Vagal Nerve Activity Predicts Prognosis in Diffused Large B-Cell Lymphoma and Multiple Myeloma
Abstract
:1. Introduction
2. Methods
2.1. Design
2.2. Patient Cohorts
2.3. Measures
2.4. Statistical Analysis
3. Results
3.1. Sample 1—R/R-DLBCL
3.1.1. Descriptive Statistics
3.1.2. Predictors of Survival in R/R-DLBCL
3.1.3. Mediation by CRP and LDH
3.1.4. Moderation by Vagal Nerve Activity
3.2. Sample 2—MM
3.2.1. Descriptive Statistics
3.2.2. Predictors of Progression in MM
3.2.3. Mediation by CRP and LDH
3.2.4. Moderation by Vagal Activity
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Morton, L.M.; Turner, J.J.; Cerhan, J.R.; Linet, M.S.; Treseler, P.A.; Clarke, C.A.; Jack, A.; Cozen, W.; Maynadié, M.; Spinelli, J.J.; et al. Proposed classification of lymphoid neoplasms for epidemiologic research from the Pathology Working Group of the International Lymphoma Epidemiology Consortium (InterLymph). Blood 2007, 110, 695–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Young, K.H.; Medeiros, L.J. Diffuse large B-cell lymphoma. Pathology 2018, 50, 74–87. [Google Scholar] [CrossRef] [Green Version]
- Marofi, F.; Rahman, H.S.; Achmad, M.H.; Sergeevna, K.N.; Suksatan, W.; Abdelbasset, W.K.; Mikhailova, M.V.; Shomali, N.; Yazdanifar, M.; Hassanzadeh, A.; et al. A Deep Insight into CAR-T Cell Therapy in Non-Hodgkin Lymphoma: Application, Opportunities, and Future Directions. Front. Immunol. 2021, 12, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Cowan, A.J.; Allen, C.; Barac, A.; Basaleem, H.; Bensenor, I.; Curado, M.P.; Foreman, K.; Gupta, R.; Harvey, J.; Hosgood, H.D.; et al. Global Burden of Multiple Myeloma: A Systematic Analysis for the Global Burden of Disease Study 2016. JAMA Oncol. 2018, 4, 1221–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- JE Joshua, D.; Bryant, C.; Dix, C.; Gibson, J.; Ho, J. Biology and therapy of multiple myeloma. Med. J. Aust. 2019, 210, 375–380. [Google Scholar] [CrossRef]
- Kyle, R.A.; Rajkumar, S.V. ASH 50th anniversary review. Blood 2008, 111, 2962–2972. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Liu, F.; Shen, J. The significance of chemokines in diffuse large B-cell lymphoma: A systematic review and future insights. Futur. Oncol. 2019, 15, 1385–1395. [Google Scholar] [CrossRef]
- Mogollón, P.; Díaz-Tejedor, A.; Algarín, E.M.; Paíno, T.; Garayoa, M.; Ocio, E.M. Biological Background of Resistance to Current Standards of Care in Multiple Myeloma. Cells 2019, 8, 1432. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Yang, J.; Liu, P.; He, X.; Zhang, C.; Zhou, S.; Zhou, L.; Qin, Y.; Song, Y.; Sun, Y.; et al. Prognostic Nomogram for Overall Survival in Patients with Diffuse Large B-Cell Lymphoma. Oncol. 2019, 24, e1251–e1261. [Google Scholar] [CrossRef] [Green Version]
- Sidiqi, M.H.; Aljama, M.A.; Bin Riaz, I.; Dispenzieri, A.; Muchtar, E.; Buadi, F.K.; Warsame, R.; Lacy, M.Q.; Dingli, D.; Leung, N.; et al. Bortezomib, lenalidomide, and dexamethasone (VRd) followed by autologous stem cell transplant for multiple myeloma. Blood Cancer J. 2018, 8, 106. [Google Scholar] [CrossRef]
- Kuo, T.B.J.; Lai, C.J.; Huang, Y.-T.; Yang, C.C.H. Regression Analysis between Heart Rate Variability and Baroreflex-Related Vagus Nerve Activity in Rats. J. Cardiovasc. Electrophysiol. 2005, 16, 864–869. [Google Scholar] [CrossRef]
- Gidron, Y.; Perry, H.; Glennie, M. Does the vagus nerve inform the brain about preclinical tumours and modulate them? Lancet Oncol. 2005, 6, 245–248. [Google Scholar] [CrossRef]
- Andersson, U.; Tracey, K.J. Neural reflexes in inflammation and immunity. J. Exp. Med. 2012, 209, 1057–1068. [Google Scholar] [CrossRef]
- Tsutsumi, T.; Ide, T.; Yamato, M.; Kudou, W.; Andou, M.; Hirooka, Y.; Utsumi, H.; Tsutsui, H.; Sunagawa, K. Modulation of the myocardial redox state by vagal nerve stimulation after experimental myocardial infarction. Cardiovasc. Res. 2007, 77, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Ylikoski, J.; Lehtimäki, J.; Pirvola, U.; Mäkitie, A.; Aarnisalo, A.; Hyvärinen, P.; Ylikoski, M. Non-invasive vagus nerve stimulation reduces sympathetic preponderance in patients with tinnitus. Acta Oto-Laryngol. 2017, 137, 426–431. [Google Scholar] [CrossRef] [Green Version]
- Entschladen, F.; Drell, T.L.t.; Lang, K.; Joseph, J.; Zaenker, K.S. Tumour-cell migration, invasion, and metastasis: Navigation by neurotransmitters. Lancet Oncol. 2004, 5, 254–258. [Google Scholar] [CrossRef]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef]
- Valko, M.; Izakovic, M.; Mazur, M.; Rhodes, C.J.; Telser, J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem. 2004, 266, 37–56. [Google Scholar] [CrossRef]
- Mouton, C.; Ronson, A.; Razavi, D.; Delhaye, F.; Kupper, N.; Paesmans, M.; Moreau, M.; Nogaret, J.-M.; Hendlisz, A.; Gidron, Y. The relationship between heart rate variability and time-course of carcinoembryonic antigen in colorectal cancer. Auton. Neurosci. 2012, 166, 96–99. [Google Scholar] [CrossRef] [Green Version]
- Shi, B.; Wang, L.; Yan, C.; Chen, D.; Liu, M.; Li, P. Nonlinear heart rate variability biomarkers for gastric cancer severity: A pilot study. Sci. Rep. 2019, 9, 13833. [Google Scholar] [CrossRef]
- De Couck, M.; Caers, R.; Spiegel, D.; Gidron, Y. The Role of the Vagus Nerve in Cancer Prognosis: A Systematic and a Comprehensive Review. J. Oncol. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloter, E.; Barrueto, K.; Klein, S.D.; Scholkmann, F.; Wolf, U. Heart Rate Variability as a Prognostic Factor for Cancer Survival—A Systematic Review. Front. Physiol. 2018, 9, 623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Ma, Z.; Zhang, L.; Zhou, S.; Wang, J.; Wang, B.; Fu, W. Heart rate variability in the prediction of survival in patients with cancer: A systematic review and meta-analysis. J. Psychosom. Res. 2016, 89, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Scheiber, C.; Johnston, L.; Packer, M.M.; Gevirtz, R.; Edwards, K.S.; Palesh, O. Heart Rate Variability Markers as Correlates of Survival in Recipients of Hematopoietic Cell Transplantation. Oncol. Nurs. Forum 2018, 45, 250–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasamsetti, S.B.; Florentin, J.; Coppin, E.; Stiekema, L.C.; Zheng, K.H.; Nisar, M.U.; Sembrat, J.; Levinthal, D.; Rojas, M.; Stroes, E.S.; et al. Sympathetic Neuronal Activation Triggers Myeloid Progenitor Proliferation and Differentiation. Immunity 2018, 49, 93–106.e7. [Google Scholar] [CrossRef] [Green Version]
- Hanns, P.; Paczulla, A.M.; Medinger, M.; Konantz, M.; Lengerke, C. Stress and catecholamines modulate the bone marrow microenvironment to promote tumorigenesis. Cell Stress 2019, 3, 221–235. [Google Scholar] [CrossRef] [Green Version]
- Nissen, M.D.; Sloan, E.K.; Mattarollo, S.R. β-Adrenergic Signaling Impairs Antitumor CD8+ T-cell Responses to B-cell Lymphoma Immunotherapy. Cancer Immunol. Res. 2018, 6, 98–109. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Sun, F.; D’Souza, A.; Dhakal, B.; Pisano, M.; Chhabra, S.; Stolley, M.; Hari, P.; Janz, S. Autonomic nervous system control of multiple myeloma. Blood Rev. 2020, 46, 100741. [Google Scholar] [CrossRef]
- Ota, A.; Hanamura, I.; Karnan, S.; Inaguma, S.; Takei, N.; Lam, V.Q.; Mizuno, S.; Kanasugi, J.; Wahiduzzaman; Rahman, L.; et al. Novel Interleukin-6 Inducible Gene PDZ-Binding Kinase Promotes Tumor Growth of Multiple Myeloma Cells. J. Interf. Cytokine Res. 2020, 40, 389–405. [Google Scholar] [CrossRef]
- Dlouhy, I.; Filella, X.; Rovira, J.; Magnano, L.; Rivas-Delgado, A.; Baumann, T.; Martínez-Trillos, A.; Balagué, O.; Martínez, A.; González-Farre, B.; et al. High serum levels of soluble interleukin-2 receptor (sIL2-R), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF) are associated with adverse clinical features and predict poor outcome in diffuse large B-cell lymphoma. Leuk. Res. 2017, 59, 20–25. [Google Scholar] [CrossRef]
- Peroja, P.; Pasanen, A.K.; Haapasaari, K.-M.; Jantunen, E.; Soini, Y.; Turpeenniemi-Hujanen, T.; Bloigu, R.; Lilja, L.; Kuittinen, O.; Karihtala, P. Oxidative stress and redox state-regulating enzymes have prognostic relevance in diffuse large B-cell lymphoma. Exp. Hematol. Oncol. 2012, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Kuusisto, M.E.L.; Haapasaari, K.-M.; Turpeenniemi-Hujanen, T.; Jantunen, E.; Soini, Y.; Peroja, P.; Bloigu, R.; Karihtala, P.; Kuittinen, O. High intensity of cytoplasmic peroxiredoxin VI expression is associated with adverse outcome in diffuse large B-cell lymphoma independently of International Prognostic Index. J. Clin. Pathol. 2015, 68, 552–556. [Google Scholar] [CrossRef]
- Gangemi, S.; Allegra, A.; Alonci, A.; Cristani, M.; Russo, S.; Speciale, A.; Penna, G.; Spatari, G.; Cannavò, A.; Bellomo, G.; et al. Increase of novel biomarkers for oxidative stress in patients with plasma cell disorders and in multiple myeloma patients with bone lesions. Inflamm. Res. 2012, 61, 1063–1067. [Google Scholar] [CrossRef]
- Pan, L.; Beverley, P.C.L.; Isaacson, P.G. Lactate dehydrogenase (LDH) isoenzymes and proliferative activity of lymphoid cells—An immunocytochemical study. Clin. Exp. Immunol. 1991, 86, 240–245. [Google Scholar] [CrossRef]
- Bairey, O.; Shacham-Abulafia, A.; Shpilberg, O.; Gurion, R. Serum albumin level at diagnosis of diffuse large B-cell lymphoma: An important simple prognostic factor. Hematol. Oncol. 2015, 34, 184–192. [Google Scholar] [CrossRef]
- Liu, Y.; Wen, L.; Chen, H.; Chen, Y.; Duan, W.; Kang, Y.; Ma, L.; Huang, X.; Lu, J. Serum Lactate Dehydrogenase Can Be Used as a Factor for Re-Evaluating First-Relapsed Multiple Myeloma. Acta Haematol. 2020, 143, 559–566. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhu, L. The crosstalk between autonomic nervous system and blood vessels. Int. J. Physiol. Pathophysiol. Pharmacol. 2018, 10, 17–28. [Google Scholar]
- Zhang, Q.; Lai, Y.; Deng, J.; Wang, M.; Wang, Z.; Wang, M.; Zhang, Y.; Yang, X.; Zhou, X.; Jiang, H. Vagus Nerve Stimulation Attenuates Hepatic Ischemia/Reperfusion Injury via the Nrf2/HO-1 Pathway. Oxidative Med. Cell. Longev. 2019, 2019, 9549506. [Google Scholar] [CrossRef]
- De Couck, M.; Maréchal, R.; Moorthamers, S.; Van Laethem, J.-L.; Gidron, Y. Vagal nerve activity predicts overall survival in metastatic pancreatic cancer, mediated by inflammation. Cancer Epidemiol. 2016, 40, 47–51. [Google Scholar] [CrossRef]
- Hamilton, R.M.; Mckechnie, P.S.; Macfarlane, P.W. Can cardiac vagal tone be estimated from the 10-second ECG? Int. J. Cardiol. 2004, 95, 109–115. [Google Scholar] [CrossRef]
- De Couck, M.; Gidron, Y. Norms of vagal nerve activity, indexed by Heart Rate Variability, in cancer patients. Cancer Epidemiol. 2013, 37, 737–741. [Google Scholar] [CrossRef] [PubMed]
- De Couck, M.; Van Brummelen, D.; Schallier, D.; De Greve, J.; Gidron, Y. The relationship between vagal nerve activity and clinical outcomes in prostate and non-small cell lung cancer patients. Oncol. Rep. 2013, 30, 2435–2441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosas-Ballina, M.; Olofsson, P.S.; Ochani, M.; Valdés-Ferrer, S.I.; Levine, Y.A.; Reardon, C.; Tusche, M.W.; Pavlov, V.A.; Andersson, U.; Chavan, S.; et al. Acetylcholine-Synthesizing T Cells Relay Neural Signals in a Vagus Nerve Circuit. Science 2011, 334, 98–101. [Google Scholar] [CrossRef] [Green Version]
- Tracey, K.J. Reflex control of immunity. Nat. Rev. Immunol. 2009, 9, 418–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voronov, E.; Shouval, D.S.; Krelin, Y.; Cagnano, E.; Benharroch, D.; Iwakura, Y.; Dinarello, C.A.; Apte, R.N. IL-1 is required for tumor invasiveness and angiogenesis. Proc. Natl. Acad. Sci. USA 2003, 100, 2645–2650. [Google Scholar] [CrossRef] [Green Version]
- Gidron, Y.; De Couck, M.; De Greve, J.; Gidron, Y. If you have an active vagal nerve, cancer stage may no longer be important. J. Biol. Regul. Homeost. Agents 2014, 28, 195–201. [Google Scholar]
- Dekker, J.M.; Schouten, E.G.; Klootwijk, P.; Pool, J.; Swenne, C.A.; Kromhout, D. Heart Rate Variability from Short Electrocardiographic Recordings Predicts Mortality from All Causes in Middle-aged and Elderly Men: The Zutphen Study. Am. J. Epidemiol. 1997, 145, 899–908. [Google Scholar] [CrossRef]
A. Continuous Variables Variable | Mean | SD |
---|---|---|
Age | 67.33 | 13.99 |
BMI | 26.11 | 4.31 |
ECOG | 2.13 | 0.78 |
Hb | 9.10 | 1.52 |
LDH | 667.13 | 734.82 |
CRP | 55.97 | 53.54 |
SDNN | 14.58 | 11.91 |
RMSSD | 50.71 | 35.28 |
Time to death (days) | 221.65 | 180.77 |
B. Categorical Variables Variable % | ||
Gender | ||
Men | 44.8% | |
Women | 55.2% | |
Disease Status at Cell Therapy * | ||
1. Complete Remission | 12.5% | |
2. Partial Remission | 15.6% | |
3. Stable Disease | 15.6% | |
4. Progressive Disease | 56.3% | |
Coronary Heart Disease | ||
Yes | 10.3% | |
No | 89.7% | |
Atrial Fibrillation | ||
Yes | 13.8% | |
No | 86.2% | |
Chronic Heart failure | ||
Yes | 14.3% | |
No | 85.7% | |
Renal Failure | ||
Yes | 17.2% | |
No | 82.8% | |
Hypertension | ||
Yes | 37.9% | |
No | 62.1% | |
Death | ||
Yes | 55.2% | |
No | 44.8% |
Predictor | β | SE | Sig. | H.R | 95% CI |
---|---|---|---|---|---|
Past treatments | 1.01 | 0.45 | 0.02 | 2.76 | 1.14–6.72 |
Status of disease | 1.64 | 0.74 | 0.02 | 5.17 | 1.20–22.28 |
ECOG | −0.075 | 0.51 | 0.88 | 0.92 | 0.33–2.53 |
Hb | −0.44 | 0.30 | 0.14 | 0.64 | 0.35–1.16 |
SDNN | −1.58 | 0.62 | 0.01 | 0.20 | 0.06–0.69 |
A. Continuous Variables Variable | Mean | SD |
---|---|---|
Age | 61.40 | 7.02 |
BMI | 26.79 | 3.32 |
Karnofsky | 88.64 | 11.09 |
Hb | 11.37 | 1.66 |
LDH | 427.24 | 272.59 |
CRP | 15.62 | 26.09 |
SDNN | 14.60 | 10.63 |
RMSSD | 47.62 | 36.03 |
Progression-free survival (days) | 353 | 160 |
B. Categorical Variables Variable % | ||
Gender | ||
Men | 67.6% | |
Women | 32.4% | |
Disease Status at Cell Therapy * | ||
1. Complete Remission | 14.3% | |
2. VGPR | 48.6% | |
3. Partial Remission | 17.1% | |
4. Progressive Disease | 20.0% | |
Coronary Heart Disease | ||
Yes | 2.7% | |
No | 97.3% | |
Renal Failure | ||
Yes | 2.7% | |
No | 97.3% | |
Hypertension | ||
Yes | 29.7% | |
No | 70.3% | |
Diabetes | ||
Yes | 13.5% | |
No | 86.5% | |
Death | ||
Yes | 6.1% | |
No | 93.9% |
Predictor | β | SE | Sig. | H.R | 95% CI |
---|---|---|---|---|---|
Number of prior treatments | 0.08 | 0.36 | 0.81 | 1.08 | 0.53–2.24 |
Status of disease | 2.49 | 0.88 | 0.00 | 12.08 | 2.13–68.53 |
RMSSD | −1.65 | 0.79 | 0.03 | 0.191 | 0.04–0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atar, O.; Ram, R.; Avivi, I.; Amit, O.; Vitkon, R.; Luttwak, E.; Bar-On, Y.; Gidron, Y. Vagal Nerve Activity Predicts Prognosis in Diffused Large B-Cell Lymphoma and Multiple Myeloma. J. Clin. Med. 2023, 12, 908. https://doi.org/10.3390/jcm12030908
Atar O, Ram R, Avivi I, Amit O, Vitkon R, Luttwak E, Bar-On Y, Gidron Y. Vagal Nerve Activity Predicts Prognosis in Diffused Large B-Cell Lymphoma and Multiple Myeloma. Journal of Clinical Medicine. 2023; 12(3):908. https://doi.org/10.3390/jcm12030908
Chicago/Turabian StyleAtar, Or, Ron Ram, Irit Avivi, Odelia Amit, Roy Vitkon, Efrat Luttwak, Yael Bar-On, and Yori Gidron. 2023. "Vagal Nerve Activity Predicts Prognosis in Diffused Large B-Cell Lymphoma and Multiple Myeloma" Journal of Clinical Medicine 12, no. 3: 908. https://doi.org/10.3390/jcm12030908