Artificial Neural Networks in Lung Cancer Research: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Artificial Neural Networks for Dummies
- Rapid recognition of linear patterns, nonlinear patterns with threshold impacts, and categorical, stepwise, and contingency effects.
- High fault tolerance.
- Overcoming noisy or incomplete input patterns.
- Capacity to solve problems whose solution is too complicated or non-algorithmic.
- The ability to generalize from the training data.
- The possibility of starting analysis in the absence of hypotheses or predetermined key variables.
3.2. Artificial Neural Networks in Lung Cancer Research
3.2.1. Risk Factors and Diagnosis
3.2.2. Postoperative Morbidity and Prognosis
3.2.3. Survival Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howlader, N.; Krapcho, M.; Miller, D.; Bishop, K.; Kosary, C.L.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. SEER Cancer Statistics Review, 1975–2014, Based on November 2016 SEER Data Submission, Posted to the SEER Web Site; National Cancer Institute: Bethesda, MD, USA, 2017. [Google Scholar]
- Cancer Research UK. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/lung-cancer/survival (accessed on 14 June 2022).
- Wood, D.E.; Kazerooni, E.A.; Baum, S.L.; Eapen, G.A.; Ettinger, D.S.; Hou, L.; Jackman, D.M.; Klippenstein, D.; Kumar, R.; Lackner, R.P.; et al. Lung cancer screening, version 3.2018, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 2018, 16, 412–441. [Google Scholar] [CrossRef] [PubMed]
- Bertolaccini, L.; Solli, P.; Pardolesi, A.; Pasini, A. An overview of the use of artificial neural networks in lung cancer research. J. Thorac. Dis. 2017, 9, 924–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, D.A.; Rosman, G.; Rus, D.; Meireles, O.R. Artificial Intelligence in Surgery: Promises and Perils. Ann. Surg. 2018, 268, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.; Naiser, F. Machine Learning at the Edge. In Book Chapter in Software Engineering for Embedded Systems, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 549–601. [Google Scholar]
- Han, S.H.; Kim, K.W.; Kim, S.; Youn, Y.C. Artificial Neural Network: Understanding the Basic Concepts without Mathematics. Dement. Neurocogn. Disord. 2018, 17, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.S.; Ligomenides, P.A.; Freedman, M.T.; Mun, S.K. Application of artificial neural networks for reduction of false-positive detections in digital chest radiographs. Proc. Annu. Symp. Comput. Appl. Med. Care 1993, 434–438. [Google Scholar]
- Hart, G.R.; Roffman, D.A.; Decker, R.; Deng, J. A multi-parameterised artificial neural network for lung cancer risk prediction. PLoS ONE 2018, 13, e0205264. [Google Scholar] [CrossRef] [Green Version]
- Xie, N.N.; Hu, L.; Li, T.H. Lung cancer risk prediction method based on feature selection and artificial neural network. Asian Pac. J. Cancer Prev. 2014, 15, 10539–10542. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Lu, H.; Si, H.; Liu, S.; Li, X.; Gao, C.; Cui, L.; Li, C.; Yang, X.; Yao, X. A Highly Efficient Gene Expression Programming (GEP) Model for Auxiliary Diagnosis of Small Cell Lung Cancer. PLoS ONE 2015, 10, e0125517. [Google Scholar] [CrossRef] [Green Version]
- Feng, F.; Wu, Y.; Wu, Y.; Nie, G.; Ni, R. The effect of artificial neural network model combined with six tumor markers in auxiliary diagnosis of lung cancer. J. Med. Syst. 2012, 36, 2973–2980. [Google Scholar] [CrossRef]
- Naresh, P.; Shettar, D.R. Early Detection of Lung Cancer Using Neural Network Techniques. Int. J. Eng. 2014, 4, 78–83. [Google Scholar]
- Uthoff, J.; Stephens, M.J.; Newell, J.D., Jr.; Hoffman, E.A.; Larson, J.; Koehn, N.; De Stefano, F.A.; Lusk, C.M.; Wenzlaff, A.S.; Watza, D.; et al. Machine learning approach for distinguishing malignant and benign lung nodules utilising standardised perinodular parenchymal features from CT. Med. Phys. 2019, 46, 3207–3216. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Long, H.; Gou, F.; Duan, X.; Kong, G.; Wu, J. A Convolutional Neural Network-Based Intelligent Medical System with Sensors for Assistive Diagnosis and Decision-Making in Non-Small Cell Lung Cancer. Sensors 2021, 21, 7996. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.T.; Chen, Z.; Ye, N.; Mambetsariev, I.; Fricke, J.; Daniel, E.; Wang, G.; Wong, C.W.; Rockne, R.C.; Colen, R.R.; et al. Differentiating Peripherally-Located Small Cell Lung Cancer From Non-small Cell Lung Cancer Using a CT Radiomic Approach. Front. Oncol. 2020, 10, 593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos-Garcıa, G.; Varela, G.; Novoa, N.; Jiménez, M.F. Prediction of postoperative morbidity after lung resection using an artificial neural network ensemble. Artif. Intell. Med. 2004, 30, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Toney, L.K.; Vesselle, H.J. Neural networks for nodal staging of non-small cell lung cancer with FDG PET and CT: Importance of combining uptake values and sizes of nodes and primary tumor. Radiology 2014, 270, 91–98. [Google Scholar] [CrossRef]
- Chatzimichail, E.; Matthaios, D.; Bouros, D.; Karakitsos, P.; Romanidis, K.; Kakolyris, S.; Papashinopoulos, G.; Rigas, A. γ -H2AX: A Novel Prognostic Marker in a Prognosis Prediction Model of Patients with Early Operable Non-Small Cell Lung Cancer. Int. J. Genom. 2014, 2014, 160236. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, J.; Ding, H.Y.; Pan, Q.S.; Hong, W.D.; Xu, G.; Yu, F.; Wang, Y. Use of an Artificial Neural Network to Construct a Model of Predicting Deep Fungal Infection in Lung Cancer Patients. Asian Pac. J. Cancer Prev. 2015, 16, 5095–5099. [Google Scholar] [CrossRef] [Green Version]
- Hsia, T.C.; Chiang, H.C.; Chiang, D.; Hang, L.W.; Tsai, F.J.; Chen, W.C. Prediction of survival in surgical unresectable lung cancer by artificial neural networks including genetic polymorphisms and clinical parameters. J. Clin. Lab Anal. 2003, 17, 229–234. [Google Scholar] [CrossRef]
- Arbour, K.C.; Luu, A.T.; Luo, J.; Rizvi, H.; Plodkowski, A.J.; Sakhi, M.; Huang, K.B.; Digumarthy, S.R.; Ginsberg, M.S.; Girshman, J.; et al. Deep Learning to Estimate RECIST in Patients with NSCLC Treated with PD-1 Blockade. Cancer Discov. 2021, 11, 59–67. [Google Scholar] [CrossRef]
- Poullis, M.; McShane, J.; Shaw, M.; Woolley, S.; Shackcloth, M.; Page, R.; Mediratta, N. Lung cancer staging: A physiological update. Interact. Cardiovasc. Thorac. Surg. 2012, 14, 743–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, K.Y.; Chen, J.R.; Wang, Y.C.; Chiu, M.H.; Lin, S.P.; Mo, Y.H.; Peng, S.C.; Lu, C.F. Radiomics-Based Deep Learning Prediction of Overall Survival in Non-Small-Cell Lung Cancer Using Contrast-Enhanced Computed Tomography. Cancers 2022, 14, 3798. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
Items | Specification |
---|---|
Date of search | 31/07/2022 |
Databases and other sources searched | EMBASE (via Ovid), MEDLINE (via PubMed), Cochrane CENTRAL, and Google Scholar |
Search terms used | Combination of keywords and related terms for “artificial neural network”, “lung cancer”, “non-small cell lung cancer”, “diagnosis”, and “treatment” |
Timeframe | 01/04/2018–31/12/2022 |
Inclusion and exclusion criteria |
|
Selection process |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prisciandaro, E.; Sedda, G.; Cara, A.; Diotti, C.; Spaggiari, L.; Bertolaccini, L. Artificial Neural Networks in Lung Cancer Research: A Narrative Review. J. Clin. Med. 2023, 12, 880. https://doi.org/10.3390/jcm12030880
Prisciandaro E, Sedda G, Cara A, Diotti C, Spaggiari L, Bertolaccini L. Artificial Neural Networks in Lung Cancer Research: A Narrative Review. Journal of Clinical Medicine. 2023; 12(3):880. https://doi.org/10.3390/jcm12030880
Chicago/Turabian StylePrisciandaro, Elena, Giulia Sedda, Andrea Cara, Cristina Diotti, Lorenzo Spaggiari, and Luca Bertolaccini. 2023. "Artificial Neural Networks in Lung Cancer Research: A Narrative Review" Journal of Clinical Medicine 12, no. 3: 880. https://doi.org/10.3390/jcm12030880
APA StylePrisciandaro, E., Sedda, G., Cara, A., Diotti, C., Spaggiari, L., & Bertolaccini, L. (2023). Artificial Neural Networks in Lung Cancer Research: A Narrative Review. Journal of Clinical Medicine, 12(3), 880. https://doi.org/10.3390/jcm12030880