘machine learning’ OR ‘deep learning’/exp OR ‘deep learning’ OR ‘deep neural network’/exp OR ‘deep neural network’ OR ((‘learning’/exp OR ‘learning’) AND (‘supervised’ OR ‘unsupervised’)) OR ‘support vector machines’/exp OR ‘support vector machines’ OR ‘random forest’/exp OR ‘random forest’ OR ‘classifier’/exp OR ‘classifier’ OR ‘knn’ OR ‘k-means’ OR ‘principal component analysis’/exp OR ‘principal component analysis’ OR ‘xgboost’/exp OR ‘xgboost’ OR ‘lightgbm’ OR ‘neural network’/exp OR ‘neural network’ OR ‘tensorflow’/exp OR ‘tensorflow’ OR ‘pytorch’ OR ‘keras’ OR ‘resnet’/exp OR ‘resnet’) |
Scopus |
ALL ((“osteoarthritis” OR “degenerative joint disease” OR (“degenarative” AND “joint” AND “disease”)) AND ((“temporomandibular” AND “joint”) OR “temporomandibular joint” OR “tmj” OR (“temporomandibular” AND “joint” AND “disorders”) OR “temporomandibular joint disorders” OR (“temporomandibular” AND “disorders”) OR “temporomandibular disorders” OR “tmd”) AND (“artificial intelligence” OR “machine learning” OR “deep learning” OR “deep neural network” OR (“learning” AND (“supervised” OR “unsupervised”)) OR “support vector machines” OR “random forest” OR “classifier” OR “knn” OR “k-means” OR “principal component analysis” OR “xgboost” OR “lightgbm” OR “neural network” OR “tensorflow” OR “pytorch” OR “keras” OR “resnet”)) AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “re”)) AND (LIMIT-TO (SUBJAREA, “DENT”)) |
Web of Science |
TS = ((“osteoarthritis” OR “degenerative joint disease” OR (“degenerative” AND “joint” AND “disease”)) AND ((“temporomandibular” AND “joint”) OR “temporomandibular joint” OR “tmj” OR (“temporomandibular” AND “joint” AND “disorders”) OR “temporomandibular joint disorders” OR (“temporomandibular” AND “disorders”) OR “temporomandibular disorders” OR “tmd”) AND (“artificial intelligence” OR “machine learning” OR “deep learning” OR “deep neural network” OR (“learning” AND (“supervised” OR “unsupervised”)) OR “support vector machines” OR “random forest” OR “classifier” OR “knn” OR “k-means” OR “principal component analysis” OR “xgboost” OR “lightgbm” OR “neural network” OR “tensorflow” OR “pytorch” OR “keras” OR “resnet”)) |
LILACS |
tw:((“osteoarthritis” OR “degenerative joint disease” OR (“degenerative” AND “joint” AND “disease”)) AND ((“temporomandibular” AND “joint”) OR “temporomandibular joint” OR “tmj” OR (“temporomandibular” AND “joint” AND “disorders”) OR “temporomandibular joint disorders” OR (“temporomandibular” AND “disorders”) OR “temporomandibular disorders” OR “tmd”) AND (“artificial intelligence” OR “machine learning” OR “deep learning” OR “deep neural network” OR (“learning” AND (“supervised” OR “unsupervised”)) OR “support vector machines” OR “random forest” OR “classifier” OR “knn” OR “k-means” OR “principal component analysis” OR “xgboost” OR “lightgbm” OR “neural network” OR “tensorflow” OR “pytorch” OR “keras” OR “resnet”)) |
Proquest |
(“osteoarthritis” OR “degenerative joint disease” OR (“degenerative” AND “joint” AND “disease”)) AND ((“temporomandibular” AND “joint”) OR “temporomandibular joint” OR “tmj” OR (“temporomandibular” AND “joint” AND “disorders”) OR “temporomandibular joint disorders” OR (“temporomandibular” AND “disorders”) OR “temporomandibular disorders” OR “tmd”) AND (“artificial intelligence” OR “machine learning” OR “deep learning” OR “deep neural network” OR (“learning” AND (“supervised” OR “unsupervised”)) OR “support vector machines” OR “random forest” OR “classifier” OR “knn” OR “k-means” OR “principal component analysis” OR “xgboost” OR “lightgbm” OR “neural network” OR “tensorflow” OR “pytorch” OR “keras” OR “resnet”); filters: article, peer-review, osteoarthritis |
SpringerLink |
“osteoarthritis” AND ((“temporomandibular” AND “joint”) OR (“temporomandibular” AND “disorders”) OR “TMJ” OR “TMD”) AND (“artificial intelligence” OR “machine learning” OR “deep learning” OR “neural network”); filters: article, Imaging/Radiology |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almășan, O.; Leucuța, D.-C.; Hedeșiu, M.; Mureșanu, S.; Popa, Ș.L. Temporomandibular Joint Osteoarthritis Diagnosis Employing Artificial Intelligence: Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 942. https://doi.org/10.3390/jcm12030942
Almășan O, Leucuța D-C, Hedeșiu M, Mureșanu S, Popa ȘL. Temporomandibular Joint Osteoarthritis Diagnosis Employing Artificial Intelligence: Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2023; 12(3):942. https://doi.org/10.3390/jcm12030942
Chicago/Turabian StyleAlmășan, Oana, Daniel-Corneliu Leucuța, Mihaela Hedeșiu, Sorana Mureșanu, and Ștefan Lucian Popa. 2023. "Temporomandibular Joint Osteoarthritis Diagnosis Employing Artificial Intelligence: Systematic Review and Meta-Analysis" Journal of Clinical Medicine 12, no. 3: 942. https://doi.org/10.3390/jcm12030942
APA StyleAlmășan, O., Leucuța, D.-C., Hedeșiu, M., Mureșanu, S., & Popa, Ș. L. (2023). Temporomandibular Joint Osteoarthritis Diagnosis Employing Artificial Intelligence: Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 12(3), 942. https://doi.org/10.3390/jcm12030942