Assessing Auditory Processing in Children with Listening Difficulties: A Pilot Study
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Material and Procedure
2.2.1. Auditory Processing Evaluation
Binaural Integration
Binaural Separation
Figure-Ground Segregation
Auditory Closure
Auditory Sequential Organization
Auditory Temporal Resolution
Phonemic Synthesis and Sustained Attention
2.2.2. Electrophysiological Evaluation
Transient Response
Sustained Response
Neural Response and Stimulus to Response Consistencies
2.3. Statistical Analysis
3. Results
3.1. Behavioural Tests
3.1.1. Auditory Processing Tests
3.1.2. Supplementary Tests
3.2. Electrophysiological Tests
3.2.1. Transient and Sustained Responses
3.2.2. Neural Response and Stimulus to Response Consistencies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Imhof, M. What have you listened to in school today? Int. J. List 2008, 22, 1–12. [Google Scholar] [CrossRef]
- Dawes, P.; Bishop, D. Auditory processing disorder in relation to developmental disorders of language, communication and attention: A review and critique. Int. J. Lang. Commun. Disord. 2009, 44, 440–465. [Google Scholar] [CrossRef] [PubMed]
- Dillon, H.; Cameron, S. Separating the causes of listening difficulties in children. Ear. Hear. 2021, 42, 1097–1108. [Google Scholar] [CrossRef] [PubMed]
- American Speech Language Hearing Association. (Central) Auditory Processing Disorders. 2005. Available online: www.asha.org/policy (accessed on 1 September 2022).
- CISG-SLPA. Canadian Guidelines on Auditory Processing Disorder in Children and Adults: Assessment and Intervention. 2012. Available online: www.sac-oac.ca (accessed on 1 September 2022).
- Keith, W.J.; Purdy, S.C.; Baily, M.R.; Kay, F.M. New Zealand Guidelines on Auditory Processing Disorder; Ministry of Education, Ministry of Health and the New Zealand Audiological Society: Wellington, New Zealand, 2019. [Google Scholar]
- Nickisch, A.; Kiese-Himmel, C.; Wiesner, T.; Schönweiler, R. Leitlinie “Auditive Verarbeitungs-und Wahrnehmungsstörungen”: Differenzialdiagnose. HNO 2019, 67, 576–583. [Google Scholar] [CrossRef]
- Ordre des Orthophonistes at Audiologistes du Québec (OOAQ). Révision des Pratiques Courantes en Audiologie entourant le Trouble de Traitement Auditif (TTA) Chez L’enfant; Rapport du Comité ad Hoc: Montréal, QC, Canada, 2007. [Google Scholar]
- Petley, L.; Hunter, L.L.; Zadeh, L.M.; Stewart, H.J.; Sloat, N.T.; Perdew, A.; Lin, L.; Moore, D.R. Listening Difficulties in Children with Normal Audiograms: Relation to Hearing and Cognition. Ear. Hear. 2021, 42, 1640–1655. [Google Scholar] [CrossRef] [PubMed]
- Gyldenkærne, P.; Dillon, H.; Sharma, M.; Purdy, S.C. Attend to this: The relationship between auditory processing disorders and attention deficits. J. Am. Acad. Audiol. 2014, 25, 676–687. [Google Scholar] [CrossRef] [PubMed]
- Silman, S.; Silverman, C.A.; Emmer, M.B. Central auditory processing disorders and reduced motivation: Three case studies. J. Am. Acad. Audiol. 2000, 11, 57–63. [Google Scholar] [CrossRef]
- Richard, G. Cognitive-communicative and language factors associated with (central) auditory processing disorder: A speech-language perspective. In Handbook of (Central) Auditory Processing Disorders: Auditory Neuroscience and Diagnosis; Musiek, F.E., Chermak, G.D., Eds.; Plural Publishing: Oxfordshire, UK, 2007; Volume 1, pp. 397–415. [Google Scholar]
- Bellis, T.J. Comprehensive central auditory assessment. In Assessment and Management of Central Auditory Processing Disorders in the Educational Setting: From Science to Practice, 2nd ed.; Bellis, T., Ed.; Thomson/Delmar Learning: Clifton Park, NY, USA, 2003; pp. 225–229. [Google Scholar]
- Moore, J.K. The human auditory brain stem as a generator of auditory evoked potentials. Hear. Res. 1987, 29, 33–43. [Google Scholar] [CrossRef]
- Ankmnal-Veeranna, S.; Allan, C.; Allen, P. Auditory brainstem responses in children with auditory processing disorder. J. Am. Acad. Audiol. 2019, 30, 904–917. [Google Scholar]
- Gopal, K.V.; Daily, C.S.; Kao, K. Auditory brainstem responses to regular and high stimulus repetition rates in children at risk for central auditory processing disorders. J. Audiol. Med. 2002, 11, 146–160. [Google Scholar]
- Jirsa, R.E. Maximum length sequences-auditory brainstem responses from children with auditory processing disorders. J. Am. Acad. Audiol. 2001, 12, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Morlet, T.; Nagao, K.; Greenwood, L.A.; Cardinale, R.M.; Gaffney, R.G.; Riegner, T. Auditory event-related potentials and function of the medial olivocochlear efferent system in children with auditory processing disorders. Int. J. Audiol. 2019, 58, 213–223. [Google Scholar] [CrossRef]
- Roush, J.; Tait, C.A. Binaural fusion, masking level differences, and auditory brain stem responses in children with language-learning disabilities. Ear. Hear. 1984, 5, 37–41. [Google Scholar] [CrossRef]
- Allen, P.; Allan, C. Auditory processing disorders: Relationship to cognitive processes and underlying auditory neural integrity. Int. J. Pediatr. Otorhinolaryngol. 2014, 78, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Hurley, A. Behavioral and Electrophysiological Assessment in Children with Specific Temporal Processing Disorder; Louisiana State University and Agricultural & Mechanical College: Baton Rouge, LA, USA, 2004. [Google Scholar]
- Gopal, K.V.; Pierel, K. Binaural interaction component in children at risk for central auditory processing disorders. Scand. Audiol. 1999, 28, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Skoe, E.; Kraus, N. Auditory brainstem response to complex sounds: A tutorial. Ear. Hear. 2010, 31, 302–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornickel, J.; Knowles, E.; Kraus, N. Test-retest consistency of speech-evoked auditory brainstem responses in typically-developing children. Hear. Res. 2012, 284, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Kraus, N.; Nicol, T. Aggregate neural responses to speech sounds in the central auditory system. Speech. Commun. 2003, 41, 35–47. [Google Scholar] [CrossRef]
- Kraus, N.; White-Schwoch, T. Unraveling the biology of auditory learning: A cognitive–sensorimotor–reward framework. Trends. Cogn. Sci. 2015, 19, 642–654. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, B.; Kraus, N. The scalp-recorded brainstem response to speech: Neural origins and plasticity. Psychophysiology 2010, 47, 236–246. [Google Scholar] [CrossRef] [Green Version]
- Bidelman, G.M. Subcortical sources dominate the neuroelectric auditory frequency-following response to speech. Neuroimage 2018, 175, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Coffey, E.B.; Arseneau-Bruneau, I.; Zhang, X.; Baillet, S.; Zatorre, R.J. Oscillatory entrainment of the frequency-following response in auditory cortical and subcortical structures. J. Neurosci. 2021, 41, 4073–4087. [Google Scholar] [CrossRef] [PubMed]
- Coffey, E.B.; Herholz, S.C.; Chepesiuk, A.M.; Baillet, S.; Zatorre, R.J. Cortical contributions to the auditory frequency-following response revealed by MEG. Nat. Commun. 2016, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorina-Careta, N.; Kurkela, J.L.; Hämäläinen, J.; Astikainen, P.; Escera, C. Neural generators of the frequency-following response elicited to stimuli of low and high frequency: A magnetoencephalographic (MEG) study. Neuroimage 2021, 231, 117866. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Singh, N.K. BioMARK as electrophysiological tool for assessing children at risk for (central) auditory processing disorders without reading deficits. Hear. Res. 2015, 324, 54–58. [Google Scholar] [CrossRef]
- Rocha-Muniz, C.N.; Befi-Lopes, D.M.; Schochat, E. Investigation of auditory processing disorder and language impairment using the speech-evoked auditory brainstem response. Hear. Res. 2012, 294, 143–152. [Google Scholar] [CrossRef]
- Rocha-Muniz, C.N.; Befi-Lopes, D.M.; Schochat, E. Sensitivity, specificity and efficiency of speech-evoked ABR. Hear. Res. 2014, 317, 15–22. [Google Scholar] [CrossRef]
- King, C.; Warrier, C.M.; Hayes, E.; Kraus, N. Deficits in auditory brainstem pathway encoding of speech sounds in children with learning problems. Neurosci. Lett. 2002, 319, 111–115. [Google Scholar] [CrossRef]
- Ghannoum, M.T.; Shalaby, A.A.; Dabbous, A.O.; Abd-El-Raouf, E.R.; Abd-El-Hady, H.S. Speech evoked auditory brainstem response in learning disabled children. Hear. Balance. Commun. 2014, 12, 126–142. [Google Scholar] [CrossRef]
- Koravand, A.; Parkes, E.; Duquette-Laplante, L.; Bursch, C.; Tomaszewski, S. The effects of singing lessons on speech evoked brainstem responses in children with central auditory processing disorders. Can. Acoust. 2019, 47, 31–40. [Google Scholar]
- Filippini, R.; Schochat, E. Brainstem evoked auditory potentials with speech stimulus in the auditory processing disorder. Braz. J. Otorhinolaryngol. 2009, 75, 449–455. [Google Scholar] [PubMed] [Green Version]
- American National Standards Institute (ANSI). ANSI S3.1-1999, R2008; Maximum Permissible Ambient Noise Levels for Audiometric Test Rooms. American National Standards Institute: Washington, DC, USA, 1996.
- Musiek, F.E. Assessment of central auditory dysfunction: The dichotic digit test revisited. Ear. Hear. 1983, 4, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Katz, J. The SSW test: An interim report. J. Speech. Hear. Disord. 1968, 33, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Willeford, J.A.; Burleigh, J.M. Sentence procedures in central testing. In Handbook of Clinical Audiology; Katz, J., Ed.; Williams & Wilkins: Baltimore, MD, USA, 1994; Volume 4, pp. 256–269. [Google Scholar]
- Bench, J.; Kowal, Å.; Bamford, J. The BKB (Bamford-Kowal-Bench) sentence lists for partially-hearing children. Br. J. Audiol. 1979, 13, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Bamford-Kowal-Bench Speech-In-Noise Test [Audio CD, Version 1.03]; Etymōtic Research: Elk Grove Village, IL, USA, 2005.
- Wilson, L.; Mueller, H. Performance of normal hearing individuals on Auditec filtered speech tests. ASHA 1984, 27, 189. [Google Scholar]
- Auditec. Tonal and Speech Materials for Auditory Perceptual Assessment: Nu-6, Low Pass Filter 1000 Hz; Auditec: St. Louis, MO, USA, 2015. [Google Scholar]
- Musiek, F.E. Frequency (pitch) and duration pattern tests. J. Am. Acad. Audiol. 1994, 5, 265–268. [Google Scholar]
- Keith, R.W. Random Gap Detection Test; Auditec: St. Louis, MO, USA, 2000. [Google Scholar]
- Katz, J.; Fletcher, C. Phonemic Synthesis Test: Instructions, Scoring, Norms and Interpretation; Precision Acoustics (Undated Norms): Vancouver, WA, USA, 1994. [Google Scholar]
- Keith, R. Auditory Continuous Performance Test Examiners Manual; Psychological Corporation: San Antonio, TX, USA, 1994. [Google Scholar]
- Hornickel, J.; Skoe, E.; Kraus, N. Subcortical Laterality of Speech Encoding. Audiol. Neurotol. 2009, 14, 198–207. [Google Scholar] [CrossRef] [Green Version]
- Jasper, H.H. The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 1958, 10, 370–375. [Google Scholar]
- MATLAB, V. 9.1. 0.441655 (R2016b). The MathWorks Inc.: Natick, MA, USA, 2016.
- Skoe, E.; Nicol, T.; Kraus, N. The Brainstem Toolbox; Version 2013. 2013. Available online: www.brainvolts.northwestern.edu (accessed on 1 September 2022).
- Russo, N.; Nicol, T.; Musacchia, G.; Kraus, N. Brainstem responses to speech syllables. Clin. Neurophysiol. 2004, 115, 2021–2030. [Google Scholar] [CrossRef] [Green Version]
- Krizman, J.; Kraus, N. Analyzing the FFR: A tutorial for decoding the richness of auditory function. Hear. Res. 2019, 382, 107779. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; Sage: Newcastle upon Tyne, UK, 2013. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates, 2nd ed.; Erlbaum: Hillsdale, MI, USA, 1988. [Google Scholar]
- Ghannoum, M.T.; Shalaby, A.A.; Dabbous, A.O.; Abd-El-Raouf, E.R.; Abd-El-Hady, H.S. Central auditory processing functions in learning disabled children assessed by behavioural tests. Hear. Balance. Commun. 2014, 12, 143–154. [Google Scholar] [CrossRef]
- Iliadou, V.; Bamiou, D.-E.; Kaprinis, S.; Kandylis, D.; Kaprinis, G. Auditory Processing Disorders in children suspected of Learning Disabilities—A need for screening? Int. J. Pediatr. Otorhinolaryngol. 2009, 73, 1029–1034. [Google Scholar] [CrossRef] [PubMed]
- Neves, I.F.; Schochat, E. Auditory processing maturation in children with and without learning difficulties. Pró-Fono Rev. Atualização Científica 2005, 17, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Stollman, M.H.; Velzen, E.C.v.; Simkens, H.M.; Snik, A.F.; van den Broek, P. Assessment of auditory processing in 6-year-old language-impaired children: Evaluacion del procesamiento auditivo en niños de 6 años con trastornos del lenguaje. Int. J. Audiol. 2003, 42, 303–311. [Google Scholar] [CrossRef]
- Boets, B.; Wouters, J.; Van Wieringen, A.; Ghesquiere, P. Auditory processing, speech perception and phonological ability in pre-school children at high-risk for dyslexia: A longitudinal study of the auditory temporal processing theory. Neuropsychologia 2007, 45, 1608–1620. [Google Scholar] [CrossRef]
- Lanzetta-Valdo, B.P.; Oliveira, G.A.d.; Ferreira, J.T.C.; Palacios, E.M.N. Auditory processing assessment in children with attention deficit hyperactivity disorder: An open study examining methylphenidate effects. Int. Arch. Otorhinolaryngol. 2017, 21, 72–78. [Google Scholar]
- Hurley, A.E.; Hood, L.J.; Cullen Jr, J.K.; Cranford, J. Click ABR Characteristics in Children with Temporal Processing Deficits. J. Educ. Audiol. 2008, 14, 19–30. [Google Scholar]
- Mason, S.; Mellor, D. Brain-stem, middle latency and late cortical evoked potentials in children with speech and language disorders. Electroencephalogr. Clin. Neurophysiol. 1984, 59, 297–309. [Google Scholar] [CrossRef]
- Gopal, K.V.; Kowalski, J. Slope analysis of Auditory Brainstem Responses in children at risk of central auditory processing disorders. Scand. Audiol. 1999, 28, 85–90. [Google Scholar] [CrossRef]
- Lauter, J.L.; Oyler, R.F.; Lord-maes, J. Amplitude stability of auditory brainstem responses in two groups of children compared with adults. Br. J. Audiol. 1993, 27, 263–271. [Google Scholar] [CrossRef]
- Gabr, T.A.; Darwish, M.E. Speech auditory brainstem response audiometry in children with specific language impairment. Hear. Balance. Commun. 2016, 14, 50–58. [Google Scholar] [CrossRef]
- Jafari, Z.; Malayeri, S.; Rostami, R. Subcortical encoding of speech cues in children with attention deficit hyperactivity disorder. Clin. Neurophysiol. 2015, 126, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Malayeri, S.; Lotfi, Y.; Moossavi, S.A.; Rostami, R.; Faghihzadeh, S. Brainstem response to speech and non-speech stimuli in children with learning problems. Hear. Res. 2014, 313, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Hornickel, J.; Kraus, N. Unstable representation of sound: A biological marker of dyslexia. J. Neurosci. 2013, 33, 3500–3504. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, B.; Hornickel, J.; Skoe, E.; Nicol, T.; Kraus, N. Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: Implications for developmental dyslexia. Neuron 2009, 64, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Anderson, S.; Parbery-Clark, A.; White-Schwoch, T.; Kraus, N. Auditory brainstem response to complex sounds predicts self-reported speech-in-noise performance. J. Speech. Lang. Hear. Res. 2013, 56, 31–43. [Google Scholar] [CrossRef]
Participant | Sex | Age (Years: Months) | Reason for Referral/Symptoms | Diagnoses Prior to the Audiological Evaluation | Diagnosed by | Medication |
---|---|---|---|---|---|---|
EXP01 | M | 7:11 | Indicators of an auditory processing problem such as receptive language struggles, requiring repetitions, with differences between verbal and non-verbal abilities | ADHD, Learning disorder | Psychologist | no meds |
EXP02 | F | 9:4 | Language disorder | Mixed Expressive-Receptive Language Disorder, ADHD, Specific Language Disorder | Psychologist | no meds |
EXP03 | M | 7:0 | Following instructions are difficult, and parts may be forgotten before the child can follow through. Struggling with learning to read. | Learning Disability, ADHD | Psychologist | Adderall |
EXP04 | M | 7:4 | Difficulties in the school environment related to problems hearing in noise experiencing challenges with overall motor skills. | Oculomotor dysfunction Accommodative dysfunction | Optometrist | no meds |
EXP05 | M | 7:11 | Needed additional time to respond to questions, experienced speech sound confusion, difficulty manipulating the sounds within words, and showed auditory memory weakness. | Communication disorder-expressive language, Learning disorder (Written Expression) | Psychologist | no meds |
EXP06 | M | 7:1 | Weak phonological awareness and phonological memory, difficulty repeating nonsense words, shorter working memory for verbal information, reduced understanding of spoken information, and weak reading comprehension. | None | Not applicable | no meds |
EXP07 | M | 8:4 | Phonological awareness, auditory memory, distinguishing sounds in noise and auditory processing difficulties. Auditory attention and sustaining attention were of concern as well. | ADHD, Learning Disorder in Reading and Written expression | Psychologist | Biphentin |
EXP08 | F | 10:5 | Having trouble with reading comprehension and with decoding words phonetically more so than reading sight words. | None | Not applicable | no meds |
EXP09 | F | 8:2 | Following a hearing test. Reading has been reported as a challenge for the child. | None | Not applicable | no meds |
EXP10 | M | 11:1 | Missing instructions from the teacher, needing confirmation for what was heard, struggling with reading comprehension and has difficulty with writing activities for any subjects, with spelling challenges. | Anxiety, depression non-verbal learning disability | Psychologist | no meds |
Test | DD | CS | PPST | BKB-SIN | RGDT | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RE | LE | RE | LE | RE | LE | RE | LE | BIN | |||
Experimental group | |||||||||||
Mean | 73.71 | 54 | 80.89 | 32.57 | 22.7 | 22.3 | 4.25 | 4.81 | 3.65 | 36.83 | |
Median | 70 | 45 | 88 | 20 | 0 | 0 | 3.25 | 3.75 | 3.25 | 40 | |
SD | 15.12 | 22.06 | 21.66 | 29.22 | 37.52 | 34.09 | 2.45 | 3.64 | 2.11 | 5.13 | |
n | 7 | 7 | 9 | 7 | 10 | 10 | 8 | 8 | 10 | 10 | |
Control group | |||||||||||
Mean | 91.75 | 88.25 | 89.4 | 71.78 | 91.2 | 88.9 | 2.15 | 2.25 | 1.5 | 10.72 | |
Median | 92.5 | 91.25 | 90 | 81 | 96.5 | 98 | 2.25 | 2 | 1 | 11.25 | |
SD | 6.67 | 8.58 | 4.65 | 19.31 | 11.39 | 13.80 | 1.42 | 0.83 | 0.97 | 5.61 | |
n | 10 | 10 | 10 | 9 | 10 | 10 | 10 | 10 | 10 | 10 | |
p | 0.019 * | 0.001 * | 0.243 | 0.012 * | 0.000 * | 0.000 * | 0.068 | 0.068 | 0.007 * | 0.000 * | |
Cohen’s r | −0.56 | −0.76 | −0.28 | −0.62 | −0.77 | −0.74 | 0.44 | 0.45 | 0.60 | 0.86 | |
Supplementary Tasks | |||||||||||
Test | SSW | LPFST | PST | ACPT | |||||||
RNC | RC | LC | LNC | RE | LE | IN | IM | Total | Vig | ||
Experimental group | |||||||||||
Mean | 2.5 | 10.2 | 18.6 | 4.4 | 62.25 | 43.38 | 16.25 | 14.5 | 9.63 | 24.13 | 1.71 |
Median | 2.5 | 9.5 | 21 | 4 | 60 | 40.5 | 16 | 16 | 10.5 | 27.5 | 2 |
SD | 1.90 | 5.18 | 6.93 | 4.53 | 16.52 | 18.94 | 4.56 | 5.83 | 5.83 | 9.11 | 1.11 |
n | 10 | 10 | 10 | 10 | 8 | 8 | 8 | 8 | 8 | 8 | 7 |
Control group | |||||||||||
Mean | 0.6 | 3.2 | 3.9 | 0.8 | 84.00 | 78.80 | 77.33 | 21.9 | 4.2 | 1.9 | 6.1 |
Median | 0 | 3 | 4 | 1 | 84 | 76 | 22 | 4 | 2 | 5.5 | 1 |
SD | 1.08 | 1.03 | 2.56 | 0.63 | 9.80 | 9.25 | 8.49 | 1.52 | 3.85 | 2.23 | 5.32 |
n | 10 | 10 | 10 | 10 | 9 | 9 | 10 | 10 | 10 | 10 | 10 |
p | 0.019 * | 0.011 * | 0.000 * | 0.011 * | 0.011 * | 0.002 * | 0.009 * | 0.001 * | 0.012 * | 0.001 * | 0.536 |
Cohen’s r | 0.54 | 0.57 | 0.82 | 0.56 | −0.61 | −0.73 | −0.60 | 0.70 | 0.59 | 0.76 | 0.17 |
Latency (ms) | Amplitude (uV) | |||||
---|---|---|---|---|---|---|
n | Mean | SD | n | Mean | SD | |
Control group | ||||||
Click−ABR | ||||||
Peak I | 10 | 2.20 | 0.16 | 10 | 0.14 * | 0.04 |
Peak III | 10 | 4.33 | 0.37 | 10 | 0.11 | 0.07 |
Peak V | 10 | 6.02 | 0.35 | 10 | 0.18 | 0.06 |
Speech−ABR | ||||||
Peak V | 10 | 6.35 | 0.27 | 10 | 0.13 | 0.10 |
Peak A | 10 | 7.38 | 0.50 | 10 | −0.28 | 0.07 |
Peak C | 10 | 18.22 | 0.50 | 10 | −0.08 | 0.06 |
Peak D | 10 | 22.36 * | 0.39 | 10 | −0.19 | 0.08 |
Peak E | 10 | 30.74 * | 0.56 | 10 | −0.26 | 0.12 |
Peak F | 10 | 39.11 | 0.33 | 10 | −0.28 | 0.12 |
Peak O | 10 | 47.97 | 0.41 | 10 | −0.18 | 0.12 |
VA complex | 10 | 1.03 | 0.26 | 10 | 0.41 | 0.13 |
VA complex area (μV × ms) | 10 | 10 | 0.21 | 0.10 | ||
VA complex slope (μV/ms) | 10 | −0.40 | 0.12 | 10 | ||
Experimental group | ||||||
Click−ABR | ||||||
Peak I | 10 | 2.33 | 0.40 | 10 | 0.08 * | 0.07 |
Peak III | 9 | 4.26 | 0.49 | 9 | 0.12 | 0.10 |
Peak V | 10 | 6.12 | 0.33 | 10 | 0.19 | 0.05 |
Speech−ABR | ||||||
Peak V | 10 | 6.47 | 0.73 | 10 | 0.13 | 0.07 |
Peak A | 10 | 7.53 | 0.62 | 10 | −0.27 | 0.06 |
Peak C | 9 | 18.62 | 1.11 | 9 | −0.06 | 0.04 |
Peak D | 10 | 23.88 * | 1.31 | 10 | −0.19 | 0.09 |
Peak E | 10 | 31.52 * | 0.80 | 10 | −0.21 | 0.08 |
Peak F | 10 | 39.57 | 0.96 | 10 | −0.24 | 0.09 |
Peak O | 10 | 48.40 | 0.56 | 10 | −0.20 | 0.05 |
VA complex | 10 | 1.06 | 0.21 | 10 | 0.39 | 0.09 |
VA complex area (μV × ms) | 10 | 10 | 0.21 | 0.06 | ||
VA complex slope (μV/ms) | 10 | −0.39 | 0.12 | 10 |
Mean | SD | |
---|---|---|
Control group | ||
F0 amplitude | 12.907 | 4.384 |
F1 amplitude | 3.340 | 0.675 |
HF amplitude | 1.059 | 0.293 |
RMS amplitude | 2.807 | 1.472 |
Experimental group | ||
F0 amplitude | 12.168 | 7.013 |
F1 amplitude | 2.999 | 0.762 |
HF amplitude | 0.849 | 0.212 |
RMS amplitude | 2.205 | 1.143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omidvar, S.; Duquette-Laplante, F.; Bursch, C.; Jutras, B.; Koravand, A. Assessing Auditory Processing in Children with Listening Difficulties: A Pilot Study. J. Clin. Med. 2023, 12, 897. https://doi.org/10.3390/jcm12030897
Omidvar S, Duquette-Laplante F, Bursch C, Jutras B, Koravand A. Assessing Auditory Processing in Children with Listening Difficulties: A Pilot Study. Journal of Clinical Medicine. 2023; 12(3):897. https://doi.org/10.3390/jcm12030897
Chicago/Turabian StyleOmidvar, Shaghayegh, Fauve Duquette-Laplante, Caryn Bursch, Benoît Jutras, and Amineh Koravand. 2023. "Assessing Auditory Processing in Children with Listening Difficulties: A Pilot Study" Journal of Clinical Medicine 12, no. 3: 897. https://doi.org/10.3390/jcm12030897
APA StyleOmidvar, S., Duquette-Laplante, F., Bursch, C., Jutras, B., & Koravand, A. (2023). Assessing Auditory Processing in Children with Listening Difficulties: A Pilot Study. Journal of Clinical Medicine, 12(3), 897. https://doi.org/10.3390/jcm12030897